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Abstract— This paper explores the role of symmetries and
reduction in nonlinear control and optimal control systems.
We formulate symmetries in nonlinear control systems and then
link it to symmetries in optimal control of such systems. We
apply Poisson reduction to the Pontryagin maximum principle
to reduce the optimal control system. Affine and kinematic
optimal control systems are of particular interest: We show
an example of kinematic optimal control to illustrate how the
reduction simplifies optimal control systems.

I. INTRODUCTION

A. Background

Many control systems, particularly those arising from
mechanical systems, have symmetries. Such a symmetry is
usually described as an invariance or equivariance under
an action of a Lie group, and the system can be reduced
to a lower-dimensional one or decoupled into subsystems
by exploiting the symmetry. Nijmeijer and van der Schaft
[1] and Grizzle and Marcus [2] formulated symmetries of
nonlinear control systems, and also showed how one can
reduce a control system with symmetry to a quotient space.

Likewise, optimal control systems also often have such
symmetries as well, and various techniques are proposed to
exploit such symmetries [3–8]. A certain class of optimal
control problems has a rich geometric structure, and provides
many interesting questions relating differential-geometric
ideas with control-theoretic problems. Most notably, Mont-
gomery [9, 10, 11, 12, 13], following the work of Shapere
and Wilczek [14], explored optimal control of deformable
bodies, such as the falling cat problem; in particular, prin-
cipal bundles, along with connections on them defined by
momentum maps, are identified as a natural geometric setting
for such problems. See also [15–17] for applications of the
same geometric idea to kinematic control of nonholonomic
mechanical systems.

B. Main Results

We characterize symmetries in nonlinear control and op-
timal control systems, and apply the Poisson reduction of
Cendra et al. [18] to the Hamiltonian system given as a
necessary condition for optimality by the Pontryagin maxi-
mum principle. The result synthesizes some previous works,
including optimal control of deformable bodies mentioned
above and also the Lie–Poisson reduction of control systems
on Lie groups in Krishnaprasad [19]

Many details, including proofs, are omitted for brevity; we
would like to refer to [20] for them.
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II. SYMMETRY AND REDUCTION OF NONLINEAR
CONTROL SYSTEMS

A. Nonlinear Control Systems

Let M be a smooth manifold and τM : TM → M be its
tangent bundle; let E := M × Rd and see πE : E → M
as a (trivial) vector bundle1; also let f : E → TM be a
fiber-preserving smooth map, i.e., the diagram

E
f //

πE ��

TM

τM��
M

commutes. Then, a nonlinear control system is defined by

ẋ = f(x, u). (1)

B. Symmetry in Nonlinear Control Systems

Following [1, 2], we assume that the control system (1)
has a symmetry in the following sense: Let G be a Lie group
acting on M freely and properly; we have Φ : G×M →M
or Φg : M → M for any g ∈ G; as a result we have the
principal bundle

π : M →M/G.

The action Φg gives rise to the tangent lift TΦg : TM →
TM . Let us also assume that we have a linear representation
of G on the control space Rd, i.e., we have a group
homomorphism σ(·) : G → GL(d,R). Then, we define an
action of G on E = M × Rd as follows:

Ψg : E → E; (x, u) 7→(Φg(x), σg(u)) = (gx, gu), (2)

where we wrote gx := Φg(x) and gu := σg(u).
We say that the nonlinear control system (1) has a G-

symmetry if the map f : E → TM is equivariant under the
G-actions on E and TM defined above, i.e., for any g ∈ G,

TΦg ◦ f = f ◦Ψg. (3)

C. Reduced Control System

The equivariance of the map f shown above gives rise to
the map f̄ : E/G→ TM/G, and hence defines the reduced
control system. We can explicitly write down the reduced
control system by introducing a principal bundle connection
and also using the identification of the quotient TM/G with
a bundle over M/G introduced in [21, Section 2.3] in the
following way: Consider the Whitney sum T (M/G) ⊕ g̃,
where g̃ is the associated (vector) bundle defined as

g̃ := M ×G g = (M × g)/G

1More generally, we may take a fiber bundle for E (see, e.g., [1]).
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with g being the Lie algebra of the Lie group G; given a
principal bundle connection

A : TM → g, (4)

we introduce the identification (see [21, Section 2.4])

