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Abstract— This paper introduces the concepts of Dwell-Time
invariance (DT-invariance) and maximal constraint admissible
DT-invariant set for discrete-time switching systems under
dwell-time switching. Main contributions of this paper include
a characterization for DT-invariance; a numerical computation
of the maximal CADT-invariant set; a necessary and sufficient
condition for asymptotic stability of the origin of the switching
systems under dwell time switching and an algorithm for the
computation of the minimal dwell time needed for stability.

I. INTRODUCTION

This paper considers the following constrained discrete-

time switched linear system:

x(t+ 1) = Aσ(t) x(t), (1a)

x(t) ∈ X , ∀t ∈ Z
+ (1b)

where x(t) ∈ R
n is the state variable and σ(t) : Z

+ →
IN := {1, · · · , N} is a time-dependent switching signal that

indicates the current active mode of the system among N
possible modes in A := {A1, · · · , AN}. The constraint set

X ⊂ R
n models physical state constraints imposed on the

system, including those arising from the actuator via some

appropriate state feedback if (1) is seen as a feedback system.

The study of such a system is quite active in the past

decade. Most of the literature [1], [2], [3], [4] is concern

with conditions that ensure stability of the system when σ(·)
is an arbitrary switching function while others [5], [6], [7],

[8] consider designing the appropriate switching functions

that ensure stability. With a few notable exceptions [9], [10]

past literature does not consider the presence of constraints.

When constraints are present, one major focus of research

is the characterization of invariant sets that are constraint

admissible [11]. The existence of such invariant sets for

system (1) is predicated on it being stable. Hence, studies

of such sets often assume that Ai, i ∈ IN is stable, which

is a necessary condition for the stability of the origin of (1)

under arbitrary switching. Additional conditions are required.

The most common of these are those based on Lyapunov

function consideration. For example, the origin of system

(1) is stable under arbitrary switching upon the existence

of a common quadratic Lyapunov function [2], [12], [13],

[4], (pairwise) switched Lyapunov functions [3], multiple

Lyapunov functions [14], [15], [16], [7], composite quadratic

functions [17], [18] or polyhedral Lyapunov functions [10].
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Another condition for stability is that based on dwell-time

consideration. When all Ai is stable, stability of the origin

can be ensured if the time duration spent in each subsystem

is sufficiently long [2], [8]. Upper bounds of the minimal

dwell-time needed have also appeared [8], [19], [20], [21]

This work is concerned with the characterization and

computation of invariant sets for system (1) when σ(·) is

an admissible switching function that respects the dwell-

time consideration. In the limiting case where the dwell time

is one sample period, σ(·) becomes an arbitrary switching

function, and the corresponding invariant sets and their

computations have appeared in the literature [9]. Hence, this

work can also be seen as a generalization of those obtained

for arbitrary switching systems. Other contributions of this

work include: connection between stability of dwell-time

switching systems and the stability of an associated arbitrary

switching system, a necessary and sufficient stability condi-

tion for dwell-time switching systems, and a procedure that

determines the minimal dwell time needed to ensure stability

of the origin of system (1).

The rest of this paper is organized as follows. This section

ends with a description of the notations used. Section II

reviews some standard terminology and results for switching

system. Section III shows the main result on the characteri-

zation of the invariant set for system (1) and its properties.

Section IV describes a procedure for determination of the

minimum dwell time needed for a given system. Sections

V and VI contain, respectively, numerical examples and

conclusions. All proofs for the results stated in this paper

can be found in forthcoming paper [22].

