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Abstract— Two control results are described: 1) local tracking
control for convex billiards with piecewise locally Lipschitz
boundary, and 2) global tracking control for special polyhedral
billiards, including rectangles and equilateral triangles. The
controllers are based on Lyapunov functions and a mirroring
concept introduced in a companion paper. The local results
require the impacts to satisfy an average dwell-time condition
with parameters that depend on the Lipschitz constant of
the function that characterizes the boundary. For piecewise
constant boundary, and for the global results, the average dwell-
time parameters are arbitrary. Tools from stability analysis for
hybrid systems are used to establish the results.

I. INTRODUCTION

This paper is a continuation of [3] where a new Lyapunov-

based technique for local tracking in convex, polyhedral

billiards is developed. In this paper, we show how the results

in [3] can be extended to local tracking in convex billiards

with piecewise locally Lipschitz boundary, and to global

tracking for some polyhedral billiards. Background material

on the billiard tracking problem can be found in [3]. Several

techinques addressing tracking on billiards and, in general,

on mechanical systems with impacts are provided in the

works [1], [4], [6] and references therein.

In Section II, we describe general convex billiards and

describe hybrid models for them that capture impacts at the

boundaries. In Section III, we describe the control algorithm

that achieves local tracking, with tracking results proved in

Section IV. In Section V we describe a control algorithm

that, under appropriate assumptions, achieves global asymp-

totic tracking. In Section VI we show that these assumptions

hold for certain polyhedral billiards.

II. SYSTEM DESCRIPTION

We consider a tracking control problem where we aim

to make the variable xp ∈ R
2 track the reference variable

zp ∈ R
2 where both variables evolve in a closed, convex set

F ⊂ R
2 that has nonempty interior and a piecewise locally

Lipschitz boundary. We refer to the set F as a billiard. Let η◦
denote some point in the interior of F . By piecewise locally

Lipschitz boundary, we mean that for each η ∈ ∂F , except

possibly for a finite number of points, the conditions

〈F, η − ηc〉 ≥ 0 ∀ηc ∈ F , 〈F, η − η◦〉 = 1 (1)
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define a unique vector F (η) and any function F : ∂F →
R

2 \ {0} satisfying (1) is piecewise locally Lipschitz. Note

that 1) 〈F (η), η − ηc〉 = 0 implies ηc ∈ ∂F , and 2) ηc ∈ F
if and only if 〈F (η), ηc − η◦〉 ≤ 1 for each η ∈ ∂F .

Let xv ∈ R
2 and zv ∈ R

2 denote the velocities of xp and

zp respectively. Define x = (xT
p , x

T
v )

T and z = (zTp , z
T
v )

T .

The variable z is constrained to a compact set K ⊂ F ×
R

2. The following assumption on the set K prevents the z
state from reaching any billiard “corner” (informally, a point

on the boundary of F where F is discontinuous) and from

“sliding” along the boundary of the billiard.

Assumption 1: For the compact set K, there exists ν > 0
such that (η∗, ω∗) ∈ K ∩ (∂F × R

2) implies:

1) η 7→ F (η) is locally Lipschitz at η∗,

2) |〈F (η∗), ω∗〉| ≥ ν|F (η∗)|.
During continuous evolution, the equations of motion are

z̈p ∈ α(z) , ẍp = φ(x) + u (2)

where φ : F ×R
2 → R

2 is a continuous function, α : R4 ⇉

R
2 is a set-valued mapping that is outer semicontinuous and

locally bounded having nonempty convex values for each

z ∈ K, and u ∈ R
2 is the control. A special case covered here

is when α is replaced by a continuous function defined on K.

We allow set-valued accelerations for the reference variable

zp in order to allow the possibility that when the reference

state returns to a particular value it leaves that value along a

trajectory that is different from the trajectory it followed the

previous time it was at that value. While the acceleration is

not assumed to be unique, the selected acceleration at each

time is assumed to be known by the control algorithm.

A variable with position vector η ∈ ∂F and velocity vector

ω is said to impact the boundary of the billiard if 〈F (η), ω〉 ≥
0. That is, impacts occur when (x, z) belong to the set Db

defined as Db := Db1 ∪Db2 where

Db1 :=
{
x ∈ ∂F × R

2 : 〈F (xp), xv〉 ≥ 0
}
×K

Db2 := F ×
{
z ∈ K ∩ (∂F × R

2) : 〈F (zp), zv〉 ≥ 0
}
.

