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Abstract— In this paper we formulate the tracking problem
of a translating mass in a polyhedral billiard as a stabilization
problem for a suitable set. Due to the discontinuous dynamics
arising from nonsmooth impacts, the tracking problem is
formulated within a hybrid systems framework and a Lyapunov
function is given, which decreases during flow (continuous
motion) and remains constant across jumps (impacts of the
masses). To guarantee non-increase of the Lyapunov function
at jumps, we introduce a novel concept of mirrored images of
the target mass and prove that, with this concept, local tracking
is achieved. Several simulations illustrate the effectiveness of the
proposed approach as compared to alternative solutions. In a
companion paper [6] we address global results and generalize
the local approach to curved billiards.

I. INTRODUCTION

Control of dynamical systems subject to nonsmooth im-

pacts is a relevant problem in several application areas, often

related to the robotics field [2]. Several Lyapunov-based

solutions to the stabilization and tracking problem of systems

with nonsmooth impacts have been proposed in the past

decade [3], [10], [20]. Some of them address the problem

via the larger class of complementarity Lagrangian systems.

See [13] for a recent work which gives an updated overview

of the results in this fields and generalizes and improves

the results in the previous papers [1], [4]. Several additional

recent techniques addressing tracking control with impacts

both from a theoretical and an experimental viewpoint are

provided in the works [14], [15], [11], [12], [19] and ref-

erences therein. The reader is referred to [13] for a more

detailed overview.

Tracking control in billiards is a representative example of

the control problem discussed above whenever the control

action is allowed to act during the motion (like, e.g, in

walking robots) and the impacts correspond to jumps in the

state occurring whenever the trajectory reaches a constraint.

In this context, a number of results have been produced,

which rely on the model first proposed in [20]. These

are nicely summarized in [7],[12]. The parallel problem of

tracking trajectories while restricting the control action at the

impact times is addressed in the work of [16] and references

therein.

The problem statement in this paper is motivated by [7],

[12] where Lyapunov-based tracking control is designed for
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a mass moving on a billiard. We cast this problem within

the framework of [9], [8] for hybrid dynamical systems and

propose a novel control strategy which is capable of inducing

decrease of a suitable Lyapunov function during flows and

non-increase during jumps. This type of approach is some-

what new in the area as most of the existing Lyapunov-based

results treat the impacts as events which locally increase the

Lyapunov function (a notable exception being the case in

[14]) and resort to weak stability concepts. Here, instead,

we design a Lyapunov function (and the arising control

law) which does not increase at the impact times because it

computes the tracking error based on a mirrored image of the

reference, whenever this is convenient to keep the tracking

error small. The resulting controller selects which mass to

track based on the closest reference among all the possible

reflections given by the billiard boundaries. It is notable that

a so-called “mirror algorithm” is proposed in [5] to solve the

juggling problem. This has little similarity with our approach

as the “mirror” is used there at all times to make the actuator

track a mirror image of the ball trajectory (which is regulated

acting at jumps), whereas here it is used to prevent the

tracking algorithm (which acts during flows) from getting

confused by impacts. Local tracking for polyhedral billiards

is discussed here and further developments are given in the

companion paper [6], where global tracking for some special

cases is provided and local tracking in curved billiards is also

achieved.

The paper is structured as follows. Section II introduces

the proposed dynamical model. In Section III local tracking

with one boundary is discussed. In Section IV the results are

extended to the case of multiple boundaries and an example

is discussed in Section V.

Notation: The Euclidean norm of a vector is denoted by

| · |. The distance between two sets S1 and S2 is given by

infs1∈S1,s2∈S2
|s1 − s2| and it is denoted by d(S1, S2). The

distance between a point s and a set S is denoted by |s|S
and it is equal to d({s}, S). A continuous function α(·) :
[0, a) → [0,+∞) is said to belong to class K if it is strictly

increasing and α(0) = 0; it is said to belong to class K∞ if

a = +∞ and limr→+∞ α(r) = +∞. Given a vector z ∈ R
4,

we will consider z = [ zT
p zT

v ]
T

where the subvectors zp, zv
belongs to R

2. For any given function V : Rn → R, ∇V is

the vector [ ∂V
∂x1

... ∂V
∂xn ]

T
. 〈v1, v2〉 denotes the scalar product

between the vectors v1 and v2.