The following standard notations are used. Z+ is the set

of non-negative integers. Given a matrix A ∈ R
n×n and a

vector b ∈ R
n, Aj and bk are the corresponding j-th row

and the k-th element respectively. The floor function, ⌊a⌋, is

the largest integer that is less than scalar a. Positive definite

(semi-definite) matrix, Q ∈ Rn×n, is indicated by Q ≻ 0(�
0). The p-norm of a vector or a matrix is ‖ · ‖p, p = 1, 2,∞
with ‖ · ‖ refers to the 2-norm. Given a P ≻ 0, ‖x‖2P =

xTPx and E(P ) := {x : ‖x‖2P ≤ 1}. Suppose α > 0,

X ⊂ R
n is a compact set that contains 0 in its interior, then

αX := {αx : x ∈ X}. Boldface 1 indicates the vector of all

1s. Other notations are introduced when needed.

II. PRELIMINARIES

This section begins with a review of the definitions

of switching time, dwell time and admissible switch-

ing sequence/function. Suppose ts0 , ts1 , · · · , tsk , · · · are the

switching instants of (1) with ts0 = 0 and tsk < tsk+1
. By
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definition, this means that σ(tsk ) 6= σ(tsk+1
) and σ(tsk) =

σ(tsk + 1) = · · · = σ(tsk+1
− 1) for all k ∈ Z

+.

Definition 1: An admissible switching sequence of system

(1), Sτ (t) = {σ(t− 1), · · · , σ(1), σ(0)}, with switching

instants ts0 , ts1 , · · · , tsk , · · · has a dwell time of τ means

that tsk+1
− tsk ≥ τ for all k ∈ Z

+. In addition, suppose

tlast is the last switching time for an admissible sequence

Sτ (t), then t− tlast ≥ τ .

Remark 1: As defined, the dwell time condition corre-

sponds to the minimal duration of stay in each mode required

of the system. The last condition in definition 1 requires

further qualification. Suppose A = {A1, A2} and τ = 3 then

Sa
3 (6) = {1, 1, 1, 2, 2, 2} is an admissible sequence. How-

ever, Sb
3(6) = {1, 1, 2, 2, 2, 2} is not an admissible sequence

because t−tlast < 3 and the dwell time consideration may be

violated if σ(6) = 2. On the other hand, if σ(6) = 1 means

Sb
3(6) is a truncated subsequence of an admissible sequence.

This is a key point that distinguishes systems under dwell

time consideration and under arbitrary switching. Following

the same reasoning, Sτ (t) for t < τ is also not meaningful.

Throughout this paper, system (1) is assumed to satisfy

the following assumptions:

(A1) The spectral radius of each individual subsystem Ai, i ∈
IN is less than 1;

(A2) The constraint set X is a polytope represented by X =
{x : Rx ≤ 1} for some appropriate matrix R ∈ R

q×n;

(A3) (Ai, R) are observable for all i ∈ IN .

(A4) A value of τ ≥ 1 has been identified such that the

origin of the unconstrained switched system (1) with dwell

time τ is asymptotically stable.

Assumption (A1) defines the family of systems considered

in this work and is a reasonable requirement. The polyhedral

assumption of (A2) is made to facilitate numerical compu-

tations of the invariant set of (1). If (A3) is not satisfied,

then system (1) can be reformulated to consider only the

observable subsystem of Ai. Assumption (A4) follows from

(A1) and is made out of convenience. For example, a

conservative dwell time can be estimated under (A1) [8].

More exactly, it is known that for each i ∈ IN there exist

scalars hi and λi with |λi| ∈ (0, 1) such that ‖Ak
i ‖ < hi|λi|k

for all k ∈ Z
+. This means that

‖x(t)‖ = ‖Aσ(t−1)Aσ(t−2) · · ·Aσ(1)Aσ(0)x(0)‖

= ‖A
t−tsk
σ(tsk )A

tsk−tsk−1

σ(tsk−1
) · · ·A

ts1−ts0
σ(ts0)

x(0)‖ (2)

< hσ(tsk )|λσ(tsk )|
t−tsk · · ·hσ(ts0 )

|λσ(ts0 )
|ts1−ts0 ‖x(0)‖

<
(

h
1/τ
m

)t
λ
t
m‖x(0)‖ = (h̄λm)t‖x(0)‖ (3)

where hm := max{hi : i ∈ IN}, λm := max{|λi| : i ∈

IN}, h̄ := h
1
τ
m and τ is the smallest positive integer such that

h̄ < 1
λm

. The last inequality above ensures that x(t) → 0
for all admissible switching functions.

