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Abstract— In this paper, we examine optimization-based
methods for designing the network topology when the de-
sired topology should have certain global variational prop-
erties, such as minimal power consumption for information
exchange links, or supporting fast convergence of consensus-
based distributed protocols. We first classify the optimization-
based methodology for three distinct categories, namely, for
construction of optimal non-geometric networks, time-invariant
geometric networks, and time-varying geometric networks. We
then proceed to propose optimization-based algorithms for each
class of problems that aim to allocate the limited resources,
e.g., communication ranges, in the most efficient way while
achieving optimal performance. Examples and applications of
the developed methodology are also examined.

I. INTRODUCTION

Consensus based dynamic networks have emerged as a

flexible framework for multi-agent information sharing when

cooperative task is required, such as spacecraft formation

control, mobile robot rendezvous, unmanned aerial vehicle

(UAV) flocking, etc [1]–[3]. The communication between

the agents which is defined by the topology of the network

has prominent effect on the performance of the consensus

dynamic system, e.g., the relationship between network con-

nectivity and the convergence speed of the consensus proto-

col. In this paper, we address the problem of designing the

topology of the underlying network supporting distributed

operations in order to improve the performance of the

protocol. Related works in the area of network design have

been pursued predominately for allocating edge weights [4]–

[6]. However, in the present work we focus on the more

combinatorial problem of determining the topology of the

(undirected) network, possibly time varying, that will lead

to fast convergence for the protocol. For a non-geometric

based network, if the existence and absence of a link between

a pair of nodes is represented by binary values, then the off-

diagonal entries of the adjacency matrix are all expressed as

binary values as well.

Our objective is to determine these binary values in order

to optimize the performance index when the number of edges

has an upper bound. A related work in [7] has approached

this problem using genetic-algorithm to determine the ex-

istence of the link between two nodes. Our approach to

network topology design explored in this paper is inspired

by the works that are based on Mixed-Integer Semidefinite

Programming (MISDP) [8]. We then proceed to relax the

positive semidefinite constraint in MISDP formulation to a

set of quadratic constraints to further improve the algorithmic
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performance. The relaxation method is discussed in [9] and

[10] where the semidefinite programming (SDP) problem is

changed to smaller SDPs or second order cone programming

problems to get faster algorithmic performance for solving

them with similar solution accuracy. Motivated by these

works, in this paper we consider formulating the original

MISDP problem arising from the network topology deign

problem as a Mixed Integer Quadratic Constraint Program-

ming (MIQCP) problem which can be solved by the CPLEX

software [11].

When relative positions between agents are considered

in the construction of a geometric-based network, the

information-exchange link is assumed to exist within spec-

ified range; it is further assumed that power strength drops

quickly out of this range. This characteristic could be rep-

resented by a power function in order to approximately

represent the on/off linkage relationship when searching for

the maximum second smallest eigenvalues of the Laplacian

to increase convergence speed of the protocol [12]. Similar

works can also be found in [13] where a distributed method

has been applied to solve the connectivity optimization

problem. In this paper, we examine the situation where the

position of the agents are given and static, while each agent

needs to allocate its communication range in order to achieve

fast protocol convergence. This problem is distinct from other

resource allocation problems [14], [15], as the range selection

for each agent is coupled with others when determining the

optimal topology.

For time-varying geometry based networks, the Laplacian

is assumed to be changing with time. In previous works,

more attention has been paid to connectivity control in order

to guarantee that the network is connected over the entire

maneuver [16], [17]. Among these works, for exmaple, [17]

has proposed designing a feedback control law which is

dependent on the gradient of the potential function. In this

direction, this work has successfully applied this approach

for multiple scenarios when connectivity preservation is

required for mobile networked systems. In this paper, our

contribution concerns network optimization problems that

aim to obtain network topologies leading to faster con-

vergence of the underlying protocol while considering the

allocation of communication ranges. Since the position of the

agents can be obtained by integration of consensus dynamics

for a given set of ranges, the topology design problem is

shown to be reduced to a parameter optimization problem,

which in turn, can be solved by a nonlinear programming

(NLP) [18] solver.

The organization of the paper comprises of three sections

addressing the problems discussed above. Starting from the
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background introduction for non-geometric network, we will

describe the MISDP and MIQCP methods for this type of

optimal topology design problem in §II. §III-IV will discuss

the time-invariant and time-varying geometric optimal net-

work design problems, respectively. We conclude the paper

with a few remarks in §V.

