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Abstract— In recent years, stability of consensus protocol
with time delay has attracted a lot of interests. On the basis of
local information exchange with limited time delay, the states
of all the agents reach consensus with a second order consensus
protocol under certain conditions, where the convergence speed
is determined by eigenvalue spectrum of network Laplacian and
system parameters. In this paper, the problem of fast consensus
seeking in networked multi-agent systems is considered, which
aims to optimize the convergence speed of consensus protocol

with time delay. By using the frequency domain method, the
optimization problem is decomposed into a series of convex
optimization problems that can be solved by SeduMi toolbox.
Furthermore, a consensus protocol with multi-hop relay scheme
is investigated, where each agent can receive delayed informa-
tion data transmitted by multi-hop agents. The results show
that this scheme can improve the convergence speed without
physically changing network topology. Finally, some examples
are supplied to demonstrate theoretical results.

I. INTRODUCTION

The huge advances in Internet and large-scale integration

and micro-electromechanical technologies have created the

opportunity to interconnect a large number of devices such

as wireless sensors which can exchange information and

cooperatively accomplish a variety of tasks ranging from mil-

itary surveillance, unmanned aerial vehicles for intelligence,

navigation, formation control and environmental monitoring.

Consensus problem as a basis of cooperative control has been

employed in many engineering problems, which motivates

the fast development of its theoretical research. In past

decade, much work [1]- [15], [17] on consensus problem has

been done by the researchers from diverse areas including

control engineering, computer science, system biology and

physics. A lot of work studies the stability of consensus

protocol with fixed and switched network topology, and

shows the importance of network connectivity on the conver-

gence property, see e.g., Olfati-Saber [3], Ren [5], Moreau

[4], Cao [6]. A few work addresses the optimal consensus

protocol design for specific goal, e.g., Xiao [7], [9], Bauso

[8], Semsar-Kazerooni [10], Carli [11]. In [7], the authors

consider the problem of finding the fastest converging linear

iteration for distributed averaging consensus problem. The

work in [8] designs a consensus protocol to solve individual

optimizations performed by the agents. In [10], an optimal

This work was supported by the NSF of China under Grant No.61074125
and a grant from the Major State Basic Research Development Program of
China (973 Program) (No. 2010CB731400), the NSF of P.R.China under
Grants No. 61074079, the Specialized Research Fund for the Doctoral
Program of Higher Education of China under Grants No. 20100074120010,
the NSF of Shanghai under Grants No.11ZR1409700.

Wen Yang and Hongbo Shi are with the Department of Automation, East
China University of Science and Technology, Shanghai, 200237, P. R. China
weny@ecust.edu.cn

Xiaofan Wang is with the Department of Automation, Shanghai Jiaotong
University, Shanghai, 200240, P. R. China xfwang@sjtu.edu.cn

designed based consensus protocol minimizing team cost

function is proposed. In [11], an optimal synchronization

protocol is designed for fastest convergence speed and min-

imal steady state error in case the protocol is perturbed by

an additive noise.

In real applications, when local information data travel

along channels in a large communication network, the effect

of communication delay cannot be neglected. Some results

have shown that consensus can still be achieved if the

network topology is connected with upper bounded time

delay [3], [12]. And the larger the second eigenvalue of the

Laplacian �2(�) is (Note that �2(�) denotes the algebraic

connectivity), the faster the convergence speed is. But the

larger the largest eigenvalue ����(�) is, the smaller the

delay margin is. Thus, a tradeoff exists between the delay

margin and the convergence speed. One important challenge

is to improve the convergence speed of consensus protocol

with communication delay, however, it seems to be less

studied in the literature.