III. MAIN RESULTS

This section begins with several definitions needed to

precisely state the invariance condition for system with dwell

time consideration. For notational convenience, ASτ (t) refers

to the product Πt−1
r=0Aσ(r) with the admissible sequence

Sτ (t) = {σ(t− 1), · · · , σ(0)} and may be expressed in the

form of (2).

Definition 2: A set Ω ⊂ R
n is t-step invariant with respect

to x(t+ 1) = Ax(k) if x ∈ Ω implies Atx ∈ Ω.

Definition 3: A set Ω ⊂ R
n is said to be DT-invariant

(Dwell-Time invariant) with respect to system (1a) with a

dwell time τ if x ∈ Ω implies ASτ (t)x ∈ Ω for all admissible

switching sequences Sτ (t) and for all time t.
While stating the requirement of DT-invariance for system

(1), the above definition is of limited practical usefulness

since ASτ (t)x ∈ Ω has to be satisfied by an infinite number

of admissible sequences for all time t. The next theorem

shows how the infinite sequences can be avoided.

Theorem 1: Suppose (A1) and (A4) are satisfied. A set

Ω ⊂ R
n is DT-invariant for system (1a) with dwell time τ if

and only if it is t-step invariant for all t = τ, τ+1, · · · , 2τ−1
and for all Ai ∈ A.

Proof: (i) (⇒): The solution of (1) under an admissible

switching function at time t is x(t) = ASτ (t)x0 where

ASτ (t) = · · ·Akℓ

iℓ
· · ·Ak1

i1
Ak0

i0
(4)

for some appropriate switching sequence Sτ (t) =
{iℓ, iℓ, · · · , iℓ, iℓ−1, · · · , iℓ−1, iℓ−2, · · · , i0} where ij ∈ IN
and kj := tsj+1

−tsj , j = 0, 1, · · · , ℓ being the corresponding

duration times in each mode. Due to the dwell time require-

ment, each kj ≥ τ . Without loss of generality, consider any

of the Ak
i on the right hand side of (4). This term can be

decomposed into a product of matrices involving Aτ
i and

one matrix from {Aτ
i , A

τ+1
i , , · · · , A2τ−1

i }. To see this, let

q = ⌊k−τ
τ

⌋ and

Ak
i = (Aτ

i )
q
Ak−qτ

i (5)

Here, the superscript k − qτ of the last term corresponds

to the remainder of k − τ when divided by τ and hence,

assumes a value from {τ, τ + 1, · · · , 2τ − 1}. Consider the

rightmost term of (5). Since Ω is t-step invariant for all τ ≤
t ≤ 2τ − 1 and for all Ai ∈ A, Ak0−q0τ

i0
x0 ∈ Ω for any

x0 ∈ Ω. Similarly, (Aτ
i0
)q0Ak0−q0τ

i0
x0 ∈ Ω as Ω is t-step

invariant when t = τ under (A1) and (A4). Repeating this

process for the rest of the terms in (4) and for all admissible

sequences completes the proof.

(ii) (⇐) Suppose there exists a t ∈ {τ, τ + 1, · · · 2τ − 1}
and some Ai ∈ A such that Ω is not invariant w.r.t. At

i.

The sequence Sτ (t) := {i, i, · · · , i}, which is an admissible

sequence, violates the DT-invariance of Ω.

An example that illustrates the proof is in order. Consider

A = {A1, A2}, τ = 3 and x(27) = ASτ (27)x0 =
A8

1A
9
2A

10
1 x0. Using the procedure described in the proof

above, x(27) =
[

A3
1A

5
1

] [

(A3
2)

2A3
2

] [

(A3
1)

2A4
1

]

x0 and from

the t-step invariance of Ω for all t ∈ {3, 4, 5}, ASτ (27)x0 ∈ Ω
if x0 ∈ Ω.