II. NON-GEOMETRIC OPTIMAL NETWORK

DESIGN

We consider a network G = (V,E) with n mobile

agents, denoted as the nodes of the graph, with vertex

set V = {1, 2, . . . , n} and edge set E consisting of two

element subsets of V . The connection among the nodes in the

undirected network G = (V,E) is expressed by the entries

of the adjacency matrix with [A (G)]ij = 1 when vi, vj ∈ E
and [A (G)]ij = 0 otherwise. Since the adjacency matrix

for a graph on n nodes, A (G), is symmetric, we use a set

of binary variables comprised of n(n − 1)/2 elements to

determine off-diagonal entries of the A (G). We note that

the diagonals are simply zeros. Using such a framework, we

assign binary variable aij to represent the element [A (G)]ij
in A (G) with aij = aji, (i 6= j) and aii is set to be zero.

If the cost of constructing a graph with such adjacency is

proportional to the cardinality of edge set E, then we can

scale the cost as

C(E) =
∑

{vi,vj}∈V

aij
2
; aij = aji, (i 6= j). (1)

The degree matrix ∆(G) of the graph can also be expressed

in terms of the binary variables aij as ∆(G)ii =
∑n

j=1 aij
and ∆(G)ij = 0 (i 6= j). Therefore, the Laplacian L(G) =
∆(G) − A (G) is completely determined by these binary

variables.

Recall that when xi denotes the state of dynamic agent

i in the connected network G, the consensus protocol of

the overall system is represented by ẋ = −L(G)x, which

will drive each agent to the consensus set C = {x ∈ R
n |

xi = xj , ∀ vi, vj ∈ V } by exchanging state information with

connected agents in the specified network G. We denote the

eigenvalues of L(G) by 0 = λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G)
and therefore have L(G) � 0 with � denoting the positive

semidefinite ordering. We quote the following well known

Lemma [19] which can be used to determine the rate of

convergence to the agreement set. It is known that for

a connected graph G, the (undirected) consensus protocol

converges to the consensus set C with a rate of convergence

that is dictated by λ2(G).
With λ2(G) as our objective function, our goal is to design

the topology of the non-geometric based network, such that

construction cost, C(E), bounds the number of edges in

the graph. More specifically, one can summarize the optimal

network topology problem as

max
A(G)

λ2(G) (2)

s.t. aij = aji, aij ∈ {0, 1}, ∀ vi, vj ∈ V, i 6= j (3)

|E| ≤ C(E)

λ2(G) > 0.

A. MISDP Method

Now we will make our first attempt to solve a relaxed form

of the problem (2)-(3) as an MISDP [8] by transforming the

constraints in (3) into linear matrix equalities or inequalities.

We first present a positive semidefinite inequality constraint

to relax the graph Laplacian to a diagonal matrix via the

following proposition.

An orthogonal matrix P = [p1, p2, . . . , pn−1, 1/
√
n] is

constructed here with unit vectors pi’s chosen as pTi 1 = 0
(i = 1, 2, . . . , n−1) and pTi pj = 0 (i 6= j). By the similarity

transformation, we get

L ∼ PTL(G)P, (4)

where symbol ’∼’ indicates the similarity between two

matrices.

Proposition 1: For a graph Laplacian L(G), if α ≥ λ2,

we have L(G) + α11T /n � λ2I .

Proof: It is easy to confirm that the matrix α11T /n has

one eigenvalue equal to α with corresponding eigenvector of

1 and the remaining eigenvalues are all equal to zero. Let us

assume that the eigenvectors of matrix α11T /n are denoted

by P = [p1, p2, . . . , pn−1, 1/
√
n] where all elements of P

satisfies conditions stated above. From (4), one has

PTL(G)P ∼ PT







λ1 0 0

0
. . . 0

0 0 λn






P,

where λ1 = 0 with eigenvector 1. We can now proceed to

determine the eigenvalues of matrix L(G) + α11T /n,

PT (L(G)+α11T /n)P ∼ PT











λ1 + α 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λn











P.

As we assigned 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, L(G)+α11T /n �
λ2I is satisfied if and only if α ≥ λ2.