II. THE DYNAMICS

We consider the motion of two translating masses Z and

X on a geographical region defined by a closed convex

polyhedron with the origin in its interior and not necessarily
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compact. Each boundary of the polyhedron can be associated

to a constraint of the form FT s ≤ 1 denoting the subset

of the state space in which the motion is allowed, where

F ∈ R
2 is such that |F | characterizes the distance of the

boundary {s ∈ R
2 |FT s = 1} from the origin, while F

|F | is

a unit vector orthogonal to the boundary characterizing its

orientation, as shown in Figure 1.

Masses Z and X move within the geographical region as

long as no boundary of the polyhedron is active (namely

when the position of a mass is on the boundary and the

velocity vector has normal component to the boundary in

the same direction as F ). When a boundary is active, the

mass motion is not compatible with the direction forbidden

by the active boundary and the state is reset to a new value,

suitably characterized by the impact of the mass on the active

boundary. Figure 1 is illustrative of the setup, where we

represented a simple polyhedron defined by one boundary

only. We loosely call billiard the geographical region, to

enlighten the fact that the dynamics of Z and X resembles

the behavior of two balls moving on a billiard and impacting

on its boundaries.

F

|F |

Z

X

bou
nda

ry - co
nstr

aint

|F |

Fig. 1. A closed, convex, not necessarily compact polyhedron with the
origin in its interior.

Denoting by z = [ zpzv ] ∈ R
4 and x = [ xp

xv
] ∈ R

4

respectively the state of Z and X , the continuous-time

dynamics can be given as follows

Z :

{
żp = zv
żv = h(z)

(1a)

X :

{
ẋp = xv

ẋv = φ(x) + u
(1b)

where h, φ : R
4 → R

2 are continuous functions possibly

modeling nonlinear factors affecting the acceleration of the

translating masses. When a mass impacts a boundary, the

position remains unchanged while the velocity ω is reflected

in a direction that is determined by the mass velocity and

the boundary orientation. In particular,

ω+ = M(F )ω (2)

where M(F ) is a transformation that inverts only the com-

ponent of ω normal to the active boundary, defined by

M(F ) = R(F )T diag(1,−1)R(F ) (3a)

R(F ) =
1

|F |

[
FT

[
0 −1
1 0

]

FT

]
(3b)

where R(F ) is the rotation matrix that maps ω to the

base {w‖, w⊥} = {
[

0 1
−1 0

]
F
|F | ,

F
|F |}, thus decomposing ω to

directions tangential w‖ and normal w⊥ to the boundary;[
1 0
0 −1

]
inverts the normal direction w⊥, and R(F )−1 =

R(F )T is the inverse rotation that completes the trans-

formation by mapping ω+ to the original base. Note that

〈w‖, w⊥〉 = 0 and FTw⊥ = |F |.
During impacts the position η of the mass remains un-

changed, thus η+=η for FT η=1 (on the boundary), which

can be rewritten in the following form, useful for control

design:

η+ = M(F )η + c(F ), (4)

where c(F ) = 2 F
|F |2 . We establish next this equivalence.

Fact 1: M(F )η + c(F ) = η if and only if FT η = 1.

Based on (4) and Fact 1, the impulsive dynamics of Z and

X at impacts is summarized by the following equation.

Z,X :

{
η+ = M(F )η + c(F )
ω+ = M(F )ω

if FT η=1, FTω≥0

(5)

where the dynamics of Z arises from using η = zp and

ω = zv and the dynamics of X arises from the identities

η = xp and ω = xv . For simplicity of exposition, in what

follows we will use

M̃(F ) := diag(M(F ),M(F )), c̃(F ) :=
[
c(F )T 0

]T
(6)

to write compactly the impact model of Z and X .