An interesting and important connection can now be

established between dwell time stability and stability under

arbitrary switching for system (1a). The proof of this result

is given in the appendix. While not needed for the rest of this

section, this result is needed for the convergence of algorithm

described in section IV.
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Theorem 2: Consider an associated system of (1a) in the

form

x̂(t+ 1) = Âx̂(t),

Â ∈ {Ar
i : for all i ∈ IN and r = τ, · · · , 2τ − 1} (6)

Then system (1a) is asymptotically stable with dwell time

τ if and only if (6) is asymptotically stable under arbitrary

switching.

Remark 2: A consequence of Theorem 2 is that properties

related to the stability of system (6) is also applicable to the

stability of dwell-time switching systems.

Theorem 1 on DT-invariance for a set Ω requires that

x(t) ∈ Ω for all t with t ∈ {τ, τ + 1, · · · , 2τ − 1} but

no mention is made of the x(t) ∈ X constraint stipulated in

(1b). The next definition imposes this latter requirement for

all time instants.

Definition 4: A set Ω is said to be CADT-invariant (Con-

straint Admissible Dwell Time-invariant) with respect to

system (1) with dwell time τ if it is DT-invariant and

x(t) ∈ X for all t ∈ Z
+.

Theorem 1 on DT-invariance of Ω requires that x(t) ∈ Ω
for all t ∈ {τ, τ + 1, · · · , 2τ − 1} but there is no guarantee

that x(t) ∈ X for all t. Clearly, a necessary condition for

constraint admissibility is that Ω ⊆ X . Imposing x(t) ∈ X
for t = 0, 1, · · · , τ−1 ensures that Ω is CADT-invariant. The

following result is therefore obvious and is stated without

proof.

Theorem 3: A DT-invariant set Ω ⊂ X is CADT-invariant

for system (1) with dwell time τ , if and only if for any x ∈ Ω,

At
i x ∈ X , for all i ∈ IN and for all t = 0, · · · , τ −1. (7)

A. Computation of polyhedral CADT-invariant sets

The results of Theorems 1 and 3 can be used to compute

the maximal CADT-invariant set for (1). This set, denoted

by O∞, is the largest CADT-invariant set inside X in the

sense that x(t) = ASτ (t)x(0) ∈ O∞ if x(0) ∈ O∞ for any

admissible switching sequence Sτ (t). For this purpose, let

Q̂(Ω, A) = {x : Ax ∈ Ω}

denote the one time backward set of Ω under system A. It

corresponds to the set of x that can be brought into Ω by

system A in one time step. Similarly, repeating the above ℓ
times lead to

Q̂ℓ(Ω, A) = Q̂ · · · Q̂(Ω, A) = {x : Aℓx ∈ Ω} (8)

and is referred to as the ℓ-step backward set of Ω of system

A. Define

Qℓ(Ω) :=
⋂

i∈IN

Q̂ℓ(Ω, Ai) (9)

as the intersection of Q̂ℓ(Ω, Ai) over all Ai ∈ A. With this

definition, the algorithm for computing the O∞ set using

Theorems 1 and 3 is now given.

Algorithm 1 Computation of maximal CADT-invariant set

Input: A, X and τ .

1) Set k = 0 and let O0 := X
⋂

1≤t≤τ−1Qt(X ).
2) Compute Qt(Ok) for t = τ, τ + 1, · · · , 2τ − 1 and let

Ok+1 := Ok

⋂

τ≤t≤2τ−1Qt(Ok).
3) If Ok+1 ≡ Ok set O∞ = Ok then stop, else set k =

k + 1 and goto step (2).