By now, the optimization problem proposed in (2)-(3)

has been transformed into an MISDP summarized in the

following formulation:

minA(G) −λ2(G) (5)

s.t. aij = aji, aij ∈ {0, 1}, ∀ vi, vj ∈ V, i 6= j (6)
∑n

i,j=1,i6=j aij/2 ≤ CE

λ2(G) > 0

L(G) + α11T /n � λ2(G)I.
Although the MISDP solver will generate the optimal

solution, the computational speed is generally slow, as the

branch-and-bound algorithm is invoked in search of the

integer variables. In order to improve the computational

performance, the traditional method is to relax the binary

variables to continuous variables on the unit interval [0, 1]
[20], [21]. Here we propose yet another method by relaxing

the semidefinite constraint for the last inequality function

in (6) to a group of quadratic constraints and formulate the

problem as an MIQCP.
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B. MIQCP Method

The MIQCP problem is defined as

minx f(x) = cTx, xi ∈ I (7)

s.t. xL ≤ x ≤ xU (8)

bL ≤ Ax ≤ bU

xTQ(i)x+ a(i)Tx ≤ r(i), i = 1, . . . , nqc,

where x ∈ Rn is the unknown state variables to be deter-

mined, c ∈ Rn is the vector of coefficients, bU ∈ Rm and

bL ∈ Rm are the upper and lower bounds for the linear

constraints, respectively. Matrix A ∈ Rm×n specifies the

linear (composite) equality or inequality constraints. Q ∈
Rn×n, a ∈ Rn, and r ∈ R1 define the quadratic constraints

and qc is the number of quadratic constraints. We first recall

a property of positive-semidefinite matrices.

Lemma 2: Let M be a positive semidefinite matrix. Then

every principal submatrix of M is positive semidefinite.

Accordingly, positive semidefiniteness of the matrix M can

be partially represented by a group of 2 × 2 principal sub-

matrices whose determinant are all nonnegative, expressed

as

miimjj ≥ mijmji, ∀ i, j ∈ {0, . . . , n}, i 6= j. (9)

Since L(G) in the semidefinite constraint is symmetric and

the diagonal elements of L(G) are included in the quadratic

constraints, we assign the upper triangular elements of L
as unknown integer variables of x in the MIQCP. Together

with continuous variable λ2, x in (7) is represented by x =
[l11, l12, . . . , l1n, l22, . . . , l2n, . . . , lii, . . . , lin, . . . , lnn, λ2]

T .

The constraint in (6) can now be relaxed by a group of

quadratic constraints according to (9) and expressed as

(lii + α− λ2)(ljj + α− λ2)− (lij + α)2 ≥ 0, (10)

∀ i, j ∈ {0, . . . , n}, i 6= j.

Since α ≥ λ2, we assign α = λ2 to simplify (10) as

liiljj − (lij + λ2)
2 ≥ 0, ∀ i, j ∈ {1, . . . , n}, i 6= j. (11)

We then summarize the MIQCP formulation of the non-

geometric network design problem as

minL(G) −λ2(G) (12)

s.t. lij ∈ {0,−1}, vi, vj ∈ V, i 6= j (13)

lii =
∑n

j=1,j 6=i −lij , i = {1, . . . , n}
∑n

i lii/2 ≤ CE

liiljj − (lij + λ2)
2 ≥ 0, ∀ i, j ∈ {1, . . . , n}, i 6= j

λ2(G) > 0.

The quadratic constraints expressed in (11) are not equivalent

to the semidefinite constraint in (6). However, it accelerates

the computational speed by relaxing the original constraint.

Thus the solution is not equivalent to the MISDP solution and

becomes a suboptimal solution in general. We will address

these aspects of the proposed relaxation procedure next.

C. An Example

In this part, we will design the topology of a non-

geometric network with a given number of agents and upper

bound on the total number of edges using the approaches

based on MISDP and MIQCP formulation discussed above.

In Table I, we provide the results for the corresponding

values of λ2 from the designed networks. Additionally, the

computation time Tc from both methods are depicted in

order to compare their computational performance for the

simulation run on a Lenovo X201 laptop with intel i5 CPU

and 4GB RAM. Furthermore, the network topology designs

from both methods are shown in Fig. 1. After comparison

TABLE I

EXAMPLE FOR NON-GEOMETRIC NETWORK DESIGN WITH 7 AGENTS

Maximum Edge No. 10 14 16 18 20

λ2 from MISDP 2.00 3.20 4.00 5.00 5.00

Tc (sec) from MISDP 880.46 893.04 213.35 4.48 5.60

λ2 from MIQCP 1.38 2.39 4.00 5.00 5.00

Tc (sec) from MIQCP 0.97 0.33 0.53 0.14 0.31

Maximum 10 Edges by MISDP Maximum 16 Edges by MISDP

Maximum 18 Edges by MISDP Maximum 20 Edges by MISDP

Maximum 14 Edges by MISDP

(a) Network topology from MISDP method.