(3)

When a variable impacts the billiard boundary at a point

where the boundary is locally Lipschitz, the variable’s veloc-

ity is reflected in a direction that is determined by the velocity

and the vector F at the point of impact. These instantaneous

changes in velocity can be written as ω+ = M(F (η))ω,

where ω denotes the variable’s velocity and

M(F ) := R(F )T diag(1,−1)R(F )

R(F ) :=
1

|F |

[
FTJ
FT

]
, J =

[
0 −1
1 0

]
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where |F | =
√
FTF . The positions do not change at

impacts, that is, η+ = η where η denotes the position of

a variable. This rule can be equivalently written as η+ =
M(F (η))η + c(F (η)) where

c(F ) = F · 2(1 + FT η◦)/|F |2 .

Several useful identities, including η = M(F (η))η+c(F (η))
for any η ∈ ∂F , are established in [3]. With the definitions

M̃(F ) = diag(M(F ),M(F ))

c̃(F ) =
[
c(F )T 01×2

]T

F̃ (η) = ∩δ>0F ((η + δB) ∩ ∂F) ,

F̃ (η) = F (η) at points where F is Lipschitz and, for all

impacts, even at points where the boundary is not smooth,

[
η
ω

]+
∈

⋃

F∈F̃ (η)

M̃(F )

[
η
ω

]
+ c̃(F ) .

Also define F (η◦) = 0, M(0) = I , c(0) = 0, M̃(0) = I ,

c̃(0) = 0, and, for each (F, z) ∈ R
2 ×F , define

m(F, z) := M̃(F )z + c̃(F ) . (4)

In order to rule out solutions that always jump and never

evolve continuously, we augment the plant with an average

dwell-time automaton [2], [5, eq. (S3), (S4)]. Letting N be

a positive integer and ρ > 0, we add the dynamics

σ̇ ∈ [0, ρ] σ ∈ [0, N ] (5a)

σ+ =σ − 1 σ ∈ [1, N ] . (5b)

Jumps of the billiard system are allowed when σ ∈ [1, N ]
and either x ∈ ∂F × R

2 and 〈F (xp), xv〉 ≥ 0 or z ∈ K ∩
(∂F × R

2) and 〈F (zp), zv〉 ≥ 0. For any hybrid system in

which σ is inserted, each solution has a hybrid time domain

that satisfies j−i ≤ ρ(t−s)+N for all (t, j) and (s, i) in the

domain that satisfy t+ j ≥ s+ i; see [2]. The values (ρ,N)
may be set based on the initial value of x. Neither ρ nor N
will be used in control design but, in the case of billiards

with curved boundary, the values of ρ and N will appear in

the analysis. The larger the curvature of the billiard walls, the

smaller ρ must be to guarantee asymptotic stability using our

techniques. Conversely, as the curvature tends toward zero,

the allowable value of ρ becomes arbitrarily large.

III. CONTROL ALGORITHM

Our control algorithm is parametrized by a matrix P ∈
R

2×2 and real numbers k1, k2 specified as follows.

Assumption 2: P = P
T
> 0 and A

T

clP + PAcl ≤ −λP

for some λ > 0 where Acl =
[

0 1
−k1 −k2

]
.

Define P := P ⊗ I2×2, K := K ⊗ I2×2 where K :=[
k1 k2

]
, and |v|P :=

√
vTPv for each v ∈ R

4, and note

that for every T ∈ R
2×2 which satisfies T TT = I we have

that |diag(T, T )v|P = |v|P . Thus, using M(F ) = M(F )T ,

M(F )M(F ) = I and M(F )c(F ) = −c(F ), it follows that

|x−m(F, z)|P = |m(F, x) − z|P
|m(F (η), x) −m(F (η), z)|P = |x− z|P .

(6)

Now augment the dynamics of (x, z, σ), which evolves in

(F × R
2) × K × [0, N ], with the variable η ∈ R

2, which

evolves in the set Πp(K) ∩ ∂F , where

Πp(K) =
{
zp ∈ F : (zp, zv) ∈ K for some zv ∈ R

2
}

,

i.e., the projection of K to positions. Define

C := (F × R
2)×K × [0, N ]× (Πp(K) ∩ ∂F) . (7)

During continuous-time evolution, which is allowed when

(x, z, σ, η) ∈ C, the variable η satisfies η̇ = 0. When the

x state jumps, which is allowed when (x, z, σ, η) ∈ Db1 ×
[1, N ]×(Πp(K)∩∂F) the variable η is updated as η+ = xp.