Step (1) of Algorithm 1 imposes the constraint according

to Theorem 3. Similarly, step (2) imposes the condition

of Theorem 1. More exactly, each Qt(Ok) of step (2) is

∩i∈IN
Q̂t(Ok, Ai) of (8) and is the intersection for t-step

backward set for each mode Ai. By letting t = τ, · · · , 2τ−1,

step (2) captures all possible admissible sequences defined

in Theorem 1. Obviously, the O∞ obtained using the above

algorithm depends on the choices of A, X and τ . For

notational convenience, such dependencies are not shown

unless warranted.

Remark 3: When X = {x : Rx ≤ 1} is a non-empty

polytope as given under (A2), the associated computations

of step (2) can be obtained noting that Q̂(X , A) = {x :
RAx ≤ 1}, Q(X ) = ∩i∈IN

{x : RAix ≤ 1} and Qt(X ) =
∩i∈IN

{x : RAt
ix ≤ 1}.

While not stated in Algorithm 1, fewer computations result

if redundant inequalities are removed from Ok+1 at the end

of step (2). Properties of the O∞ set obtained from the

algorithm are stated next.

Theorem 4: Suppose system (1) satisfies assumptions

(A1)-(A4) and Ok is generated based on Algorithm 1. Then,

(i) Ok ⊂ X and Ok ⊆ Ok−1 for all k. (ii) O∞ :=
limk→∞ Ok ⊂ X exists, contains the origin and is finitely

determined. (iii) O∞ is the largest CADT-invariant set in the

sense of Definition 4 and is the largest constraint-admissible

domain of attraction under admissible switching sequences.

(iv) When O∞ is the largest CADT-invariant set for system

(1) with constraint set X , βO∞ is the corresponding set for

system (1a) with constraint βX for any β > 0.

Remark 4: It is important to highlight the precise meaning

of result (iii) of the preceding Theorem. As mentioned in

Remark 1 and Definition 1, a sequence that violates the

t − tlast ≥ τ condition is not admissible, yet it may be a

truncated subsequence of an admissible sequence. As Algo-

rithm 1 is for system (1) under all admissible sequences, the

presence of such inadmissible sequences results in O∞ being

CADT-invariant and not positive invariant in the conventional

sense. This means that x(0) ∈ O∞ implies x(τ) ∈ O∞ and

x(t) ∈ X for all t. There is no requirement that x(t) ∈ O∞

when t = 1, · · · , τ − 1. A set with such property is also

known as a returnable set. Figure 1 shows the O∞ set based

on an example with X = {x ∈ R
2 : ||x||∞ ≤ 1}, N = 2,

A1 =
[

0.7 1

0 0.2

]

, A2 =
[

0.8 0

0.4 0.6

]

and τ = 2. Trajectories under

admissible sequences of two initial states (±(0.846,0.408))

within O∞ are shown. Clearly, x(1) /∈ O∞ but x(2) is.
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Fig. 1. State trajectories for x(0) =±(0.846, 0.408)T

B. Computation of piece-wise quadratic CADT-invariant sets

The results of Theorems 1 and 3 can also be extended to

obtain a CADT-invariant set defined by ellipsoidal sets. The

next theorem shows the basic results needed.

Theorem 5: Suppose system (1) satisfies assumptions

(A1)-(A4) with dwell time τ . If there exist Pi ≻ 0 for

i = 1, · · · , N such that

(

Ak
i

)T
Pj

(

Ak
i

)

− Pi ≺ 0 for all (i, j) ∈ IN × IN ,

and for all k = τ, τ + 1, · · · , 2τ − 1.
(10)

Then (i) Ψ :=
⋂

i∈IN
E(Pi) where E(Pi) = {x : xTPix ≤

1} is a DT-invariant set for system (1). (ii) Let O0 :=
X ∩1≤t≤τ−1 Qt(X ). There exists an ᾱ > 0, such that αΨ
is CADT-invariant for all α ≤ ᾱ where ᾱ := max{α :
αE(Pi) ⊆ O0, ∀i ∈ IN}.