Maximum 18 Edges by MIQCP

Maximum 14 Edges by MIQCP Maximum 16 Edges by MIQCP

Maximum 20 Edges by MIQCP

Maximum 10 Edges by MIQCP

(b) Network topology from MIQCP method.

Fig. 1. Network topology of 7 agents with maximum edge number from
table I

of the results from MISDP and MIQCP methods in Table

I, we can make the statement that the computational perfor-

mance is improved in the MIQCP method at the expense of

optimality properties of the solution in certain cases. This is

particularly the case when the maximum number of edges

is small compared with the total number of possible edges

in the network. Both methods are feasible in small scale

network topology design; the preference of accuracy vs.

computation time determines which method might be more

desirable in practice.
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III. TIME-INVARIANT GEOMETRIC OPTIMAL

NETWORK DESIGN

A. Problem Formulation and Method

The above discussion assumes the geometric location of

each agent has no effect on the communication links. How-

ever, in some situation, the strength of the communication

link is determined by the distance between the agents and

will fade with the increase of the distance. There are a

few functions [12] to present this relationship between the

distance and the strength of the communication link. Here

we use

f(d) = 1/(1 + eα(d−ρ)), (14)

where α = 2
ρ2−ρ1

log( 1−ǫ
ǫ
) and ρ = ρ1+ρ2

2 . A plot of (14)

is shown in Fig. (2).

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

d

f(
d

)

Fig. 2. Illustration figure of function f(d) with ρ1 = 1, ρ2 = 1.5 and
ǫ = 0.1.

For every agent i, we assume the power of communication

is denoted by the radio range ρ1i and the total power

of the network is constrained by
∑n

i=1 ρ1i ≤ pmax. The

communication signal is strong within the distance of ρ1
and decreases quickly to zero when the distance reaches ρ2.

For a set of randomly scattered agents, assigning the power

strength of each agent to compose a favorable topology ac-

cording to their relative location is supposed to possess better

performance than a network without elaborate design. Now

the problem is how to allocate the power of communication

for a network with given location of all the agents so that

λ2 of L(G) is maximized. We formulate this problem as

minρ1
−λ2(G), ρ1 = {ρ11, . . . , ρ1n} (15)

s.t. aij = f(max(ρ1i, ρ1j)), ∀ i, j ∈ {1, . . . , n}, i 6= j (16)

ρmin ≤ ρ1i ≤ ρmax, ∀ i ∈ {1, . . . , n}
∑n

i=1 ρ1i ≤ pmax

L(G) + α11T /n � λ2(G)I
λ2(G) > 0.

Since ρ1 = {ρ11, . . . , ρ1n} are continuous unknown vari-

ables, the above problem can be solved by the iterative

algorithm [12] using the SDP solver [8] to maximize the

second smallest eigenvalue of L(G) at each step. One issue

of concern is the behavior of the power strength function,

determined by the maximum range between agent i and j.

We write out the maximum function of (16) as

ρmij = max(ρ1i, ρ1j) =
ρ1i + ρ1j

2
+ |

ρ1i − ρ1j
2

| (17)

and then for each iterative step k, the elements in the adjacent

matrix aij are updated by linearization of (14) as

aij(k + 1) = aij(k) + αeα(d−ρ(k))f2(ρmij(k))

(
ρ1i(k+1)+ρ1j(k+1)

2 + s(k)
ρ1i(k+1)−ρ1j(k+1)

2 − ρmij(k)),(18)

where s(k) = sign(ρ1i(k) − ρ1j(k)). The approach starts

with an initial guess of ρ1 and the solution process for

problem (15)-(16) is repeated and updated by (18) at each

step until it convergence to a local optimal solution.

B. An Example

Here we simulate an example to test the proposed algo-

rithm for a time-invariant geometric network design. We have

six agents with fixed locations in a two-dimensional space

and initial communication ranges specified in Table II. The

total power range is constrained by pmax = 16.5. We also

assume ρ2 = ρ1+0.5, which means that the communication

signal strength drops close to zero when distance increases

more than 0.5 of the designed range ρ1. The other parameters

are set as α = 1
ρ2−ρ1

log( 1−ǫ
ǫ
) and ǫ = 0.1. Based on

TABLE II

EXAMPLE FOR TIME-INVARIANT GEOMETRIC NETWORK DESIGN

Agent No. 1 2 3 4 5 6

x 1.60 3.20 2.72 4.80 4.48 5.60

y 1.60 0.80 4.48 4.00 1.60 3.20

Initial ρ1 2.75 2.75 2.75 2.75 2.75 2.75

Maximum ρ1 4.00 4.00 4.00 4.00 4.00 4.00

Minimum ρ1 2.00 2.00 2.00 2.00 2.00 2.00

Optimal ρ1 3.81 3.53 2.96 2.20 2.00 2.00

these assumptions, λ2 of the initial network with average

communication range is 2.69. However, from the simulation

result, λ2 of the designed network increases to the value of

3.65.