αA : TM/G→ T (M/G)⊕ g̃

[vx]G 7→ Txπ(vx)⊕ [x,Ax(vx)]G, (5)

where [ · ]G stands for an equivalence class defined by the G-
action. On the other hand, since E = M ×Rd, the quotient
E/G defines the associated bundle

E/G = (M × Rd)/G = M ×G Rd,

which is also a vector bundle over M/G [21, Section 2.3].
Therefore, we may introduce the maps f̄M/G : E/G →

T (M/G) and f̄g̃ : E/G→ g̃ defined by

f̄M/G([x, u]G) := Txπ ◦ f(x, u),

f̄g̃([x, u]G) := [x,Ax(f(x, u))]G

for any element [x, u]G ∈ E/G = M ×G Rd. Then, we
have αA ◦ f̄ = f̄M/G ⊕ f̄g̃, and thus the reduced system is
decoupled into two subsystems:

˙̄x = f̄M/G(ūx̄), ξ̃x̄ = f̄g̃(ūx̄), (6)

where x̄ := π(x), ūx̄ := [x, u]G, and ξ̃x̄ := [x,Ax(ẋ)]G.

III. SYMMETRY AND REDUCTION OF AFFINE CONTROL
SYSTEMS

A. Symmetry in Affine Control Systems
Consider an affine control system, i.e., (1) with

f(x, u) = X0(x) +

d∑
i=1

uiXi(x), (7)

where {Xi}di=0 are linearly independent vector fields on M .
We assume that the vector field X0 is G-invariant, i.e.,

TΦg ◦X0 = X0 ◦ Φg (8)

for any g ∈ G; also let D ⊂ TM be the distribution

D = span{X1, . . . , Xd}, (9)

and assume that it is invariant under the tangent lift of the
G-action on Q, i.e.,

TΦg(D) = D (10)

for any g ∈ G. This implies that, for each vector field Xi

for i = 1, . . . , d and any x ∈M and g ∈ G, we have

TxΦg(Xi(x)) =

d∑
j=1

Rji (g)Xj(gx), (11)

where R(g) is an invertible d× d matrix, and is assumed to
have no dependence on x; then the matrix RT (g) gives the
representation σ(·) : G→ GL(d,R), i.e., σg = RT (g).

This gives rise to an action of G on E = M × Rd, i.e.,
Ψg : E → E defined by Ψg : (x, u) 7→

(
gx,RT (g)u

)
. Then,

the symmetries of X0 and D, i.e., (8) and (10), imply that
of f , i.e., Eq. (3). Therefore, this becomes a special case of
the general setting considered in Section II.

Fig. 1. Nonholonomic connection [22, 23]. Dx is spanned by the control
vector fields {Xi}di=1; Vx is the tangent space to the group orbit through
x ∈ M ; Hx defines a principal connection.

B. Nonholonomic Connection

Recall that we need to choose a connection A (see (4)).
For affine control systems, the nonholonomic connection in-
troduced in [22, Section 6.4] for reduction of nonholonomic
mechanical systems turns out to be a natural choice.

Let O(x) be the orbit of the G-action on M through x ∈
M and Vx be its tangent space at x, i.e.,

O(x) := {Φg(x) ∈M | g ∈ G} , Vx := TxO(x).

We make the “dimension assumption” [22], i.e., TxM =
Dx + Vx, and let

Sx := Dx ∩ Vx.

Then, we may write

Dx = Hx ⊕ Sx, Vx = Sx ⊕ Ux,

with complementary subspacesHx and Ux, and thus we have
the following decomposition of the tangent space TxM (see
Fig. 1):

TxM = Hx ⊕ Vx = Hx ⊕ Sx ⊕ Ux.

If, in addition, H is G-invariant, then it defines a G-invariant
horizontal space in the principal bundle π : M →M/G, and
thus defines a connection A : TM → g such that kerAx =
Hx. This is called the nonholonomic connection [22, 23].

Using the nonholonomic connection, the reduced control
system (6) can be written as

˙̄x = X̄0(x̄) +

d∑
i=1

uiX̄i(x̄),

ξ̃x̄ =[x,Ax ·X0(x)]G +

d∑
i=1

ui [x,Ax ·Xi(x)]G ,

(12)

where X̄i := Tπ(Xi) for i = 0, 1, . . . , d.