In this paper, we study a second order consensus protocol

with fixed time delay. A lot of results for the stability of

consensus protocol with uniform and non-uniform time delay

can be found in [12]- [15]. Here, we focus on optimizing the

convergence speed by assuming that the communication de-

lay between one-hop neighbor is the same for commensurate

[3] and non-commensurate [12] delay algorithms, respec-

tively. We analyze the convergence property of consensus

protocol with time delay by a frequency domain method,

which also helps us decompose the problem of finding the

fastest convergence speed into solving a series of convex op-

timization problem. Motivated by the multi-hop relay scheme

of wireless sensor network, we study a consensus protocol

with multi-hop relay scheme, where each agent can receive

the information data travel along multi-hop communication

links with time delay besides the information data over one

hop links. We derive the delay margin for the stability of

the multi-hop consensus protocol by generalized eigenvalue

searching method. Finally, we provide some examples to

demonstrate the theoretical results.

The rest of the paper is organized as follows. In Section II,

we describe the system models, and analyze the convergence

property of consensus protocol with commensurate and non-

commensurate delay. In Section III, we focus on the problem

of fast consensus seeking for consensus protocol with non-

commensurate delay. In Section IV, we investigate a consen-

sus protocol with multi-hop relay scheme. In Section V, we

demonstrate the theoretical results derived in Section III and

IV. Finally, some concluding remarks and future work are

given in Section VI.
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II. SECOND ORDER CONSENSUS PROTOCOL WITH TIME

DELAY

We firstly introduce some notations and concepts that will

be used through this paper. We model a multi-agent system

composed by � agents as an undirected graph � = (�,�)
with the nodes � = (1, 2, ⋅ ⋅ ⋅ , �) being the � agents, and

the edges � ⊂ � ×� representing the communication links.

Here, we assume the edge is bidirectional, such as in a

homogeneous wireless sensor networks, where all sensors

have the same sensing/influencing radius. Define the one-

hop neighbor agents of agent 	 by 
1� = {� : (	, �) ∈ �}.

Let �1� = ∣
1�∣ be the number of one-hop neighbor agents of

agent 	. We specify the interconnection topology of a network

by an nonnegative symmetric adjacency matrix 
 = [� �� ],
where ��� = 0 and ��� = 1

�1�
if (	, �) ∈ �; otherwise,

��� = 0. Then the Laplacian of the weighted graph is

defined as � = [��� ], where ��� =
∑

� ��� , and ��� = −��� ,

	 ∕= �. Note that � = �� . Define the eigenvalues of � as

�1 = 0 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ �	. In this paper, we assume that �
is connected, thus � has a simple zero eigenvalue(�2 > 0)

[16].

In recent years, a varieties of second order consensus

protocol have been proposed, see e.g., [18], [19], [20]. In

this paper, we consider a general linear consensus protocol

[18]. Suppose that each agent is a second order integrator

with dynamics

�̇� = ��,

�̇� = ��, 	 ∈ (1, ⋅ ⋅ ⋅ , �), (1)

where �� ∈ ℝ
� and �� ∈ ℝ

� are the agent positions and

velocities, �� ∈ ℝ
� is the control input which is taken as

�� = −
	∑

�=1

��� [(��(�)− ��(�)) + �(��(�)− ��(�))]. (2)

It has been shown that consensus can be achieved if the

undirected communication network is connected with � >
0. Here, we consider delays along communication links

caused by communication constraints frequently in large-

scale communication networks. Assume that all the one hop

communication delays are the same as � > 0. We discuss

the consensus protocol with commensurate delay(e.g. [3])

and non-commensurate delay(e.g. [12]) as follows.

A. consensus protocol with commensurate delay

The control input �� is

�� = −
	∑

�=1

��� [(��(�−�)−��(�−�))+�(��(�−�)−��(�−�))].

(3)

Denote �(�) = [�(�), � (�)], where �(�) = [��
1 , ⋅ ⋅ ⋅ , ��	 ]� ,

� (�) = [��1 , ⋅ ⋅ ⋅ , ��	 ]� . Here, we assume � = 1 for

simplicity. However, all the results hereafter can be derived

for � > 1, using the Kronecker product. Substituting (3)

into (1), the system dynamics is:

�̇(�) = Γ ⋅ �(�) +� ⋅ �(�− �), (4)

where

Γ =

(
0 �	
0 0

)
, � =

(
0 0
−� −��

)
.