When the z state jumps, which is allowed when (x, z, σ, η) ∈
Db2 × [1, N ] × (Πp(K) ∩ ∂F) the variable η is updated as

η+ = zp. The control law is

u = −φ(x) +M(F (s))α−K
(
x−m(F (s), z)

)

s ∈ argmins∈{η,η◦}
|x−m(F (s), z)|P (8)

where α ∈ α(z) represents the acceleration of zp at the

current time. Since η ∈ Πp(K) ∩ ∂F , it follows from

Assumption 1 that, when z 7→ α(z) is a continuous function,

the control law u is a continuous function on the set

{(x, z, σ, η) ∈ C : |x−m(0, z)|P 6= |x−m(F (η), z)|P } .

The closed-loop tracking system has the flow dynamics (5a),

(2), (8), which evolve on the set C in (7), and the jump

dynamics given in Section II together with the rules for η+

specified above (8). Jumps are allowed if the state is in D :=
Db× [1, N ]× (Πp(K)∩∂F) where Db is defined above (3).

IV. CLOSED-LOOP RESULTS

Define

A◦ := {(x, z, σ, η) ∈ C : x = m(0, z)}
Am := {(x, z, σ, η) ∈ C : x = m(F (η), z), η = zp}

and A := A◦ ∪ Am. The set A is compact and satisfies

(x, z, σ, η) ∈ A =⇒ xp = zp . (9)

We establish that A is locally asymptotically stable (LAS)

under appropriate assumptions on (ρ,N). LAS of the set A
for the closed-loop system with state X = (x, z, σ, η) entails

1) (stability) for each ε > 0 there exists δ > 0 such that

|X(0, 0)|A ≤ δ =⇒ |X(t, j)|A ≤ ε ∀(t, j) ∈ dom X ,

where |X |A is the distance of the point X to the set A, and

2) (attractivity) there exists µ > 0 such that for |X(0, 0)|A ≤
µ, each solution is bounded and each complete solution

converges to A, that is, satisfies limt+j→∞ |X(t, j)|A = 0.

Using the next definition, we can state the main result of

the section. A function :̺R>0→R>0 belongs to class L̂ if it is

continuous, nonincreasing, lim
s→∞

̺(s)=0 and lim
s→0

̺(s)=∞.

Theorem 1: Let Assumptions 1 and 2 hold and let the

positive integer N be given. There exists ̺ ∈ L̂ such that, if

η 7→ F (η) is Lipschitz of rank L > 0 for all η ∈ Πp(K)∩∂F ,

then for each ρ ≤ ̺(L), the compact set A is locally

asymptotically stable for the closed-loop tracking system.

The next corollary, which follows from Theorem 1 and (9),

establishes a local tracking result for the closed-loop system.
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Corollary 1: Under the conditions of Theorem 1, the

solutions of the closed-loop tracking system satisfy:

1) for each ε > 0 there exists δ > 0 such that

|X(0, 0)|A ≤ δ implies |xp(t, j) − zp(t, j)| ≤ ε for

all (t, j) ∈ dom X;

2) there exists µ > 0 such that, for |X(0, 0)|A ≤ µ, each

complete solution, limt+j→∞ |xp(t, j)− zp(t, j)| = 0.

Proof of Theorem 1:

Given κ > 0, we define

Rκ := {(x, z, σ, η) ∈ C :
max {|xp − η|, |zp − η|} ≤ κ|x−m(F (η), z)|} . (10)

The proof is based on the next lemma.

Lemma 1: There exist κ > 0 and a compact set Ω
contained in (A◦ + εB)∪((Am + εB) ∩Rκ) that is globally

asymptotically stable for the closed-loop tracking system

when the flow and jump sets are intersected with A + εB
with ε > 0 sufficiently small.

Thus, we restrict the flow and jump sets to A+ εB for some

ε > 0 sufficiently small. According to [5, Corollary 19], is it

enough to establish global asymptotic stability for the closed-

loop system with the flow and jump sets further restricted

to Ω. We consider the evolution of the Lyapunov function

candidate

V (x, z, η) = min
s∈{η,η◦}

|x−m(F (s), z)|2P .

With the restriction that the state belongs to Ω, it follows

that V (x, z, η) = 0 if and only if (x, z, η) ∈ A.

Due to the choice for the control in (8), it follows that

during continuous-time evolution we have

V̇ (x, z, η) ≤ −λ min
s∈{η,η◦}

|x−m(F (s), z)|2P .