C. Purely Kinematic Case

Consider the special case where the tangent space to
the group orbit Vx = TxO(x) exactly complements the
distribution Dx, i.e., Sx = 0 and thus TxM = Dx ⊕ Vx.
This is the so-called “purely kinematic” case [22]. In this
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case, Dx itself gives the horizontal space and thus defines
the connection A : TM → g such that kerAx = Dx. This is
the basic setting for control of deformable bodies (see, e.g.,
[11]) and also of robotic locomotion (see, e.g., [15–17]).

IV. SYMMETRY IN CONTROL SYSTEMS ON LIE GROUPS

Consider, as a special case, the nonlinear control sys-
tem (1) on a Lie group G, i.e., M = G, with symmetry
under the action of G on itself by left translation Lg :
G → G; h 7→ gh for any g ∈ G. This case is particularly
simple because we do not need a principal connection and
the reduced system is defined on the Lie algebra g.

The associated bundle E/G = M×GRd becomes a bundle
over G/G, i.e., a point; hence E/G ∼= Rd = {u}. On
the other hand, the quotient TM/G becomes TG/G ∼= g.
Therefore, we have f̄g : Rd → g and the control system
reduces to

ξ(t) = f̄g(ū(t)). (13)

where ξ := TgLg−1(ġ).
In particular, for the affine control system (7), we obtain

f̄g(u) := ζ0 +

d∑
i=1

uiζi, (14)

where ζi ∈ g is defined such that Xi(g) = TeLg(ζi) for any
g ∈ G and i = 0, 1, . . . , d. This is the case considered by
Krishnaprasad [19].

V. SYMMETRY IN OPTIMAL CONTROL SYSTEMS

This section shows how the symmetry of a nonlinear
control system implies that of the corresponding optimal
control system under the assumption that the cost function
is also G-invariant, as suggested by Grizzle and Marcus [3].

A. Pontryagin Maximum Principle and Symmetry in Optimal
Control

Given a cost function C : E → R, fixed times t0 and
t1 such that t0 < t1, and fixed points x0 and x1 in M , we
formulate an optimal control problem as follows: Minimize
the cost functional, i.e.,

min
u(·)

∫ t1

t0

C(x(t), u(t)) dt,

subject to (1) and the endpoint constraints x(t0) = x0 and
x(t1) = x1.

A Hamiltonian structure comes into play with the intro-
duction of the augmented cost functional:

Ŝ :=

∫ t1

t0

[C(x(t), u(t)) + 〈λ(t), ẋ(t)− f(x(t), u(t))〉] dt

=

∫ t1

t0

[
〈λ(t), ẋ(t)〉 − Ĥ(x(t), λ(t), u(t))

]
dt,

where we introduced the costate λ(t) ∈ T ∗M , and also
defined the control Hamiltonian Ĥ : T ∗M ⊕ E → R by

Ĥ(λx, ux) = Ĥ(x, λ, u) := 〈λx, f(ux)〉 − C(ux), (15)

where we wrote λx := (x, λ) ∈ T ∗xM and ux := (x, u) ∈ Ex
(recall that E = M×Rd is a (trivial) vector bundle over M ).
If the cost function is invariant under the G-action Ψ defined
in (2), i.e., for any g ∈ G,

C ◦Ψg = C, (16)

then the control Hamiltonian Ĥ has a symmetry in the
following sense: Define an action of G on the bundle
T ∗M ⊕ E as follows: For any g ∈ G,

Ψ̂g : T ∗M ⊕ E → T ∗M ⊕ E;

(λx, ux) 7→
(
T ∗Φg−1(λx),Ψg(ux)

)
,

where T ∗Φg−1 : T ∗M → T ∗M is the cotangent lift of Φg .
Then, for any g ∈ G,

Ĥ ◦ Ψ̂g = Ĥ. (17)

Now, for an arbitrary fixed λx ∈ T ∗xM , define

FcĤ(λx, · ) : Ex → E∗x;〈
FcĤ(λx, ux), wx

〉
=

d

dε
Ĥ(λx, ux + εwx)

∣∣∣∣
ε=0

for an arbitrary wx ∈ Ex. We assume that the optimal control
u?x : T ∗xM → Ex ∼= Rd is uniquely determined by