Taking the Laplacian transform of (4), we have

��(�) = Γ�(�)−��(�)�−
�. (5)

Then the characteristic polynomial is

�(�, �−
�) = ���(��2	 − Γ−��−
�). (6)

Recall that � is symmetric. Let  � −1 = Λ. The equation

(6) is equivalent to

�(�, �−
�) = �2 ⋅Π	
�=2(�

2 + � ⋅ �� ⋅ �−
��+ �� ⋅ �−
�), (7)

where ��, 	 ∈ (1, ⋅ ⋅ ⋅ , �) are the eigenvalues of �. Let !
denotes the crossing frequency. Substituting � = �! into (7),

we have at least one equation as following

!2 = (���!� + ��) ⋅ �−
��.

According to the magnitude and phase condition, we get

!2 =
�2� �

2 +
√
�4� �

4 + 4�2�
2

,

� =
�"#����!

!
.

It is easy to see that � decreases with �� increasing.

Thus, the delay margin is � ★ = �����	��★

�★ with !★2 =
�2

��
2±

√
�4
��

4+4�2
�

2 .

Proposition 2.1 : Consider the system (1) with the control

input (3). The system reaches consensus if and only if � <
�★.

B. consensus protocol with non-commensurate delay

In real applications, time delay can be best modeled by a

non-commensurate algorithm. The control input � � is

�� = −
	∑

�=1

��� [(��(�)−��(�−�))+�(��(�)−��(�−�))], (8)

and further

�̇(�) = Γ̃ ⋅ �(�) + �̃ ⋅ �(�− �), (9)

where

Γ̃ =

(
0 �	

−�	 −��	

)
, �̃ =

(
0 0

 �


)
.

The characteristic polynomial of (9) is

�(�, �−
�) = Π	
�=1(�

2 + (�� + 1)(1 + (�� − 1) ⋅ �−
�)). (10)

Let %� = �� − 1. Substituting � = �! into (10), we have

!2 =
1

2
{(%2

� − 1)�2 + 2±
√
((%2

� − 1)�2 + 2)2 + 4(%2
� − 1)},

!� =

{
& + �"#��� −��3

(�2−1)�2+1 , if %� ≥ 0

�"#��� −��3

(�2−1)�2+1 , if −1 ≤ %� < 0
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Note that ! = 0 for �� = 0. The delay margin is

�★ = min
��

(�).

Proposition 2.2 : Consider the system (1) with the control

input (8). The system reaches consensus if and only if � <
�★.

III. FAST CONSENSUS SEEKING IN THE CONSENSUS

PROTOCOL WITH TIME DELAY

In this section, we focus on the problem of fast consensus

seeking in the second order consensus protocol with time

delay. For all the applications in cooperative control area,

fast consensus convergence speed is necessary and important.

Much related work is built on finding optimal weights for a

given network topology [9] or changing a network topology

into a fast convergence topology by random rewiring. In

[11], the authors solve the optimal problem of consensus

protocols for double integrators by optimizing the convex

function of all the consensus matrix eigenvalues. However,

all those work consider the ideal case, namely, no delay. It

is unavoidable in practice, especially in large scale commu-

nication network. Here, we extend the method proposed in

[11] to the fast consensus seeking problem for consensus

protocol with time delay.

Suppose that the system (1) with the protocol(3) or the

protocol(8) can reach consensus. We solve the problem of

fast convergence speed by the frequency domain method,

where it is transferred to the problem of pushing all the

roots of the characteristic polynomial as far as possible to

imaginary axis.

Define

"(��, �) = min{∣'�(�)∣},

where � are the roots of the characteristic polynomial for � �,

'�(⋅) denotes the real part of complex number.

Consider a network with � agents using protocol (3) or

protocol (8). Define � ∈ Υ, where Υ is the set for guarantee-

ing the convergence of the consensus protocol with a given

� . It can be derived from proposition 2.1 or proposition 2.2.