For each η ∈ Πp(K) ∩ ∂F , we define e(η, x, z) =
m(F (η), z)−m(F (xp), z) and we define e(η◦, x, z) = 0. For

jumps in the plant where the state x impacts the boundary

of the billiard, we have

V (x+, z+, η+)= min
s∈{η+,η◦}

|x+ −m(F (s), z)|2P (11)

= min
s∈{xp,η◦}

|m(F (xp), x)−m(F (s), z)|2P

= min{|m(F (xp), x)− z|2P , |x− z|2P}
= min

s∈{η◦,xp}
|x−m(F (s), z)|2P

= min
s∈{η,η◦}

|x−m(F (s), z) + e(s, x, z)|2P .

where we used (6) from the second to the fourth line. When

z jumps, using again (6), we have

V (x+, z+, η+)= min
s∈{η+,η◦}

|x−m(F (s), z+)|2P (12)

= min
s∈{zp,η◦}

|x−m(F (s),m(F (zp), z))|2P

= min{|x− z|2P , |x−m(F (zp), z)|2P , }
= min

s∈{η◦,zp}
|m(F (s), x) − z|2P

= min
s∈{η,η◦}

|m(F (s), x) − z + e(s, z, x)|2P .

Using that K is compact, F (·) is Lipschitz with Lipschitz

constant L near Πp(K) ∩ ∂F , and the definitions of m(·, z)
in (4), e above and Rκ in (10), there exists κ̃ > 0 such that,

if |x−m(F (η), z)|2P ≤ |x− z|2P then

max {|e(η, x, z)|, |e(η, z, x)|} ≤ κ̃L|x−m(F (η), z)| .
Using that (v1 + v2)

TP (v1 + v2) = vT1 Pv1 + 2vT1 Pv2 +
vT2 Pv2 ≤ vT1 Pv1 + λmax(P )|v2| (2|v1|+ |v2|) , it follows

that there exists κ̂ > 0 such that

V (x+, z+, η+) ≤ (1 + κ̂L(1 + L))V (x, z, η) .

Now we define Y (x, z, σ, η) := exp(λσ/2ρ)V (x, z, η) and

we ask that exp(−λ/2ρ)(1+ κ̂L(1+L)) := λd < 1. In fact,

we can fix λd < 1 and then solve for ρ to get a function

̺ ∈ L̂. Then Ẏ (x, z, σ, η) ≤ −λ
2Y (x, z, σ, η) and

Y (x+, z+, σ+, η+)

≤ exp
(
− λ

2ρ

)
(1 + κ̂L(1 + L))Y (x, z, σ, η)

= λdY (x, z, σ, η) .

This establishes the desired result. �

V. GLOBAL RESULTS FOR SPECIAL BILLIARDS

A. Assumptions

Henceforth, we pursue global asymptotic tracking. That

is, we seek a control algorithm causing xp to asymptotically

track zp from any initial condition (x, z) ∈ (F×R
2)×K. We

limit our attention to special polyhedral billiards, in which

case the boundary of the billiard is characterized by a finite

set of vectors Fi, i ∈ {1, . . . , k} where k is the number of

walls of the billiard, that satisfy (1) (see [3] for details).

We drop the “no sliding” condition in Assumption 1,

instead relying on the average dwell-time mechanism of the

model (see (5)) to prevent an infinite number of jumps on a

boundary. Moreover, at this point we do not need to make

the “no corners” condition of Assumption 1 explicit, as it

is covered implicitly by the following assumption on the

existence of a family of control Lyapunov functions. Later

we justify this assumption for special billiards by assuming

that the z variable does not reach the corners of the billiard.

Assumption 3: The matrix P = PT ∈ R
4×4, the matrix

K ∈ R
2×4, and the Q+1 (Q ≥ k) affine functions z 7→ ni(z)

satisfy the following properties:

1) ni(z) = m(Fi, z) for i ∈ {0, . . . , k};

2) for each i ∈ {k + 1, . . . , Q}, there exist Ti ∈ R
2×2

and Li ∈ R
2 such that ni(z) = T̃iz + L̃i where

T̃i :=
[
Ti 0
0 Ti

]
, L̃i :=

[
Li

0

]
;

3) Defining Acl =
[
02×2 I2×2

K

]
,

AT
clP+PAcl ≤ −HTH where (H,Acl) is observable;

4) For each jump of (x, z),

min
i∈{0,...,Q}

|x+ − ni(z
+)|2P ≤ min

i∈{0,...,Q}
|x− ni(z)|2P ;

5) For each (x, z) ∈ (F × R
2)×K,

min
i∈{0,...,Q}

|x−ni(z)| = 0 =⇒ min
i∈{0,...,k}

|x−ni(z)| = 0 .