The model arising from the combination of continuous

motion and impacts is hybrid, meaning that the behavior of

the two translating masses cannot be reduced to a continuous

motion only (there are discontinuities on the state), or to

an impulsive behavior only (there are intervals of time in

which the ball moves continuously). In Section IV we will

generalize this hybrid dynamics to a polyhedron having

N boundaries, using the hybrid system framework of [8],

[9], [17], [18]. In particular, we will adopt the notation

summarized, e.g., in [9, Section 2.1] (see also [8]), which is

not recalled here due to space constraints. For pedagogical

reasons, we first present the control design methodology for

a geographical region defined by only one boundary. We

will consider Z as an exogenous system that generates a

reference trajectory for the controlled system X , which is

controlled only during the continuous-time evolution. Thus,

loosely speaking, we will consider the goal of finding a

control input u that guarantees the asymptotic convergence

of the position xp of the controlled system to the position

zp of the exogenous system.

III. TRACKING WITH IMPACTS: SINGLE BOUNDARY

A. Possible problems of classical approaches

A naive approach to the solution of the tracking problem

is to adopt classical methods for the case without impacts, by

defining a control input that enforces asymptotic convergence

to zero of the x − z dynamics or, equivalently, asymptotic

stability of the set A◦ = {(x, z) |x = z} in the absence

of impacts. Thus, considering the Lyapunov function V0 :
R

4 × R
4 → R≥0 defined by

V0(x, z) = (x− z)TP (x− z). (7)
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where PT = P > 0, for any given K ∈ R
2×4 such that the

matrix

Acl =

[
02×2 I2×2

K

]
(8)

satisfies AT
clP + PAcl < 0, the feedback input

u = h(z)− φ(x) +K(x− z) (9)

guarantees exponential convergence of x to z, as long

as impacts never occur. In fact, looking at (1), we have

V̇ (x, z) = 2(x− z)TPAcl(x− z) < 0 on (R4 × R
4) \ A◦.

When impacts (5) are considered, the control law (9) does

not anymore guarantee stability nor convergence, as shown

in the following example.

Example 1: In Figure 2 the horizontal motion of the two

masses Z and X is constrained on the left by a wall placed at

0. The continuous dynamics is given by ż = [ 0 1
0 0 ] z+

[
0

−µ

]

where µ > 0 is a constant external force, and ẋ = [ 0 1
0 0 ]x+

[ 01 ]u where the input u = −µ+ [−4 −4 ] (x− z) guarantees

that the matrix A =
[

0 1
−4 −4

]
of the error dynamics ẋ− ż =

A(x− z) is Hurwitz.
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Fig. 2. Example 1: Sketch of the two masses (left); time evolution of the
positions of X and Z (right).

Given z0 = [0 v]T and x0 = z0+ε, with ε ∈ R
2 typically

small, for a specific set of initial mismatches ε defined next,

the cyclic behavior of the two masses can be qualitatively

characterized as a sequence of a continuous motion (where

the two masses reverse their direction under the effect of

the force µ), followed by the impact of X to the wall, then

by the impact of Z , from which this sequence repeats. The

mismatch x−z at the kth impact of Z is given approximately

by

AJF

(
v

µ

)k

ε =

(

[

−1 0
(8+2

µ
v
) −1

]

e

[

0 1
−4 −4

]

2v
µ

)k

ε, (10)

where the matrix AJF (
v
µ
) (whose deduction is given below)

presents an unstable eigenvalue when the ratio v
µ

is smaller

than 0.613. For example, given v = 1 and µ = 2, the value

of the unstable eigenvalue is 1.34 and the corresponding

eigenvector is ζ = [ 0.0773 −0.997 ]
T

, thus picking ε = λζ,

with 0 < λ ≪ 1, we have that the error e = x − z

immediately after the kth impact of Z is given by 1.34kε, i.e.

impacts destabilize the system. Note that the other eigenvalue

of AJF has norm less than one, therefore the unstable

behavior would appear also for an initial mismatch ε near

λζ, λ>0.