We formulate the problem of fast convergence speed as an

optimal problem,

maximize "(��, �)

subject to �2 > 0, � ∈ Υ. (11)

where �� ∈ ((�) and � is defined in Section II. Here, ((⋅)
denotes the eigenvalue spectrum.

Next, we firstly study the optimal problem of the con-

sensus protocol with non-commensurate delay (8). As well

known, it is very hard to get the solution of Equation (10)

due to time delays, whose roots number is infinity. Here, we

analyze the distribution of roots with �� varying by the root

locus method. The root locus of (10) is equivalent to one of

the closed system with open transfer function

�0(�) =
)(�+ 1

�
)�−
�

�2 + �� + 1
, (12)

where ) = ∣(�� − 1)∣� is the gain of the root locus. Note

that ) = (�� − 1)� for �� ≥ 1 where the closed system has

passive feedback control, namely 1+�0(�) = 0; Otherwise,

) = (1− ��)� for 0 ≤ �� < 1 where the closed system has

positive feedback control, namey, 1 − �0(�) = 0. Besides

one root locus with �1,2 =
−�±

√
�2−4

2 be start points and

*1 = − 1
�

, *2 = +∞ be end points, there are still countless

root locus due to time delay. According to the L’Hospital

rule, as � → −∞,

lim
�→−∞

(�+ 1
�
)�−
�

�2 + �� + 1
= −∞,

furthermore, as ) → 0,

) +
1

(�+ 1

�
)�−��

�2+��+1

= 0.

Therefore, � → −∞ is the start point of the root locus. Let

� = ( + �!. According to the phase condition,

!� − �"#���
!

( + 1
�

+ �"#���
(2( + �)!

1 + (� + (2 − !2

=

{
2+&, if 0 ≤ �� < 1
(2+ + 1)&, if �� ≥ 1

As � → −∞, ( → −∞, ! is a limited value,

! =

{ ± 2��


, if 0 ≤ �� < 1

± (2�+1)�



, if �� ≥ 1

Similarly, as � → +∞,

lim
�→+∞

(�+ 1
�
)�−
�

�2 + �� + 1
= 0.

Thus, * → +∞ is the end point of the root locus, and the

value of ! is the same with the case � → −∞. Recall that

( → −∞ as ) → 0 for all + > 0. Thus, the ) at the

crossing frequency for + > 0 must be larger than the one

for + = 0 since �1,2 is limited. Therefore, we only need

to consider the problem (11) for + = 0. The root locus for

+ = 0 depends on the distribution of the poles �1,2 and the

zeros *1,2. Let �� denotes the �� of the separation point of

the root locus on negative real axis.

Lemma 3.1:"(��, �) increases in �� for 0 ≤ � < ��;

"(��, �) decreases in �� for 1 ≤ � < �	; The varying trend

of "(��, �) in �� depends on the value of �.

Proof: By directly computing the positions of the poles

and zeros, it is easy to get above facts. Moreover, when

0 < � ≤
√
2 and � ≥ 2, "(��, �) decreases in ��; when√

2 < � < 2, "(��, �) increases in ��.

Let ℒ denotes the set of rank �− 1, symmetric Laplacian

�, where � ∈ ℒ is satisfied with �1 = 0 and �2(�) >
0. Define ℒ̄ as a subset of ℒ composed by the matrices

such that �	(�) = 1. Notice that ℒ =
∪

�>0 ,ℒ̄. Define

the normalization of Laplacian matrix N(�). Further let ℒ̃
denotes the set of normalized matrix of � ∈ ℒ.

Lemma 3.2: Define '(�, �) = min��∈�(�)∖0,�∈ℒ̃ "(��, �).
Its value depends on only �2 and �	, namely, '(�, �) =
min("(�2, �), "(�	, �)).

3472



Proof: The above facts can be easily deduced from

Lemma 3.1. For the easy of notation, we define '(�, �) :=
"(�2, �	, �).