We typically establish the last condition by eliminating

corners from K and then showing that if zp is not at a corner

then x 6= ni(z) for i ∈ {k + 1, . . . , Q}.
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B. Control algorithm

Paralleling the state η of Section III, our controller uses an

index variable q ∈ R, whose values are restricted to the finite

set Q := {0, . . . , Q}. During continuous-time evolution,

which is allowed when

(x, z, σ, q) ∈ C := (F × R
2)×K × [0, N ]×Q , (13)

we use q̇ = 0. At jumps, which are allowed when

(x, z, σ, q) ∈ D := Db × [1, N ]×Q , (14)

(where Db is defined above (3)) q is reset to any value q+ ∈
Q satisfying

|x+ − nq+(z
+)|2P = min

i∈Q
|x+ − ni(z

+)|2P . (15)

The control law is selected, with the knowledge of the current

acceleration of the z-ball, in order to satisfy
[

z̈p
ẍp

]
∈ α̂(x, z, q) (16)

where α̂(x, z, q) = {(a1, a2) ∈ R
2 × R

2 : a1 ∈ α(z), a2 =
Tqa1+K (x− nq(z))} In particular, with x̃ = x−nq(z), we

have ˙̃x = Aclx̃. Together with the dynamics in Section II,

this defines the hybrid closed-loop tracking system. Define

A := {(x, z, σ, q) ∈ C : x = nq(z)} (17)

and note that if (x, z, σ, q) ∈ A then mini∈Q |x − ni(z)| =
0 which implies, by assumption, that mini∈{1,...,k} |x −
ni(z)| = 0. This, in turn, implies that xp = zp. Thus, like

for the local results, asymptotic stability of the set A implies

asymptotic tracking. We have the following result.

Theorem 2: Under Assumption 3, for each ρ > 0 and

N > 0, the compact set A is globally exponentially stable

for the closed-loop system tracking system.

Remark 1: For given (ρ,N), the dwell-time automaton

(5) may terminate prematurely solutions which produce a

large number of impacts before settling into tracking. Pre-

mature termination can be addressed by selecting ρ and N
sufficiently large, based on the size of the initial value of x.

Proof sketch. We analyze the behavior of the system by

starting with the Lyapunov function W (x, z, q) := |x −
nq(z)|2P . By definition of A in (17), W is positive definite

with respect to A. Also W (x, z, q) grows unbounded as x
grows unbounded.

Using Assumption 3, during continuous-time evolution

Ẇ (x, z, q) ≤ − |x− nq(z)|2HT H = − |x̃|2HT H , (18)

and at jumps

W (x+, z+, q+) = |x+ − nq+(z
+)|2P

= mini∈Q |x+ − ni(z
+)|2P

≤ mini∈Q |x− ni(z)|2P
≤ |x− nq(z)|2P = W (x, z, q) .

(19)

Global asymptotic stability follows from observability of

(H,Acl), the average dwell-time constraint imposed by (5),

and the invariance principle [7]. Global exponential stability

can be established by using [8, Theorem 2].

VI. SUFFICIENT CONDITIONS FOR ASSUMPTION 3

A. Preliminaries

Henceforth, we impose the following assumptions.

Assumption 4: For each η∗ ∈ Πp(K) ∩ ∂F , we have that

η 7→ F (η) is constant near η∗.

Note that Assumption 4 holds for free in the case of single-

walled and parallel-walled billiards.

Assumption 5: The matrices K and P = PT > 0 have

the form K := K ⊗ I2×2, where K :=
[
k1 k2

]
, and

P = P ⊗ I2×2 where the matrix P is positive definite and,

with the definition Acl =
[

0 1
−k1 −k2

]
satisfies A

T

clP+PAcl≤
−H

T
H where (H,Acl) is observable.

One possibility is to take

P =

[
k̄1 0
0 1

]
, (20)

which is used when two parallel walls comprise the billiard.

As observed previously, if T TT = I then

|x− diag(T, T )z − L|2P
= |diag(T T , T T )x− z − diag(T T , T T )L|2P
= |z − diag(T T , T T )x+ diag(T T , T T )L|2P .

(21)

So if we have a family of affine functions z 7→ ni(z) that in-

cludes diag(T, T )z+L and diag(T T , T T )z−diag(T T , T T )L
where T TT = TT T = I then we need to check jump

behavior for z only, since the required jump behavior for

x will follow by symmetry.

B. A single wall

Proposition 1: Let k = 1. Under Assumption 5, Assump-

tion 3 holds with Q = 1.