Using µ = 2 and v = 1, consider e0 = x0− z0 = ε ≃ λζ,

0 < λ ≪ 1. For v > 0 and λ small, the time spent by Z and

X to go back to zero is given approximately by τ1 := 2v
µ

,

and for t ∈ [0, τ1] the time evolution of the error is given by

e(t) = exp(At)e0. Thus, defining AF (
v
µ
) := exp(A2v

µ
), at

the time τ−1 (immediately before the first impact) we have

the error e(τ−1 ) := AF (
v
µ
)e0 =

[
0.4060 0.1353
−0.5413 −0.1353

]
e0, from

which we can also infer that X impacts first since for e0 ≃
λζ, e(τ−1 ) ≃ λ [−0.1035 0.0931 ]T , that is, xp(τ

−
1 ) < zp(τ

−
1 ).

Consider now the interval of time between the impact of

X and the impact of Z which is given approximately by

τ2 := −
ep(τ

−

1
)

v
. When X impacts, the position does not

change, xp(τ
+
1 ) = xp(τ

−
1 ) = 0, while the velocity resets

from xv(τ
−
1 ) = ev(τ

−
1 )+zv(τ

−
1 ) = ev(τ

−
1 )+(−v+µτ2) =

ev(τ
−
1 )−(v+ µ

v
ep(τ

−
1 )) to xv(τ

+
1 ) = v+ µ

v
ep(τ

−
1 )−ev(τ

−
1 ),

from which we have e(τ+1 ) ≃
[

ep(τ
−

1
),

2v+2µ
v
ep(τ

−

1
)−ev(τ

−

1
)

]
. The

input between the two impacts can be approximated by

u = −µ + [−4 −4 ] e(τ+1 ) ≃ −µ − 8v, from which the

error dynamics between the impacts is approximatively given

by ėp = ev and ėv = −8v. Thus, by integration, at time

(τ1 + τ2)
− immediately before the impact of Z , we have

ev((τ1 + τ2)
−) = ev(τ

+
1 ) − 8vτ2 = 2v + 2µ

v
ep(τ

−
1 ) −

ev(τ
−
1 ) + 8v

ep(τ
−

1
)

v
≃ 2v − ev(τ

−
1 ) + (8 + 2µ

v
)ep(τ

−
1 ) and

ep((τ1 + τ2)
−) = ep(τ

+
1 ) + ev(τ

+
1 )τ2 − 4vτ22 ≃ −ep(τ

−
1 ),

from which e((τ1 + τ2)
−) =

[
−ep(τ

−

1
)

2v−ev(τ
−

1
)+(8+2µ

v
)ep(τ

−

1
)

]
.

From here, Z impacts and reverses its speed, from which the

mismatch is given by e((τ1+τ2)
+) =

[
ep((τ1+τ2)

−)

−2v+ev((τ1+τ2)
−)

]
=[

−ep(τ
−

1
)

−ev(τ
−

1
)+(8+2µ

v
)ep(τ

−

1
)

]
= AJ(

µ
v
)e(τ−1 ), where AJ(

µ
v
) :=

[
−1 0

8+2µ
v

−1

]
. Finally, after both impacts, the two masses

repeat the behavior analyzed above, therefore the mismatch

e after the k-th impact of Z can be characterized by

(AJ (
µ
v
)AF (

v
µ
))ke0 =: AJF (

v
µ
)ke0. y

B. Tracking through mirrors

The defective behavior of Example 1 can be avoided by

anticipating the fact that future impacts will invert the (nor-

mal) speed of the ball, which can be effectively implemented

by tracking the exogenous system Z through a mirror as

shown in Figure 3, where X may decide to track either

the real target Z or the mirrored target m(F,Z), mirrored

through the boundary F . Mathematically, the function m(·, ·)
is given by

m(F, s) = M̃(F )(s− c̃(F )), (11)

which maps states z+ after an impact to m(F, z+) = z,

as if the impact never happened. Its mirroring peculiarity is

underlined by the fact that m(F,m(F, s)) = s, as stated in

the following statement.