FcĤ(λx, u
?
x(λx)) = 0

for any λx ∈ T ∗xM . This gives rise to the fiber-preserving
bundle map

u? : T ∗M → E; λx 7→ u?x(λx), (18)

and so we may define the optimal Hamiltonian H : T ∗M →
R by

H(λx) := Ĥ ◦ u?(λx)

= 〈λx, f(u?x(λx))〉 − C(u?x(λx)). (19)

It is easy to show that the optimal control u? : T ∗M → E
is equivariant under the G-actions, i.e., for any g ∈ G,

Ψg ◦ u? = u? ◦ T ∗Φg−1 . (20)

Hence the optimal Hamiltonian H has a symmetry in the
usual sense, i.e., for any g ∈ G,

H ◦ T ∗Φg−1 = H. (21)

VI. REDUCTION OF PONTRYAGIN MAXIMUM PRINCIPLE

A. Pontryagin Maximum Principle
The Pontryagin maximum principle says that the optimal

flow on M of the control system (1) is necessarily the
projection to M of the Hamiltonian flow on T ∗M with the
above Hamiltonian H . Specifically, let Ω be the standard
symplectic form on T ∗M , πM : T ∗M → M the cotangent
bundle projection, and XH the Hamiltonian vector field
defined by

iXH
Ω = dH; (22)

then there exists a solution λ : [t0, t1]→ T ∗M of the above
Hamiltonian system with πM (λ(t0)) = x0 and πM (λ(t1)) =
x1 such that its projection to M , πM ◦λ : [t0, t1]→M , is the
optimal trajectory of the control system (see, e.g., Agrachev
and Sachkov [24, Chapter 12] for more details).
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B. Poisson Reduction and Hamilton–Poincaré Equations
We saw that the optimal Hamiltonian H has a symmetry

under the G-action. It implies that we can apply the results
of symmetry reduction of Hamiltonian systems to (22) to
obtain a reduced Hamiltonian system for the optimal flow.

Reduction of Hamiltonian systems is a well-developed
subject, whose roots go back to the symplectic reduction
of Marsden and Weinstein [25]; there have been substantial
subsequent developments (see [26] and references therein).
In our case, the Poisson version of the cotangent bundle
reduction (see [18] and [26, Section 2.3]; see also [27, 28])
turns out to be a natural choice for the following reason:
Recall that we derived the reduced control system (6) using
the identification αA : TM/G → T (M/G) ⊕ g̃ defined
in (5); hence it is natural to expect and also is desirable
that the maximum principle, originally formulated on T ∗M ,
reduces to the dual T ∗(M/G)⊕ g̃∗. The Poisson version of
the cotangent bundle reduction works precisely this way: The
Poisson structure on T ∗M reduces to that on T ∗(M/G)⊕g̃∗;
accordingly, Hamilton’s equations reduce to the Hamilton–
Poincaré equations [18].

As shown in [26, Lemma 2.3.3], the identification of T ∗M
with T ∗(M/G)⊕ g̃∗ is provided by the dual of the inverse
of αA:

(α−1
A )∗ : T ∗M/G→ T ∗(M/G)⊕ g̃∗;

[λx]G 7→ hl∗x(λx)⊕ [x,J(λx)]G, (23)

where hl∗x : T ∗xM → T ∗x̄ (M/G) is the adjoint of the
horizontal lift hlx : Tx̄(M/G) → TxM associated with
the connection A : TM → g, and J : T ∗M → g∗ is the
momentum map corresponding to the G-symmetry: Let ξ ∈ g
and ξM ∈ X(M) its infinitesimal generator. Then,

〈J(λx), ξ〉 = 〈λx, ξM (x)〉 .

Noether’s theorem (see, e.g., [29, Section 11.4]) says that
the G-invariance of H implies that J is conserved along the
flow of the Hamiltonian vector field XH .