According to Lemma 3.2, we solve the optimal problem

(11) as finding the optimal values of �, � and ,,

(����, ����, ,���) ∈ arg max�∈ℒ̄,�∈Υ"(,�2(N(�)), ,, �) (13)

Firstly, we find the optimal �. If � and , are fixed, then

"(,�2(N(�)), ,, �) is non-decreasing in �2(N(�)). Thus,

we have

���� ∈ arg max
�∈ℒ̄

�2(N(�)). (14)

Note that ℒ̄ is not convex. But the above problem is

equivalent to the following optimization problem,

���� ∈ arg max�∈ℒ,��(�)≤1�2(N(�)). (15)

ℒ and any nonnegative numbers -1, -2, . . . , -� such that

-1 + -2 + . . .+ -� = 1, the Laplacian
∑�

�=1 -��� is in ℒ.

Moreover, �	(-1�1+-2�2+ . . .+-���) ≤ 1 is guaranteed

according to the Weyl theorem for all � � ∈ ℒ, �	(�) ≤ 1.

Thereby, {� ∈ ℒ, �	(�) ≤ 1} is convex set. Furthermore,

consider the (�−1)-dimensional subspace P ⊆ R
	 spanned

by the unit vectors �� ∈ R
	, 	 = 1, . . . , �− 1. Denote . :=

[�1, �2, . . . , �	−1] ∈ R
	×(	−1) with ��� 1 = 0, ��� �� = 1 and

��� �� = 0, (	 ∕= �).
Corollary 3.1: The optimization problem (15) is equivalent

to

max
�∈ℒ

�

s.t. �	(�) ≤ 1, .�
N(�). ≥ ��	−1. (16)

Proof: Let �2(N(�)) = �. Define � = -1�1 +
-2�2 + ⋅ ⋅ ⋅ + -	−1�	−1 ∈ P for some not all zeros

-1, -2, ⋅ ⋅ ⋅ , -	−1 ∈ R. For a connected graph � that is

undirected, the following well-known property holds:

�� (N(�)− ��	−1)� ≥ (�2(N(�))− �)��� ≥ 0.

The proof follows from the facts that 1�� = 0. Let � = ./,

where / := [-1, -2, ⋅ ⋅ ⋅ , -	−1]
� . Thereby,

(./)� (N(�)− ��	−1)(./) ≥ 0

and further,

.�
N(�). ર ��	−1.

The above semi-definite program can be solved by SeDuMi

tools or other efficient softwares.

Furthermore, we start to find the optimal value of , and �
for the optimization problem (13). Figure 1(a) shows the root

of the system (12) varying with , for � = 0.4, where ,��� ≈
0.512. Conversely, Figure 1(b) shows the root varying with �
for , = 0.512, where ���� = 0.4. Thus, there exists a unique

set {,���, ����} which can be solved by linear searching in

the set Υ.

Note that the above results can be easily extended to

the optimization problem (13) of consensus protocol with

commensurate delay. Here, we omitted the analysis for

brevity.
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Fig. 1. The root of the system (12) (a) varies with � for � = 1 and
� = 0.4; (b) varies with � for � = 1 and � = 0.512, �2 = 0.4.

IV. CONSENSUS PROTOCOL WITH MULTI-HOP RELAY

SCHEME

In this section, we investigate the problem of fast con-

sensus seeking when � is given. In some engineering ap-

plications, such as the surveillance of the coal mine and the

circumstance by WSNs, the location of the sensors are fixed,

namely, the network topology can not be changed.

Much work in the literature assumes that each agent can

only receive the information of its one-hop neighbors. In

[17], the authors propose a multi-hop relay protocol for

fast consensus seeking, where each agent can also receive

the information transmitted along a multi-hop path with a

certain time delay. Each agent with this scheme extends

its information despite of time delay, which improves the

second smallest eigenvalue of � without changing the phys-

ical network topology. Therefore, the convergence speed of

consensus protocol increases. In this paper, we extend this

scheme to the non-commensurate delay case .