F

|F |

Z

X
|F |

mF (Z)

mirrored
target

real
target

Fig. 3. A possible interpretation of the hybrid tracking algorithm.

Fact 2: m(F, M̃(F )s+ c̃(F ))=s and m(F,m(F, s))=s.

Note that the interaction between the continuous dynamics

and the impacts dynamics allows for a nonunique behavior
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of the translating masses from some specific configurations

of the state vectors of X and Z . Indeed, for a geographical

region defined by one boundary, F = {[ spsv ] ∈ R
4 |FT sp ≤

1}, when the state vector characterizes a position η on the

boundary, FT η = 1, and a velocity ω with null normal

component to the boundary, FTω = 0, both the continuous

dynamics and the impacts dynamics can be triggered, with

the former enforcing sliding along the boundary while the

latter enforcing an infinite sequence of impacts on the bound-

ary (Zeno behavior), each of them resetting the velocity to

FTω+ = 0. To avoid this kind of phenomena, we restrict

the trajectories of Z to a compact set K that excludes that

set of points, given by

K ⊆ F \ {[ zpzv ] ∈ R
4 |FT zp = 1, FT zv = 0} (12)

Thus, trajectories of Z within K do not present a nonunique

behavior, and the same holds for X as long as its trajectories

remain close to the trajectories of Z , as in our local results.

Restricting the state space of X and Z to (x, z) ∈ C :=
F ×K and using the mirroring function m(F, ·) in (11), the

idea of tracking the exogenous system through a mirror can

be mathematically characterized by using a new Lyapunov

function V : R4 × R
4 → R≥0,

V (x, z) = min{V0(x, z), V0(x,m(F, z))}, (13)

which extends the quadratic measure of the mismatch be-

tween x and z to a combination of the mismatch between

x and z and between x and m(F, z), and by casting the

tracking problem to the stabilization problem of the set

A = (A◦ ∪ Am) ∩ C (14)

where A◦ = {(x, z) |x = z} and Am = {(x, z) |x =
m(F, z)} intuitively characterize state pairs of X and Z that

perfectly match (the case of A◦) or that match by looking

at the reflection to the boundary/mirror (the case of Am).

Note that A is a compact set that can be considered as the

generalization of the set A◦ used in the case without impacts

around (7), (9) (the set Am plays a fundamental role because

it allows for the invariance of the set A along the hybrid

dynamics).

The idea is then to asymptotically stabilize the set A by a

feedback u constructed on x, z, and m(F, z), and designed to

make V decrease along the solutions of the system, namely

using the fact that V is a Lyapunov function for A and

the important feature that the stabilization of the set A is

equivalent to the solution of the tracking problem. All these

connections are formally stated in the next two lemmas.

Lemma 3.1 (Properties of V ): Given V in (13),

i) V (x, z) = 0 for each (x, z) ∈ A,

ii) V (x, z) > 0 for each (x, z) ∈ C \ A, and

iii) V (x, z) = V0(x, z) for (x, z) ∈ (A◦ + εB) ∩ C,

V (x, z) = V0(x,m(F, z)) for (x, z) ∈ (Am+εB)∩C,

for ε > 0 sufficiently small;

iv) V ∈ C1 on (A+ εB)∩C, for ε > 0 sufficiently small.

Lemma 3.1 establishes that V is a candidate Lyapunov

function for the set A. Moreover, item iii) above shows that

min(V0(x, z), V0(x,m(F, z))) is strict in a neighborhood of

A, a feature used in the formulation of the hybrid control

law proposed next.