Cendra et al. [18] exploit this identification to reduce
the Hamiltonian dynamics with a G-invariant Hamiltonian
H : T ∗M → R as follows: The G-invariance implies that
one can define the reduced Hamiltonian on T ∗M/G, which
is identified with T ∗(M/G) ⊕ g̃∗ by (23), i.e., one has
H̄ : T ∗(M/G) ⊕ g̃∗ → R. Then, through the reduction of
Hamilton’s phase space principle, i.e.,

δ

∫ t1

t0

[〈p, q̇〉 −H(q, p)] dt = 0

with δq(t0) = δq(t1) = 0, one obtains the Hamilton–
Poincaré equations defined on T ∗(M/G)⊕ g̃∗ (see [18] for
details and an intrinsic expression):

˙̄xα =
∂H̄

∂λ̄α
, ξ̃a =

∂H̄

∂µ̃a
,

˙̄λα = − ∂H̄
∂x̄α

− µ̃a
(
Baβα ˙̄xβ +AbαCadb

∂H̄

∂µ̃d

)
,

˙̃µa = µ̃bC
b
da

(
∂H̄

∂µ̃d
−Adα ˙̄xα

)
,

(24)

where λ̄x := hl∗x(λx) ∈ T ∗x (M/G); ξ̃x ∈ g̃x and µ̃x ∈ g̃∗x
are the locked body angular velocity and its corresponding
momentum (see [22, Section 5.3]) defined by

ξ̃a := ([x,Ax(ẋ)]G)a = ξa +Aaα ˙̄xα,

µ̃a := ([x,J(λx)]G)a =
(
Ad∗g J(λx)

)
a
.

with ξ = TgLg−1(ġ); the coefficients Aaα are defined in the
coordinate expression for the connection A as follows:

A(x̄,g)( ˙̄x, ġ) = Adg(ξ
a +Aaα ˙̄xα) ea,

where {ea}dimG
a=1 is a basis for the Lie algebra g. Also the

coefficients Baβα for the curvature are given by

Baβα =
∂Aa

∂x̄α
− ∂Aa

∂x̄β
− CabcAbαAcβ .

C. Poisson Reduction of Pontryagin Maximum Principle
Let us apply the above Poisson reduction to the Hamil-

tonian system (22) defined by the maximum principle. First
calculate the reduced optimal Hamiltonian H̄ corresponding
to the optimal Hamiltonian (19). Using the identification in
(23) and also the reduced optimal control ū? : T ∗M/G →
E/G, which is well-defined by virtue of (20), we can rewrite
the Hamiltonian H as follows:

H(λx) =
〈
(α−1
A )∗(λx), αA ◦ f(u?x(λx))

〉
− C(u?x(λx))

=
〈

hl∗x(λx), f̄?M/G([λx]G)
〉

+
〈
[x,J(λx)]G, f̄

?
g̃ ([λx]G)

〉
− C̄?([λx]G),

where we defined the reduced cost function C̄ : E/G → R
by C̄ ◦ πEG = C and also

f̄?M/G([λx]G) := f̄M/G ◦ ū?x̄([λx]G),

f̄?g̃ ([λx]G) := f̄g̃ ◦ ū?x̄([λx]G),

C̄?([λx]G) := C̄(ū?x̄([λx]G)).

Define the reduced optimal Hamiltonian H̄ : T ∗(M/G) ⊕
g̃∗ → R by

H̄
(
λ̄x̄ ⊕ µ̃x̄

)
:=
〈
λ̄x̄, f̄

?
M/G

(
λ̄x̄ ⊕ µ̃x̄

)〉
+
〈
µ̃x̄, f̄

?
g̃

(
λ̄x̄ ⊕ µ̃x̄

)〉
− C̄?

(
λ̄x̄ ⊕ µ̃x̄

)
.

Then, we have H(λx) = H̄(λ̄x̄ ⊕ µ̃x̄) with λ̄x̄ := hl∗x(λx)
and µ̃x̄ := [x,J(λx)]G. In coordinates, we can write

H̄
(
x̄, λ̄, µ̃

)
= λ̄α f̄

?,α
M/G

(
x̄, λ̄, µ̃

)
+ µ̃a f̄

?,a
g̃

(
x̄, λ̄, µ̃

)
− C̄?

(
x̄, λ̄, µ̃

)
. (25)

Applying the Hamilton–Poincaré equations (24) to this
particular choice of H̄ gives the following:

Theorem 1: Suppose that the nonlinear control system (1)
and the cost function have G-symmetries in the sense of
Eqs. (3) and (16). Then, the necessary condition of the
Pontryagin maximum principle reduces to the following set
of equations (see [20] for an intrinsic expression):

˙̄xα = f̄?,αM/G

(
x̄, λ̄, µ̃

)
, ξ̃a = f̄?,ag̃

(
x̄, λ̄, µ̃

)
,

˙̄λα = − ∂H̄
∂x̄α

− µ̃a
(
Baβα ˙̄xβ +AbαCadbf̄

?,d
g̃

(
x̄, λ̄, µ̃

))
,

˙̃µa = µ̃bC
b
da

(
f̄?,dg̃

(
x̄, λ̄, µ̃

)
−Adα ˙̄xα

)
.