IV. TIME-VARYING GEOMETRIC OPTIMAL

NETWORK DESIGN

A. Problem Formulation and Method

In the time-invariant geometric network design, it was as-

sumed the locations (states) of the agents are fixed. In certain

scenarios, e.g., rendezvous, formation flight and flocking, the

locations of agents are included in the dynamic states and

are changing with time. For these cases, the graph Laplacian

matrix is also changing with time since the distances between

the agents that determine the entries of the Laplacian are

updated at each sampling time. In such a setup, the elements

of the adjacency matrix A (G) are determined by

aij = f(max(ρ1i, ρ1j), xi, xj), ∀ i, j ∈ {1, . . . , n}, i 6= j.
(19)

For the consensus-based dynamics, each agent is treated as

a single integrator whose states will converge to the constant

agreement offset τ . If the initial and final relative states of the

agents are given as vectors x0 and xf , respectively, all agents

will converge to x = xf + τ according to the consensus

dynamics. The relative states describe the configuration of

the agents in space, i.e., the rendezvous task requires xf (i) =
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xf (j), ∀ i, j ∈ {1, . . . , n}, i 6= j, while in formation flight,

xf represents the desired shape of the final formation. If we

assign x′ = x − xf , then the consensus dynamics of the

network is represented as

ẋ′ = −L(ρ1, (x′ + xf ))x
′. (20)

When x′ reaches the consensus offset τ , the required rota-

tionally and translationally invariant configuration, is in the

desired relative displacement tf . Since the topology of the

network is dynamic, the objective function is not only to

optimize the network topology at a specific time, but also

for the entire time interval of interest, from initial state to

the final desired target state. For this approach, the system

dynamics are required to be satisfied as well as other con-

straints over the concerned time interval. Correspondingly,

the problem formulation assumes the form

minρ1

∫ tf
0

dt, ρ1 = {ρ11, . . . , ρ1n} (21)

s.t. x(0) = x0, x(tf ) = xf + τ (22)

ρmin ≤ ρ1i ≤ ρmax, ∀ i ∈ {1, . . . , n}
∑n

i=1 ρ1i ≤ pmax

ẋ′ = −L(ρ1, (x′ + xf ))x
′, x′ = x− xf ,

where ρ1i i ∈ {1, . . . , n} is the radio range to be determined

with upper bound ρmax and lower bound ρmin.

We may consider the above described problem as path

planning problem which requires optimal resource allocation

so that the agents in the system will reach the desired targets

in minimum time. The algebraic connectivity, λ2, is evalu-

ated as a objective function in the non-geometric and time-

invariant geometric cases. Although the other eigenvalues

also contribute to the rate of convergence, λ2 plays the

prominent role. Minimizing the time from initial states to fi-

nal states with consensus dynamics includes the contribution

of all eigenvalues of the changing Laplacian during the entire

time period. To solve this two point boundary optimization

problem with highly nonlinear dynamics, we will apply the

NLP method to search for the optimization solution.

Combined with the direct collocation and NLP method

[18], the network design procedure is transformed into a

parameter optimization problem. Assume that the overall

time period from initial states to the target is tf and that

this time interval has been divided into h segments as 0 =
t1 < t2 < . . . < th+1 = tf . Then, the system dynamics

are discretized into a series of separate nodes represented

by state variables. All of these variables, together with the

unknown parameters ρ1 and tf , compose the NLP variables

as

x = [x1, x2, . . . , xi, . . . , xh+1, ρ1, tf ], (23)

where x at each node includes the state variables of every

agent. The trapezoidal integration rule is now applied to

enforce the state variables and unknown parameters at these

discrete points, approximately satisfying the system dynam-

ics

di = xi+1 − xi −
∆ti
2

(ẋi + ẋi+1), i ∈ {1, . . . , h}, (24)

where di are called the defect vector, which are expected to

be zero in order to reproduce the system dynamics. ∆ti =
ti+1 − ti is the time interval between two adjacent nodes,

ẋi and ẋi+1 are the system first-order derivative functions

at node i and i+ 1, which are expressed in last equation of

(22) with respect to xi and xi+1, individually.