Lemma 3.2 (Property of A): If (x, z) ∈ A, then xp = zp
Based on Lemmas 3.1 and 3.2, we can now formulate

our hybrid controller for local tracking in the one-boundary

case. It will be generalized to the multi-boundary case in

Section IV. For the case of one boundary only, and for some

specific shapes of the geographical region, the result below

can be extended to a global result, as shown in [6].

Theorem 1: Consider Acl in (8) and V in (13), and

consider a matrix P =
[

p1I p2I

p2I p3I

]
> 0 with p1, p2, p3 ∈

R, and a matrix gain K ∈ R
2×4 such that for some λ > 0,

AT
clP + PAcl < −λP. (15)

Then the control law:

u=

{
h(z)−φ(x)+K(x−z) if α(x, z)<0
M(F )h(z)−φ(x)+K(x−m(F, z)) if α(x, z)>0

(16)

with α(x, z) = V0(x, z)− V0(x,m(F, z)), locally asymptot-

ically stabilizes the set A.

The particular structure of P guarantees that V does not

increase at jumps. Note that the input differs from the

one in (9) only when the function V (x, z) is equal to

V0(x,m(F, z)), that is, intuitively, when the mirrored target

m(F, z) is closer to x than the real target z. Note also that

u is not defined for V0(x, z) = V0(x,m(F, z)) but this is

not an issue in a small neighborhood of A, as shown in

Lemma 3.1. Finally, the notion of pre-asymptotic stability

used in Theorem 1 underlines the fact that some solutions

may have a compact domain, since the motion of X and Z
is restricted to C.

Theorem 1 can be established by applying hybrid Lya-

punov and LaSalle-like tools [17], [8] to the following hybrid

system, which models the interaction between X and Z:




ẋp = zv
ẋv = φ(x) + u

żp = zv
żv = h(z)

(x, z)∈Cx×Cz (17a)





x+ = M̃(F )x + c̃(F )
z+ = z

(x, z)∈Dx×Cz

x+ = x

z+ = M̃(F )z + c̃(F )
(x, z)∈Cx×Dz

(17b)

where CX = F , CZ = K, DX = F∩{x |FTxp=1, FTxv≥
0}, and DZ = K ∩ {x |FT zp = 1, FT zv ≥ 0}.

Note that an impact of both X and Z at the same time

instant is modeled by a sequence of two consecutive jumps,

one for each system. This feature is not restrictive, since the

sequence of jumps is characterized by hybrid time instants

(t, j),(t, j + 1) and (t, j+1),(t, j+2), thus both at the same

ordinary time t.

Using the hybrid dynamics in (17) (note that C = CX ∪
CZ ), the proof of Theorem 1 follows from the combination

of the invariance principle in [17] and the following lemma,

which shows that V decreases along the continuous motion

of the two translating masses (i.e. along flows of H) and
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it does not increases on impacts (i.e. across jumps), from

which it is also possible to partially justify the importance

of avoiding Zeno solutions.

Lemma 3.3: Under the hypotheses of Theorem 1, for each

(x, z) ∈ C,

• V̇ (x, z) ≤ −λV (x, z) if α(x, z) 6= 0,

• V (x+, z+) ≤ V (x, z) if (x, z) ∈ (Cx×Dz)∪(Dx×Cz).
Thus, combining Theorem 1 and Lemma 3.2, we get the

following result.

Corollary 1: The control u in (16) guarantees that (i) for

each ε > 0 there exists δ > 0 such that |(x, z)|A ≤ δ implies

|xp(t, j) − zp(t, j)| ≤ ε for all (t, j) ∈ dom (x, z), and

(ii) there exists γ > 0 such that for each complete solution1

(x,z) from |(x0,z0)|A ≤ γ, limt+j→∞|xp(t,j)−zp(t,j)|=0.