(26)
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Remark 2: Notice that the equations for (x̄, λ̄, µ̃) are
decoupled from the second one. Thus one first solves this
subsystem and then solve the second equation to “recon-
struct” the dynamics in the group variables.

Remark 3: If the Lie group G is Abelian, then the struc-
ture constants Cabc vanish, and thus we have

˙̄xα = f̄?,αM/G

(
x̄, λ̄, µ̃

)
, ξ̃a = f̄?,ag̃

(
x̄, λ̄, µ̃

)
,

˙̄λα = − ∂H̄
∂x̄α

− µ̃aBaβα ˙̄xβ , ˙̃µa = 0.
(27)

In particular, the last equation directly gives a conservation of
the momentum map J, which simplifies the set of equations
further.

The following kinematic optimal control problem illus-
trates the theory; note that this is non-purely kinematic case
with an Abelian symmetry, and so Remark 3 applies here.

Example 4 (Snakeboard; see, e.g., [30], [22] and [31]):
We consider a kinematic optimal control problem of the
snakeboard shown in Fig. 2. The configuration space is

θ
ψ

r

φ

φ

(x1, x2)

Fig. 2. The Snakeboard.

M = SE(2) × S1 × S1 = {(x1, x2, θ, ψ, φ)}. The velocity
constraints are given by

ẋ1 + (r cos θ cotφ) θ̇ = 0, ẋ2 + (r sin θ cotφ) θ̇ = 0,

and thus we have D = span{X1, X2, X3} with

X1(x) = cos θ
∂

∂x1
+ sin θ

∂

∂x2
− tanφ

r

∂

∂θ
,

X2(x) =
∂

∂ψ
, X3(x) =

∂

∂φ
,

where x = (x1, x2, θ, ψ, φ). Therefore, we may consider the
following kinematic control system:

ẋ = f(x, u) := u1X1(x) + u2X2(x) + u3X3(x),

or more explicitly,

ẋ1 = u1 cos θ, ẋ2 = u1 sin θ, θ̇ = −u1
tanφ

r
,

ψ̇ = u2, φ̇ = u3.

We define the cost function C : SE(2)×R3 → R as follows:

C(x, u) =
1

2
(u2

1 + u2
2 + u2

3).

Then, the above control system has an SE(2) × SO(2)-
symmetry, where SE(2) acting on the SE(2) portion of M
by left multiplication and SO(2) acting on the first S1 in
M , i.e., the variable ψ. We choose, however, the subgroup

G = R2×SO(2) of SE(2)×SO(2) since we are interested
in an Abelian and non-purely kinematic case here.

Let Φ : G×M →M be the G-action on M , i.e.,

Φ : ((a, b, β), (x1, x2, θ, ψ, φ)) 7→ (x1+a, x2+b, θ, ψ+β, φ).

Also let σ : G× R3 → R3 be the trivial representation:

σ : ((a, b, β), (u1, u2, u3)) 7→ (u1, u2, u3),

which induces the action Ψ : G× E → E defined by

Ψ : ((a, b, β), (x1, x2, θ, ψ, φ, u1, u2, u3))

7→ (x1 + a, x2 + b, θ, ψ + β, φ, u1, u2, u3).

Then, it is straightforward to show that f and C satisfy the
symmetry defined in Eqs. (3) and (16), respectively.

The optimal control u? is given by

u?1 = λ1 cos θ+λ2 sin θ−λθ
tanφ

r
, u?2 = λψ, u?3 = λφ,

and then the optimal Hamiltonian is

H(x, λ) =
1

2

(
λ1 cos θ + λ2 sin θ − λθ

tanφ

r

)2

+
λ2
ψ

2
+
λ2
φ

2
,

which gives the optimal control system

ẋ1 =
cos θ

r
[r(λ1 cos θ + λ2 sin θ)− λθ tanφ],

ẋ2 =
sin θ

r
[r(λ1 cos θ + λ2 sin θ)− λθ tanφ],

θ̇ = − tan θ

r2
[r(λ1 cos θ + λ2 sin θ)− λθ tanφ],

ψ̇ = λψ, φ̇ = λφ, λ̇1 = 0, λ̇2 = 0, λ̇ψ = 0,

λ̇θ =
λ1 sin θ − λ2 cos θ

r
[r(λ1 cos θ + λ2 sin θ)− λθ tanφ],

λ̇φ =
λθ sec2 φ

r2
(rλ1 cos θ + rλ2 sin θ − λθ tanφ).