Proof. Let F0 = 0 and F1 = F . Since M(Fi)c(Fi) = −c(Fi)
for i ∈ {0, 1}, according to the observation at the end of the

last subsection, we just need to establish that

min
i∈{0,1}

|x−m(Fi,m(F, z)))|2P = min
i∈{0,1}

|x−m(Fi, z)|2P .

(22)

This relation follows from the fact that m(0,m(F, z)) =
m(F1, z) and m(F,m(F, z)) = z. �

C. Two parallel walls

Proposition 2: Let k = 2, F1/|F1| = −F2/|F2|, and P
have the form given in (20). Under Assumption 5, Assumption

3 holds with Q = 2.

Proof. Note that if FT
2 (zp−η◦) = 1 then FT

1 (zp−η◦)/|F1| =
−1/|F2|. Then, using that FT

1 xp ≤ 1+ FT
1 η◦, we have that

if FT
2 (zp − η◦) = 1 then

∣∣∣xp − zp − 2 F1

|F1|

(
|F1|+|F2|
|F1||F2|

)∣∣∣
2

− |xp − zp|2

= 4
(

|F1|+|F2|
|F1||F2|

)2

− 4
FT

1

|F1|
(xp − zp)

(
|F1|+|F2|
|F2||F1|

)

≥ 4
((

|F1|+|F2|
|F1||F2|

)2

−
(

1
|F1|

+ 1
|F2|

)(
|F1|+|F2|
|F2||F1|

))
= 0

Note also that M(F1) = M(F2), M(F1)M(F2) =
M(F2)M(F1) = I and c(F1) − c(F2) =
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2F1/|F1|
(
|F1|−1|+ |F2|−1

)
so that

m(F1,m(F2, z)) = z + M̃(F1)c̃(F2) + c̃(F1)
= z − c̃(F2) + c̃(F1)

= z + 2

[ F1

|F1|

02×1

](
|F1|+|F2|
|F2||F1|

)
.

(23)

In turn, it follows from the structure of P that if FT
2 (zp −

η◦) = 1 then |x −m(F1,m(F2, z))|2P ≥ |x − z|2P and also

|x−m(F1, z)|2P ≥ |x−m(F2, z)|2P . We then have, for jumps

of z on the second wall, that

min
i∈{0,1,2}

|x−m(Fi,m(F2, z))|2P
=min

{
|x−m(F2, z)|2P ,|x−m(F1,m(F2, z))|2P ,|x− z|2P

}

=min
{
|x−m(F2, z)|2P , |x− z|2P

}

=min
{
|x−m(F2, z)|2P , |x−m(F1, z)|2P , |x− z|2P

}
.

This calculation establishes the result. �

D. Two orthogonal walls

Proposition 3: Let k = 2 and FT
1 F2 = 0. Under Assump-

tions 4 and 5, Assumption 3 holds with Q = 3.

Proof. Let n3(z) := m(F1,m(F2, z)) = m(F2,m(F1, z)).
Since n3(m(F2, z)) = m(F1, z)), it follows that

min
i∈{0,1,2,3}

|x− ni(m(F2, z))|2P = min
i∈{0,1,2,3}

|x− ni(z)|2P .

By symmetry

min
i∈{0,1,2,3}

|x− ni(m(F1, z))|2P = min
i∈{0,1,2,3}

|x− ni(z)|2P .

Finally, to establish the last condition of Assumption 3, it is

sufficient to establish that

zp ∈ Πp(K) =⇒ M(F2)(M(F1)zp + c(F1)) + c(F2) /∈ F .

Intuitively, the map zp 7→ M(F1)(M(F2)zp+c(F2))+c(F1)
is a rotation of 180 degrees around the corner point where the

walls meet. The only point in the billiard that is not carried

out of the billiard by this operation is the corner point, which

is excluded by Assumption 4. Rigorously, for j ∈ {1, 2},

FT
j [M(F2)(M(F1)zp + c(F1)) + c(F2)] ≤ 1 + FT

j η◦

implies FT
j zp = 1 + FT

j η◦. In other words, the condition

M(F2)(M(F1)zp + c(F1)) + c(F2) ∈ F implies that zp is

located at the corner of the walls, meaning zp /∈ Πp(K). �

E. Rectangles

Proposition 4: Let k = 4, FT
1 F2 = 0, FT

1 F4 = 0,

F1/|F1| = −F3/|F3| and P have the form given in (20).

Under Assumptions 4 and 5, Assumption 3 holds with Q = 8.