Suppose that the transportation time delay between one-

hop neighbors is � , and then the time delay between r-hop

neighbors is "� . In real applications such as WSNs, the value

of " is usually 2 ∼ 3. At each time �, agent 	 has the

following information,

��� ≜ {��(�), ��(�− �), . . . , ��(�− "�), � ∈ 
1�, + ∈ 
��}.
We rewrite the control input (8) as the following,

�� = −
∑

�∈��

��� [(��(�)− ��(�− �)) +

�(��(�)− ��(�− �)) +∑

�∈��

���((��(�)− ��(�− 2�))

+�(��(�)− ��(�− 2�)) + ⋅ ⋅ ⋅)], (17)

Denote 
̃ = [���̃ ] as

���̃ =

⎧
⎨
⎩

��� ⋅ ⋅ ⋅��̃�̃ , when 	 ∕= �̃, �̃ ∈ 
1̃�, � ∈ 
1�

0, when 	 = �̃,
0, otherwise,

and 0̃ = �	�1{���}, where ��� =
∑

�̃ ���̃ .

The system dynamics (9) is,

�̇(�) = Γ̃�(�) +

�∑

�=1

�̃��(�− 2�), (18)
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where

Γ̃ =

[
0	×	 �	

−∑�

�=1 0̃� −�(∑�

�=1 0̃�)

]
,

�̃� =

[
0	×	 0	×	


̃� �
̃�

]
.

Taking the Laplace transform of (13), we have

��(�) = Γ̃�(�) +

�∑

�=1

�−�
��̃��(�),

and further,

�(�, �−
�) = ���(�� − Γ̃−
�∑

�=1

�̃��
−�
�). (19)

Let

�(�) =

⎡
⎢⎢⎢⎣

02	×2	 �2	×2	 ⋅ ⋅ ⋅ 02	×2	

...
...

. . .
...

02	×2	 02	×2	 ⋅ ⋅ ⋅ �2	×2	

−�� + Γ̃ �̃1 ⋅ ⋅ ⋅ �̃�−1

⎤
⎥⎥⎥⎦ ,

� =

⎡
⎢⎢⎢⎢⎣

�2	×2	 ⋅ ⋅ ⋅ 02	×2	 02	×2	

...
. . .

...
...

... ⋅ ⋅ ⋅ �2	×2	 02	×2	

02	×2	 ⋅ ⋅ ⋅ 02	×2	 −�̃�

⎤
⎥⎥⎥⎥⎦
.

By the determinant properties of block matrix, we have

�(�, �−
�) = ���(�(�)− �−
��). (20)

When � = �!(! ∕= 0) moves along the imaginary axis

from 0 to �∞, there exists at most 2� frequency ! �
� so that

∥��(�(�!�
�), �)∥2 = ∥�−�
 �

	�
�
	∥2 = 1.

Lemma 4.1: Suppose that "��+(�̃�) = �. Define

�̄� = min
1≤�≤2	

3��/!
�
�

when the generalized eigenvalues "�(�(�), �) satisfy the

following equation:

"�(�(�!�
�), �) = �−���

	

for some !�
� ∈ (0,∞) and 3�� ∈ [0, 2&). Then the consensus

delay margin of (19) is

�★(") = min
1≤�≤2	(�−1)+�

�̄�.

Proof: The proof is similar to one in [17]. Here we

omit it for brevity due to the limitations of space.

When � = 0, we can get

(Γ̃ +

�∑

�=1

�̃�)�̄ = 0,

where Γ̃+
∑�

�=1 �̃� is a Laplacian matrix, and �̄ is the DC-

offset, thus �̄ is an eigenvector of Γ̃ +
∑�

�=1 �̃� associated

with eigenvalue zero. It is easy to see that �̄1 = . . . = �̄	 =
#, where # ∈ ℝ is an unknown constant, and �̄1 = . . . =
�̄	 = 0.
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Fig. 2. The Nyquist plot of the system (12) with � = 1 and the optimal
set (����, ����, ����).