(28)
Now, let us perform the reduction. The connection A :

TM → g is given by (see [20, Appendix A] for details)

A(θ,φ) = (dx1 + r cos θ cotφdθ)⊗ e1

+ (dx2 + r sin θ cotφdθ)⊗ e2 + dψ ⊗ eψ,

where {e1, e2, eψ} is a basis for the Lie algebra g =
T(0,0)R2 × so(2) ∼= R3. We then identify the vertical space
U as follows:

U = span

{
∂

∂x1
,
∂

∂x2
,
∂

∂φ

}
.

The reduced curvature form B̃ at x̄ = (θ, φ) ∈M/G is then

B̃x̄ = r cos θ csc2 φdθ∧dφ⊗e1 +r sin θ csc2 φdθ∧dφ⊗e2.

Introducing λ̄ ∈ T ∗(M/G), ξ̃ ∈ g̃, and µ̃ ∈ g̃∗ defined by

λ̄x̄ = (λ̄θ, λ̄φ) := hl∗x(λx)

=(λθ − λ1 r cotφ cos θ − λ2 r cotφ sin θ, λφ) ,

ξ̃x̄ =
(
ξ̃1, ξ̃2, ξ̃ψ

)
:= [x,Ax(ẋ)]G

=
(
ẋ1 − (r cotφ cos θ) θ̇, ẋ2 − (r cotφ sin θ) θ̇, ψ̇

)
,

µ̃x̄ =(µ̃1, µ̃2, µ̃ψ) := [x,J(λx)]G =(λ1, λ2, λψ) ,
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the reduced optimal Hamiltonian (25) is written as

H̄
(
x̄, λ̄, µ̃

)
=

1

2

(
λ̄2
θ tan2 φ

r2
+ λ̄2

φ + µ̃2
ψ

)
.

As a result, the reduced optimal control system (27) gives

θ̇ =
tan2 φ

r2
λ̄θ, φ̇ = λ̄φ,

ξ̃1 = 0, ξ̃2 = 0, ξ̃ψ = µ̃ψ,

˙̄λθ = λ̄φ r csc2 φ (µ̃1 cos θ + µ̃2 sin θ) ,

˙̄λφ = −λ̄θ sec2 φ
(
λ̄θ tanφ+ µ̃1 r cos θ + µ̃2 r sin θ

)
,

˙̃µ1 = 0, ˙̃µ2 = 0, ˙̃µψ = 0.

This system is significantly simpler than the original optimal
control system (28): Notice that we now have a decoupled
subsystem for the variables (θ, φ, λ̄θ, λ̄φ); so we first solve
the subsystem and then can obtain the dynamics for (x, y, ψ)
by quadrature.

D. Lie–Poisson Reduction of Pontryagin Maximum Principle

Consider the special case where M = G and assume that
the cost function C : E → R is G-invariant, i.e., C◦Ψh = C
for any h ∈ G; then, for any g ∈ G, we have C(g, u) =
C(e, u) = C̄(u), where C̄ is defined on E/G ∼= Rd.

In this case, the quotient M/G becomes a point and thus
the bundle T ∗(M/G) ⊕ g̃∗ becomes just g∗; as a result, ξ̃
is equal to ξ. Notice also that, since the momentum map is
given by J(λg) = T ∗eRg(λg), we have µ̃ ∼= Ad∗g J(λg) =
T ∗e Lg(λg) ∈ g∗. Therefore, the Hamilton–Poincaré equa-
tions (24) reduce to the Lie–Poisson equation [18], and so
(26) becomes

ξ = f̄?g̃ (µ̃) ,
dµ̃

dt
= ad∗ξ µ̃.

This system with an affine control (14) and the cost function
of the form

C(g, u) = C̄(u) =
1

2

d∑
i=1

Ii (ui)2

is the case considered by Krishnaprasad [19] (see also Koon
and Marsden [32, Section 5.3]).
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