Proof. Using the results of the previous subsection, one extra

function is constructed for each pair of orthogonal walls. The

new situation that must be accounted for is the change in one

of these extra “corner” functions when there is an impact on

one of the two other walls that do not form the given corner.

Let the corner be associated with walls 1 and 2 so that the

affine corner function is given as z 7→ m(F1,m(F2, z)). Let

wall 3 be parallel to wall 1, and thus orthogonal to wall 2.

Then, using the calculations from the cases of parallel and

orthogonal walls,

m(F1,m(F2,m(F3, z)))
= m(F1,m(F3,m(F2, z)))

= m(F2, z) + 2

[ F1

|F1|

02×1

] (
|F1|+|F3|
|F3||F1|

)
.

Due to the fact that walls 2 and 3 are orthogonal, it follows

that if FT
3 (zp−η◦) = 1 then FT

3 (M(F2)zp+c(F2)−η◦) = 1.

Therefore, following the calculations in the case of parallel

walls and using that P has the form given in (20), we get that

if FT
3 (zp − η◦) = 1 then |x+m(F1,m(F2,m(F3, z)))|2P ≥

|x − m(F2, z)|2P and also |x + m(F1,m(F2, z))|2P ≥ |x −
m(F2,m(F3, z))|2P . The rest of the proof follows the proof

for the case of parallel walls. �

F. Two walls that meet at special acute angles

Proposition 5: Let k = 2, and FT
1 F2 = cos(θ)|F1||F2|

where θ ∈ (0, π
3 ] satisfies ℓθ = π for some integer ℓ ≥ 3.

Under Assumptions 4 and 5, Assumption 3 holds with Q =
2ℓ− 1.

Proof. To save on notation, we use Mi := M(Fi) and ci :=
c(Fi). We order the walls such that

M1M2 = (M2M1)
T =

[
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

]
.

Suppose ℓ is even so that (M1M2)
ℓ/2 = (M2M1)

ℓ/2 = −I .

Define T−1 = T0 = I . For i ∈
{
1, . . . , ℓ

2

}
, define

T4(i−1)+1 := (M1M2)
i−1M1

T4(i−1)+2 := (M2M1)
i−1M2

T4(i−1)+3 := (M2M1)
i

T4(i−1)+4 := (M1M2)
i

(24)

L4(i−1)+1 :=

i−1∑

j=0

(M1M2)
jc1 +

i−2∑

j=0

(M1M2)
jM1c2

L4(i−1)+2 :=

i−1∑

j=0

(M2M1)
jc2 +

i−2∑

j=0

(M2M1)
jM2c1

L4(i−1)+3 :=
i−1∑

j=0

(M2M1)
jc2 +

i−1∑

j=0

(M2M1)
jM2c1

L4(i−1)+4 :=
i−1∑

j=0

(M1M2)
jc1 +

i−1∑

j=0

(M1M2)
jM1c2 .

(25)

Note that T2ℓ = T2ℓ−1 = −I , L2ℓ = L2ℓ−1. Also,

T4(i−1)+1 = T T
4(i−1)+1, T4(i−1)+2 = T T

4(i−1)+2, T4(i−1)+3 =

T T
4(i−1)+4, and

T4(i−1)+1L4(i−1)+1 = −L4(i−1)+1

T4(i−1)+2L4(i−1)+2 = −L4(i−1)+2

T4(i−1)+3L4(i−1)+4 = −L4(i−1)+3

T4(i−1)+4L4(i−1)+3 = −L4(i−1)+4 .

Furthermore, it can be verified that, for each i ∈
{1, . . . , 2ℓ− 2} and each j ∈ {1, 2},

TiMj = Ti+(−1)i+j−1(2(j−1)+1)

T2ℓ−1Mj = T2ℓ−1−j

Ticj + Li = Li+(−1)i+j−1(2(j−1)+1) .
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Finally, we must establish that, for each j ∈
{3, . . . , 2ℓ− 1}, each map z 7→ Tjz + Lj takes points in

F to points outside of F , except at the corner point. For

j = 4(i− 1) + 3 and j = 4(i− 1) + 4, i ∈ {1, . . . , ℓ/2} the

mapping is a rotation of 2iθ radians around the corner point.

Since ℓθ = π, we have that 2iθ ∈ [2θ, π]. For j = 4(i−1)+1
and j = 4(i − 1) + 2, i ∈ {2, . . . , ℓ/2}, the mapping is a

mirroring reflection about a wall, followed by a rotation of

2(i−1)θ radians. The mirroring operation is not a pointwise

rotation, but its action is to rotate the domain of the billiard

to a set that is a rotation of the billiard by θ radians. The net

effect is a rotation of the billiard by (2i − 1)θ radians. We

have (2i− 1)θ ∈ [3θ, π − θ]. This establishes the result.