Finally, for implementation reasons, in the next proposition

we propose a specific but constructive solution to the in-

equality (15).

Proposition 1 (Feasibility): Select k1, k2 ∈ R such that

A =
[

0 1
−k1 −k2

]
is a Hurwitz matrix, and take P = [ p1 p2

p2 p3
] ∈

R
2 solution to A

T
P + PA < 0. Then, (15) is satisfied by

P =

[
p1I p2I

p2I p3I

]
, K = −

[
k1I k2I

]
. (18)

IV. LOCAL TRACKING WITH MANY BOUNDARIES

A geographical region defined by a polyhedron with many

boundaries is given by

F = {[ spsv ] ∈ R
4 | ∀k ∈ I, FT

k sp ≤ 1} (19)

where each Fk ∈ R
2 characterizes a boundary Fk = {[ spsv ] ∈

R
4 |FT

k sp = 1}, and I = {1, . . . , N}, N ∈ N, is an

index set. From Section III, we recover the assumption on

the state-space of X and Z that guarantees the absence of

the “sliding vs impacts” phenomena characterized by (12).

Mathematically, with many boundaries, the corresponding set

of defective points to be excluded is given by

Q1 =
⋃

k∈I

(
{[ spsv ] ∈ R

4 |FT
k sp = 1, FT

k sv= 0}
)

(20)

Another source of nonuniqueness in the behavior of X and

Z is given by corners points (namely any point s ∈ Fk ∩Fj

for k, j ∈ I and k 6= j). Excluding these points is important

for the feasibility of the tracking algorithm. In fact, suppose

that X and Z impact together the point s at the intersection

two boundaries, k and j. Then, nondeterministically, X may

follow the impact dynamics enforced by k, while Z may

follow the one from j, thus showing that a solution to the

tracking problem cannot be achieved. Mathematically, this

set of points is given by

Q2 =
⋃

i,j∈I

{[ spsv ] ∈ R
4 |FT

i sp = FT
j sp = 1, i 6= j} (21)

Thus, we restrict the trajectories of Z to the compact set

K ⊂ F \ (Q1 ∪Q2). (22)

1Namely, solutions whose hybrid time domain is unbounded.

The hybrid system H in (17) can be generalized to

the geographical region (19) by introducing the set Dk =
{[ spsv ] ∈ R

4 |FT
k sp = 1, FT

k sv ≥ 0}, based on which, the

flow and jump sets of X and Z can be defined as CX = F ,

CZ = K, DX = F ∩ {[ xp
xv

] | ∃k ∈ I, x ∈ Dk}, and

DZ = K ∩ {[ zpzv ] | ∃k ∈ I, z ∈ Dk}, where DX and DZ are

essentially defined by the intersection of CX and CZ with

the impact points. Thus, with these flow and jump sets, the

hybrid model H can be defined by the flow dynamics (17a)

and the following jump dynamics:




x+ = M̃(Fk)x+ c̃(Fk) if x ∈ Dk

z+ = z
(x, z)∈Dx×Cz

x+ = x

z+ = M̃(Fk)z + c̃(Fk) if z ∈ Dk

(x, z)∈Cx×Dz.

(23)

Note that the set C = Cx×Cz is now generated by the many

boundary geographical region F in (19) and by the compact

set K in (22). Moreover, to simplify the notation, we define

the set D = (Dx×Cz) ∪ (Cx×Dz) characterizing the set

of points from which an impact may occur, and we rewrite

the mirroring function m(·, ·) and the impact matrix M(F )
in the following form

m(Fk, s) =

{
s if k = 0

M̃(Fk)(s− c̃(Fk)) if k ∈ I
(24a)

M(Fk) =

{
I if k = 0
M(Fk) if k ∈ I,

(24b)

and the Lyapunov function V can now be defined as

V (x, z) = min
k∈{0}∪I

V0(x,m(Fk, z)). (25)

with the closest mirrored target defined by

σ = argmin
k∈{0}∪I

V0(x,m(Fk, z)). (26)

where σ = 0 denotes the real target. Note that σ is only

well defined in regions where the minimum in (25) is strict.