Part (i) of the above can be seen as the equivalence of

Theorem 1 but with Ω replaced by Ψ. Like Theorem 1,

part (i) does not impose the x(t) ∈ X condition. Instead,

constraint satisfaction is imposes via the O0 set in a similar

fashion as Theorem 3 and step (1) of Algorithm 1. Closed-

form expression of ᾱ also exists under (A2). More exactly,

when O0 is expressed as O0 := {x : aTj x ≤ 1 for all j ∈
J } for some appropriate row vectors aj , j ∈ J , the value

of ᾱ of ᾱΨ is obtained by finding the largest α such that

αE(Pi) ⊆ O0 for all i ∈ IN . This is done by considering the

largest αE(Pi) contained in each half space {x : aTj x ≤ 1}.

It is easy to show that ᾱ = min{(aTj P
−1
i aj)

−1

2 : i ∈ IN , j ∈
J }. Figure 2 shows the corresponding ᾱΨ set for the same

problem given in Remark 4. Clearly, ᾱΨ ⊂ O∞ since O∞

is the largest DT-invariant set.
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Fig. 2. Illustration of ᾱΨ and O∞ sets.

Remark 5: If Pi = Pj = P for all (i, j) ∈ IN × IN
in (10), then the resulting DT-invariant set is quadratic and

characterized by E(P ) = {x : xTPx ≤ 1}.

IV. COMPUTATION OF THE MINIMAL DWELL TIME

An algorithm that finds the minimal dwell time which

ensures stability of the origin of system (1) can be obtained

based on Algorithm 1. This is motivated by the observation

that an empty O∞ set results if the τ used in Algorithm 1

does not satisfy (A4). Since τ is a scalar, it is easy to use,

for example, a bisection search to find the minimal τ using

Algorithm 1 as a sub-algorithm. Such an approach, however,

suffers from two drawbacks.

• (I1) The implication of violation of assumption (A4):

when a given τ is not known a priori to satisfy (A4),

there is no guarantee that the origin is asymptotically

stable even when Algorithm 1 terminates successfully.

Only Lyapunov stability can be ascertained.

• (I2) The implication of the characterization of the O∞

set in Algorithm 1. If Algorithm 1 fails for a given τ
when O∞ is polyhedral, does there exists a different

characterization of O∞ (quadratic or otherwise) for

which the origin is asymptotically stable?

These issues are now addressed. As (A4) is no longer

assumed in this section, a new definition of a DT-invariant

set for asymptotically stable origin is needed, motivated from

the definition of standard contractive set [23].

Definition 5: A set Ω ⊂ R
n containing the origin is said

to be DT-contractive (with contraction λ) w.r.t. (1), if there

exist a λ ∈ (0, 1) such that x ∈ Ω implies ASτ (t)x ∈ λΩ for

all admissible switching sequences Sτ (t) and for all time t.

Again, the above definition is of limited applicability since

all admissible sequences are needed. The adaption of DT-

contractive set to a result similar to Theorem 1 is therefore

desirable and can be easily achieved. More exactly, a set Ω ⊂
R

n is DT-contractive, with contraction λ ∈ (0, 1), if and only

if At
i Ω ⊆ λΩ for all i ∈ IN and for all t ∈ {τ, · · · , 2τ−1}.

With this, a necessary and sufficient condition for stability

of (1) with dwell time τ , is now given.

Theorem 6: Suppose (A1)-(A3) are satisfied. The origin

of system (1) is asymptotically stable under admissible

switching with dwell time τ if and only if system (1) admits

a polyhedral DT-contractive set, that contains the origin, for

some λ ∈ (0, 1).

A polyhedral DT-contractive set can be computed by a

slight modification to Algorithm 1 by incorporating a choice

of λ ∈ (0, 1) as follows:

Algorithm 1a Computation of polyhedral CADT-contractive set

Input: A, X , λ and τ .

1) Set k = 0 and let Oλ
0 := X ∩1≤t≤τ−1 Qt(X ).