The analysis for ℓ odd is similar. In this case

(M1M2)
(ℓ−1)/2M1 = (M2M1)

(ℓ−1)/2M2 and the last two

pairs (Ti, Li) of the construction for ℓ even are dropped. �

G. Equilateral triangles

With results of previous subsections, we get the following.

Proposition 6: Let k = 3 and let P have the form in

(20) and let Fi, i ∈ {1, 2, 3} be such that the billiard is an

equilateral triangle. Under Assumptions 4 and 5, Assumption

3 holds with Q = 12.

Proof. Using Proposition 5, we add 3 functions at each

corner. So, there is one function for each wall, plus three

for each corner, making for 12 extra functions. To verify

(3), we investigate what happens to the functions associated

with the corner of walls 1 and 2 due to impacts on wall 3.

It can be verified that

m(F1,m(F2,m(F1, z)))

= m(F3, z)+ c̃(F1)− c̃(F3)+M̃(F1)M̃(F2)(c̃(F1)− c̃(F2))
= m(F3, z) + ṽ

where v has the form ṽ =
[
vT 0

]T
where FT

3 v =
|v||F3|, i.e., v points in the same direction as F3, and the

magnitude of v is equal to twice the height of the triangle.

In turn, m(F1,m(F2,m(F1,m(F3, z)))) = z + ṽ and

m(F2,m(F1,m(F3, z)))
= m(F1,m(F1,m(F2,m(F1,m(F3, z)))))

= m(F1, z + ṽ) = m(F1, z) + M̃(F1)ṽ .

According to these relationships, it can be established, for

points satisfying FT
3 (zp − η◦) = 1,

|x−m(F1,m(F2,m(F1, z)))|2P ≥ |x−m(F3, z)|2P
|x−m(F1,m(F2,m(F1,m(F3, z))))|2P ≥ |x− z|2P
and

|x−m(F2,m(F1, z))|2P ≥ |x−m(F1,m(F3, z))|2P
|x−m(F2,m(F1,m(F3, z)))|2P ≥ |x−m(F1, z))|2P
These, and other relationships that follow by symmetry,

establish that Assumption 3 holds. �

VII. SIMULATION EXAMPLE

Consider a rectangular billiard characterized by the vectors

Fi used in Section V-A:

[
F1 F2 F3 F4

]
=

1

5

[
6 −2 −3 2

2 6 −1 −6

]
,

and assume that α(z) = 0 and φ(x) = 0 in (2), so that z
and x correspond to two masses moving on a flat surface.

0 0.5 1 1.5 2
0

5

10

15

V

t

 

 
Trajectory of the target z

Direct tracking (q(0,0)=0)

Initially using the upper mirror (q(0,0)=2)

Initially using the left mirror (q(0,0)=3)
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Fig. 1. Behavior of the Lyapunov function (left) and positions on the
billiards for different initial conditions (right).

We satisfy the conditions in Section VI-A with K =
K ⊗ I2×2 where K = [−4 −4 ] and P = P ⊗ I2×2 where

P = diag(4, 1). According to Proposition 4 in Section VI-E

we can satisfy Assumption 3 and use the control algorithm

of Section V-B to achieve global tracking, according to

Theorem 2. Figure 1 contains simulations of the closed-

loop response from z(0, 0) = [−1 0.3 1 1 ]
T

, x(0, 0) =
[−1.2 −0.5 0 0 ]

T
with three values of q(0, 0) (the average

dwell-time variable σ is not mentioned since it is not used in

the control law). The x mass starts with zero initial velocity.

The z mass is represented by the red-dashed trace in the

right-hand figure and, as proved in Theorem 2, all three

simulations achieve successful tracking. If q(0, 0) = 0 (black

trace), the initial tracking error is x − z and the controller

forces the x motion towards the north-east direction, where

the z mass is initially heading. If q(0, 0) = 2 (green trace),

the upper mirror and the arising tracking error x − n2(z)
are used at the initial time. Then, the controller forces the

x mass in the east direction because it compares it to the

reflection of the z ball given by the upper mirror. One way

to interpret this is that the controller is initially “undo-ing”

the first impact of the z mass. Similarly, for q(0, 0) = 3
(blue trace), the left mirror is used at the initial time and

the controller points towards the left wall. In this case, the

controller is initially “undo-ing” the first impact of the x
mass.
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