One such region is characterized in Item iii) of Lemma 4.1,

below. In analogy with the previous section, the set A can

now be generalized to

A =


 ⋃

k∈{0}∪I

Ak


 ∩ C (27a)

Ak = {(x, z) ∈ R
4 × R

4 |x = m(Fk, z)}, (27b)

and the connections between the Lyapunov function V in

(25), the set A in (27), and the tracking problem are

presented in the next two lemmas.

Lemma 4.1 (Properties of V ): Given V in (25),

i) V (x, z) = 0, ∀(x, z) ∈ A.

ii) V (x, z) > 0, ∀(x, z) ∈ C \ A.

iii) There exists ε > 0 s.t. ∀(x, z) ∈ (Ak + εB)∩C, σ = k.

iv) There exists ε > 0 s.t. V ∈ C1 on (A+ εB) ∩ C.

Lemma 4.2 (Property of A): If (x, z) ∈ A, then xp = zp.

From Lemmas 4.1 and 4.2, we can focus on the stabilization

of the set A, using the function V as a candidate Lyapunov

function. Thus, the control law (16) can be generalized to

the many boundaries case as in the following theorem.
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Theorem 2: Consider H in (17a), (23). Suppose that a

matrix P =
[

p1I p2I

p2I p3I

]
> 0, p1, p2, p3 ∈ R, and a gain

matrix K ∈ R
2×4 satisfy equation (15) with Acl in (8) and

λ > 0. Then the control law:

u = M(Fσ)h(z)− φ(x) +K(x−m(Fσ , z)), (28)

with M(Fσ) and m(Fσ, z) as in (24), (26) is well defined in

a neighborhood of A and it locally asymptotically stabilizes

the set A.

Theorem 2 can be established from Lemma 4.1, the invari-

ance principle in [16] and Lemma 4.3 below. Moreover, by

Lemma 4.2, Theorem 2 entails asymptotic convergence of

xp to zp, paralleling Corollary 1 of previous section.

Lemma 4.3: Using the aggregate state ξ = (x, z), denot-

ing by H(ξ) the right-hand side of the flow map (17a) and

by G(ξ) the right-hand side of the the jump map (23), under

the hypothesis of Theorem 2, the control law (28) guarantees

that there exists λ ∈ (0, 1) and ε > 0 sufficiently small such

that

〈∇V (ξ), H(ξ)〉<−λV (ξ) ∀ξ∈((A+εB)∩C) \ A
V (g)≤V (ξ) ∀ξ∈(A+εB)∩D, ∀g∈G(ξ).

(29)

V. SIMULATION EXAMPLES

We consider a billiard with five boundaries defined by

[
F1 F2 F3 F4 F5

]
=

[
0 −1 −1 1

2
3
4

−1 0 1 1 −1

]

and a simple dynamics for Z given by żp = zv, żv = 0.

Using P and K given by

P =

[
0.4I 0.1I
0.1I 0.2I

]
and K = −

[
10I 11I

]
, (30)

in Figure 4 we show a comparison between the classical

control law (9) and the hybrid control law (28). The two

upper rows of Figure 4 represent trajectories of X and

Z on the billiard from z0 = [ 0.8 0.4 1.5 1.25 ]
T

and x0 =
[ 0.6 1.5 1.25 ], for simulation times T = 3.2. Finally, even

though Theorem 2 only guarantees local properties, the good

behavior induced by the proposed approach for large initial

errors is reported in the third row of Figure 4. Note that (28)

is undefined where the minimum of (25) is nonstrict. But

since this is a set of measure zero, this is not an issue for

running this simulation. A regularization of (28) to make it

well defined everywhere in K is carried out in the companion

paper [6], which focuses on global tracking.
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