2) Compute Qt(λOλ
k ) for t = τ, τ + 1, · · · , 2τ − 1 and

let Oλ
k+1 := Oλ

k ∩τ≤t≤2τ−1 Qt(λOλ
k ).

3) If Oλ
k+1 ≡ Oλ

k set Oλ
∞ = Oλ

k then stop, else set k =
k + 1 and goto step (2).
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It is worthy to note that step (1) above ensures constraint

satisfaction according to Theorem 3 and, hence, does not

require the consideration of λ.

Theorem 7: Suppose the origin of system (1) is asymp-

totically stable under dwell time switching with dwell time

τ . Algorithm 1a with dwell time τ yields a non-empty Oλ̄
∞

for some λ̄ ∈ (0, 1). In addition, Algorithm 1a with dwell

time τ will yield a non-empty Oλ
∞ for any λ ∈ [λ̄, 1).

Together, Theorems 6 and 7 address issues (I1) and (I2).

Successful termination of Algorithm 1a means that x(t) → 0
for any x(0) ∈ Oλ

∞ and hence issue (I1) is resolved. While

the use of a polyhedral set is both necessary and sufficient for

determining the asymptotic stability by Theorem 6. Theorem

7 also shows that there is a range of λ, [λ̄, 1), that is

admissible for Algorithm 1a. In practice, it is prudent to

chose λ close to 1, say λ = 0.999.

With the above observations, the next algorithm outlines

the steps for finding the minimal dwell-time needed for

stability. It is based on a bisection search on τ starting with

an initial τ0 that satisfies (A4).

Algorithm 2 Computation of minimum dwell time

Input: A,X , τ0
Initialization: Let τu = τ0 and τℓ = 1.

while τu > τℓ + 1

1) Let τ = ⌊(τu + τℓ)/2⌋ and invoke Algorithm 1 using

A, X and τ .

2) If O∞ = ∅, then τℓ = τ , else τu = τ .

end while

Let τ̄ := τ .

3) Invoke Algorithm 1a using A, X , τ̄ and λ = 0.999.

4) If Oλ
∞ 6= ∅, then τmin = τ̄ and terminate, else τ̄ =

τ̄ + 1. Goto step (3)

The “while” loop in Algorithm 2 compute O∞ based

on Algorithm 1. Following the discussion of (I1) above,

the second part of algorithm 2 is needed to ensure that

all x ∈ O∞ converges to the origin. Clearly, if only DT-

invariance is needed but not asymptotic stability of the origin,

this second part can be omitted.

Remark 6: The Oλ
∞ obtained from Algorithm 1a can

be interpreted as a “generalized” Lyapunov function for

switching system (1). Since Oλ
∞ is a polytope and contains

the origin, it induces a norm ‖x‖Oλ
∞

:= min{µ ≥ 0 :

x ∈ µOλ
∞} (or the Minkowski distance function of Oλ

∞).

Let V (x(t)) := ‖x(t)‖Oλ
∞

. Unlike conventional Lyapunov

functions, V (x(t)) does not decreases at every step, but

decreases at every τ time. Contractivity of Oλ
∞ ensures that

V (x(tsk+1
)) ≤ λV (x(tsk )) where tsk and tsk+1

are consec-

utive switching instants. Hence, the sequence of V (x(tsk))
with respect to index k is a decreasing sequence that con-

verges to zero. This also means that V (t) may increase in

between switching instants, see example in Section V.

V. NUMERICAL EXAMPLE

The numerical example is on a switching system with

A = {A1, A2}, A1 =
[

1 0.1

−0.2 0.9

]

, A2 =
[

1 0.1

−0.9 0.9

]

with

state constraints X = {x ∈ R
2 : ||x||∞ ≤ 1}. The

intention is to determine the minimum dwell time and the

maximal constraint admissible domain of attraction under

dwell time switching for this system. It is worthy to note

that existing techniques [9], [10] meant for systems under

arbitrary switching is not applicable for this example.