The NLP solver used for the problem (21)-(22) is SNOPT

[22]. SNOPT solves optimization problems with nonlinear

objective and constraints. According to the above discussion,

all NLP variables are listed in (23) and the performance

index has been evaluated as (21). The nonlinear constraints,

including the “defect” vector constraints, are set as di = 0,

i ∈ {1, . . . , h}. In the ideal consensus condition one has

limt→∞ x = xf + τ . However, the exact value of τ is not

known ahead of time. In order to choose a judicious stopping

criteria, we assume that the agents will reach the target when

std(x(h + 1)) ≤ ǫ, where ’std’ is the standard deviation

function of the states at the final boundary points and ǫ is

the termination threshold. Finally, the problem described in

(21)-(22) is transformed into an NLP summarized as follows:

minx tf , x = [x1, x2, . . . , xi, . . . , xh+1, ρ1, tf ] (25)

s.t. x1 = x0 (26)

std(x(h+ 1)) ≤ ǫ

ρmin ≤ ρ1i ≤ ρmax, i ∈ {1, . . . , n}
∑n

i=1 ρ1i ≤ pmax

di = cU = cL = 0, i ∈ {1, . . . , h}.

B. An Example

The example used here for the time-varying geometric net-

work design is the formation control problem. We consider

six agents with initial and final positions given in Table III,

as well as the initial communication ranges, maximum and

minimum bounds on the individual communication ranges.

We assume the total power range is constrained by pmax =
16.5 and ρ2 = ρ1+0.5 and set ǫ = 0.01. In the corresponding

simulations, 20 discrete nodes are selected with equal time

interval between adjacent nodes to discretize the trajectory

from initial states to the final target. More nodes states could

be used to increase the solution accuracy at the expense of

more computation time. We then constructed the problem as

formulated in (25)-(26). By running the NLP solver, we ob-

tain the optimal communication range allocations as listed in

Table III. The resulting agents’ trajectories composed by the

TABLE III

EXAMPLE FOR TIME-VARIANT GEOMETRIC NETWORK DESIGN

Agent No. 1 2 3 4 5 6

Initial x 0.00 1.00 2.00 3.00 4.00 5.00

Initial y 0.00 0.00 0.00 0.00 0.00 0.00

Final x 1.50 1.50 2.50 2.50 3.50 3.50

Final y 1.00 -1.00 2.00 -2.00 1.00 -1.00

Initial ρ1 2.75 2.75 2.75 2.75 2.75 2.75

Maximum ρ1 4.00 4.00 4.00 4.00 4.00 4.00

Minimum ρ1 2.00 2.00 2.00 2.00 2.00 2.00

Optimal ρ1 3.85 2.73 2.62 2.00 2.00 3.29

discretized points are illustrated in Fig. (3) with the trajectory
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Fig. 3. Simulation result of agents trajectories from initial points to targets

of every agent shown by different markers. The agents’ initial

positions are labeled by circles and target points as squares

with index number Ai(0) and Ai(f), respectively. In order to

demonstrate the performance improvement by the proposed

algorithms, we compare the time history of the standard

deviation for both x and y coordinates using optimal range

allocation and average range allocation in Fig. (4-a). The

simulation results indicates that the values of std(x)+std(y)
reaches below than 0.01 in 0.867 seconds which benchmarks

the time required by the average range allocation to reach the

same consensus points. Finally, we also compare the time

history of λ2 for the dynamic Laplacian matrix using optimal

range allocations and average range allocations in Fig. (4-b).

We note that the optimal values of λ2 for the graph Laplacian

using the optimal range allocation method is much higher

than the average range allocation and that the graph remains

connected over the entire time interval.
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tion of coordinates
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Fig. 4. Time history of standard deviation of coordinates and λ2 with
optimal ranges and average ranges

V. CONCLUSIONS

This paper presented the optimal network topology design

for consensus based systems with a variety of optimal based

methods. We categorized the topology design problem into

three categories and formulated the corresponding optimiza-

tion formulation for each case. The time-invariant non-

geometry and geometry based networks were then analyzed

in order to design the optimal topology for time-invariant

networks. We also considered the situations when the state of

the agents is dynamic and considered the optimal allocation

of resources for this class of time-varying geometric-based

networks. The proposed algorithms are of importance in

many situations of practical interest, such as constructing a

network for high performance UAV flocking and distributed

estimation for sensor networks.
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