In mathematical area, many algorithms have been pro-

posed to search generalized eigenvalue. It is much easier

to solve the above problem than to solve the roots of the

equation (19) directly. However, this method is only efficient

for the small-scale network due to the sizes of � and � .

V. NUMERICAL EXAMPLES

In this section, we illustrate the results derived in the

above sections by numerical simulations using the SeDuMi

and Simulink toolbox in Matlab. Firstly, we simulate the

algorithm described in section III in Example 5.1, then we

verify the multi-hop consensus protocol with time delay in

section IV in Example 5.2.

Example5 .1 : Consider a multi-agent system with �
nodes. Each node is a second order dynamic integrator (1)

with the control input (8). The convergence properties have

been investigated in Section II. Assuming that the proposition

2.2 is satisfied, we consider the optimization problem (11).

This example is to show the effectiveness of transferring the

optimization problem into finding an optimal set (�, �, ,).
The constants �, � are chosen to be 20 and 1, respectively.

Here we use SeDuMi toolbox to solve the semi-definite

problem (16), and get a complete graph and the value

,��� = 1.1 and ���� = 1.6 by linear searching. From Figure

2, we find the system (12) is stable since Nyquist curve does

not encircle (−1, 0). To verify the optimal results, we also

construct 30 connected random graphs for comparison, and

set the optimal value � for each graph. As Figure 3(a) shows

that, the root with the optimal set (����, ����, ,���) is farthest

from the imaginary axis.

In most cases, it is hard to construct a complete graph

since the constrained communication or bandwidth. Next,

we simulate the optimization problem for a network topol-

ogy with a certain constrained communication among some

nodes. Assume that

{�14, �15, �23, �32, �34, �35, �41, �43, �45, �51, �53, �54} = 0,

where ��� is defined in Section II. We again use the SeDuMi

toolbox to solve the optimization problem and get a non-

complete graph with , ′
��� = 1.2, �′��� = 1.5. As observed

in Figure 3(b), the optimal set push the root of the system

farthest away the imaginary axis.
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Fig. 3. Plot of the points 	(N(�), �), where ∗ denotes
	(N(����), ����).
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Fig. 4. (a)A connected graph with 
 = 20 nodes; (b)The convergence
time �� varies with time delay � .

Example5 .2 : In this example we analyze consensus pro-

tocol with multi-hop relay scheme. We randomly construct

a connected graph with � = 20 nodes as Figure 4(a) shows.

Each node is a second order dynamic integrator (1) with the

control input (18). We compute the delay margin for multi-

hop relay scheme according to Lemma 4.1. Let � � denotes

the convergence time at which the states of agents reach

consensus.

Note that the magnitude of the generalized eigenvalue ex-

ceeds 1 inevitably as ! increases. Actually we find the delay

margin � ∗(") over a finite frequency interval for different

". They are 1.52, 1.03, 0.45, 0.13 for " = 2, 3, 4, 5,

respectively. The results are consistent with the fact that the

delay margin decreases with network connectivity increasing.

Figure 4(b) shows that the convergence time �� of 2-hop relay

scheme is less than one of 1-hop relay scheme, and the gap

between both relay schemes decreases with � increasing.

VI. CONCLUSION

In this paper, we investigate the problem of fast consensus

seeking in networked multi-agent systems with homogeneous

communication delay. We analyze the convergence properties

of consensus protocol with commensurate delay and non-

commensurate delay, respectively. On the basis of these

results, we transfer the problem of optimizing convergence

speed into finding an optimal set whose elements are network

topology � and system parameter � by root locus method.

We also solve the optimal set using Sedumi toolbox and

linear searching over finite interval. An example demon-

strates the optimality of the method. We further analyze

the multi-hop relay scheme for consensus protocol with

non-commensurate delay. We derive the delay margin by

searching the frequency at which the magnitude of the

generalized eigenvalue of a pair of extension matrix is equal

to 1. The simulation results show that the multi-hop relay

scheme can improve the convergence speed for the case that

the physical topology of the network is fixed, while decreases

the delay margin.
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