Using the approach of [8] discussed in section II and

equation (3), λm = 0.995, h1 = 1.1861, h2 = 3.0531
and hm = 3.0531 and an upper bound on τ , τZ := 233
is obtained for this example. Using the piece-wise quadric

DT-contractive function of Remark 5, it is observed that

the smallest τ for which LMI (10) admits a solution is at

τLMI := 16. Algorithm 2 yields a minimum dwell time of

τmin = 15. Figure 3(a) shows the Oλ
∞ (with λ = 0.999) set

and a state trajectory under a periodic switching sequence

where tsk+1
− tsk = 15 for all k and σ(0) = 1. That the

state moves out of Oλ
∞ is clear but it comes back in no

more than 15 steps. Moreover, x(t) ∈ X at all times. The

“generalized” Lyapunov function of V (x(t)) = ‖x(t)‖Oλ
∞

for this trajectory is shown in Figure 3(b). Again, V (t)
is not monotonically decreasing with respect to t but is

monotonically decreasing with k and V (t) → 0 as t → ∞.
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(a) State trajectory in x1 − x2 space;
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(b) Lyapunov function V (x(t)) = ‖x(t)‖Oλ
∞

Fig. 3. Illustration of CADT-contractive set Oλ
∞

for τmin = 15.
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The example above shows that there is a significant

improvement on stability conditions in terms of dwell time

calculations when compared to the results available in the

literature to date; see [8]. Moreover, constraint admissible

domain of attraction of dwell time switching systems is

obtained, which is appeared to be the first of its kind.

VI. CONCLUSIONS

Definitions of a DT-invariant set and a CADT-invariant set

are given for discrete-time switching systems under dwell-

time switching. The characterization of a DT-invariant set

with dwell time τ corresponds to the satisfaction of t-step

invariance for t = τ, · · · , 2τ − 1 for the set. This characteri-

zation allows for a numerical algorithm for the computation

of the maximal CADT-invariant set. Using this algorithm

as a sub-algorithm, a procedure for the computations of the

minimal dwell time needed for stability of the origin of the

switching system is obtained.
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APPENDIX

Proof of Theorem 2:

(i) (⇐) We show that asymptotic stability of (6) implies

asymptotic stability of (1a) with dwell time τ . It is well-

known [24], [23] that (6) is asymptotically stable iff a

polyhedral contractive set exists w.r.t. (6). This implies (6) is

asymptotically stable iff a polyhedral set S and a λ ∈ (0, 1)
exist such that Âx ∈ λS for every x ∈ S and for every

Â ∈ {Aτ
i , A

τ+1
i , ..., A2τ−1

i for all i ∈ IN}. Now consider an

admissible switching sequence of the form (4) and x(0) ∈ S,

it follows that

x(t) = ASτ (t)x(0) =
(

Akn
sn

· · ·Ak1

s1
Ak0

s0

)

x(0) ∈ λk̄S (11)

where k̄ := ⌊k0/τ⌋+ ⌊k1/τ⌋+ · · ·+ ⌊kn/τ⌋. The rightmost

condition of (11) follows from the fact that all kj ≥ τ and

that x(0) ∈ S implies At
i x(0) ∈ λS for all i ∈ IN and for

all τ ≤ t ≤ 2τ − 1. Since k̄ → ∞ as t → ∞, asymptotic

stability of (1a) follows.

(ii) (⇒) We show that asymptotic stability of (1a) implies

asymptotic stability of (6) with arbitrary switching. Proof of

this part is by contradiction. Suppose that (1a) is asymp-

totically stable but (6) is not. This means there exist an

arbitrary switching sequence w.r.t. (6) that is not converging

to the origin. Clearly this switching sequence is an admissible

switching sequence that satisfies the dwell time condition

w.r.t. (1a) and hence it violates the asymptotic stability of

(1a), which is a contradiction.
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