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Abstract— Various advanced driver assistance systems
(ADAS) are under development that intend to provide improved
road safety. These systems require precise road models. In
particular, accurate curvature is important for some ADAS
applications such as curve over speed and lane departure
warning. Existing road models often employ spline functions
that are fit by least squares to roadway position data. The
curvature calculated for such spline curves may not accurately
reflect the curvature of the underlying roadway. This article
addresses this problem in an unified framework, using opti-
mization with `1-norm regularization. In this approach, known
roadway characteristics can be enforced optimally with respect
to a cost function which finds the best tradeoff between the
match to the available data and the number of changes in
curvature. Experimental results with show that the proposed
method chooses a sparse set of curvature switching points (i.e.,
piecewise constant curvature) and achieves a high accuracy fit
to the roadway dataset.

I. INTRODUCTION

In advanced driver assistance systems (ADAS) or Vehicle
Assist and Automation (VAA) [1], a digital map with a
precise model of the road is necessary. ADAS combines
vehicle state information [2] with trajectory information from
the digital map [3] to provide the driver with important in-
formation: over-safe-speed warnings when driving on curved
roads [4], road/lane departure warnings and so forth. These
applications require the map to have lane-level accuracy (pos.
error < 0.5 m) and contain a precise model of the road in the
sense that attributes of the road, such as the curvature, are
accurate [3], [5]. It is easy to see the importance of roadway
position accuracy for ADAS applications, while the accuracy
requirement for the other attributes is less obvious. Accurate
curvature is necessary to compute the maximum safe speed,
for different vehicle classes, on curved roads for driver
assistance or autonomous cruise control systems. Moreover,
curvature can be used to adjust the beam pattern of the
vehicle headlamps to minimize the driver’s lost visual field
caused by road curvature [6]. Inaccuracy of the curvature, in
particular, incorrect sign of the curvature dramatically affects
the performance of such applications. Therefore, the shape
of the roadway, in particular, its curvature must be accurately
represented; in particular, straight line connections between
nodes is not adequate.

Current digital maps, developed to support routing applica-
tions, are not accurate enough to support ADAS applications.
Accurate road shape and curvature, which were not high
priority specifications in the current generation of maps [4],
are vital attributes for future generations of maps. This paper
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focuses on the reconstruction of the road trajectory to achieve
high accuracy position and curvature. The overall roadway
trajectory fit procedure involves several steps:

1) Data Acquisition: An instrumented car drives along
the roadway storing roadway relevant information, e.g.,
inertial, GNSS, imagery, LIDAR.

2) Smoothing: This is a post-processing step that com-
bines the time-stamped roadway information to com-
pute optimal estimates of positions along, for example,
each lane edge or centerline. The result is an ordered,
closely spaced, sequence of points that represent a
curve of interest for the map. Herein, we represent
such a data set as

D = {(tk, Nk, Ek, Dk)}k=0,...,N

where k counts over the samples, tk is the measure-
ment time, and (N,E,D) denote the north, east, and
down coordinates in a local tangent plane.

3) Road Curve Fitting: While D represents the curve,
it is not convenient for storage. Due to the extremely
large cumulative number of lane miles to be stored,
more efficient data storage representations are desir-
able. This step converts the data sequence D into an
analytic curve γ(s) that is convenient both for storage
and for realtime applications.

4) Storage: The parameters of the analytic curve fit γ(s)
are stored in a GIS database along with representations
of other lanes, roads, and roadway features.

5) Real-time Application: Based on a region of interest,
GIS database queries extract curves γ(s) necessary
for realtime applications. The applications may use
the analytic representations in various ways: graphic
displays, user warnings, search for nearest trajectory
point, etc.

The focus of this paper is on Step 3, the problem of road
curve fitting.

II. TECHNICAL PROBLEM STATEMENT

The roadway data curve fit is subject to constraints derived
from road design rules [7], [8]. One rules is that the road is
composed of three basic elements [7]: straight lines, circular
curves and transition curves. If we consider straight segments
as a special case of circular curves with curvature equal
to zero, then the road only consist of circular curves and
transition curves. Transition curves are used to connect two
circular curves and are often designed to have constant cur-
vature change [9]. Transition curves can either be explicitly
modeled as in [7] or approximated as circular curves as in
[4]. As argued in [4], the constant curvature approximation

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5293



is reasonable because the length of the transition curves is
often small. This paper follows the convention, as in [4],
to model the road as a curve with segments of piecewise
constant curvature. Moreover, while the real road is three-
dimensional, the two dimensional flat planar assumption is
often used for each local road segment. This paper also
assumes that the road is locally two-dimensional.

The problem of road curve fitting can be stated as follows:
Given a set of position data D = {Nk, Ek}Nk=0 representative
of a lane centerline, fit a piecewise C2 curve, with piecewise
constant curvature to the data.

Extension to three dimensional data and to lane edges is
straightforward.

III. LITERATURE REVIEW

The existing methods to curve fit roadways fall into
two main categories: spline based curve fitting [3], [8] and
parametric curve fitting [4], [7]. In spline based methods, the
user selects a spline basis function, then selects the spline
parameters to fit the position data. Road attributes such as
the tangent and curvature are computed, from the first and
second derivatives of the spline by the application software.
There are a few difficulties with the spline approach. First,
the spline argument is the arclength s and the arclength
in not known part of the data set D. Instead, arclength
is estimated from the data. Second, the spline curve fit
does not naturally enforce the piecewise constant curvature
constraint. Piecewise constant curvature can be attained by
selecting splines of the appropriate order. For splines, the
points of curvature change are defined by the knot locations;
therefore, the knot locations would need to be optimally
selected. Therefore, a preprocessing step may be required
to estimate arclength and curvature so that the knots can
be allocated as a function of arclength at points of curvature
discontinuity. Nevertheless, the curvature derived from curve
fit splines has high variance that is not related to the actual
roadway shape [3], [4]. Third, the spline fitting procedure is
not robust to errors in the position data [3], [4]. In contrast
to the spline based methods, recent papers [4], [7] report
an alternative method based on parametric curve fitting.
This method first computes the local pointwise curvature
using three consecutive points. Then it segments the road
by searching for curvature discontinuities. Finally, each road
segment is fit to a parameterized circle function. Neither of
the above procedures are optimal. Each has various ad-hoc
aspects.

In [10], the authors formulate a related trajectory gen-
eration problem as an optimization problem with `1-norm
regularization. More details of the `1-norm regularization
approach can be found in [11]. The approach of [10] is to
formulate a commanded vehicle trajectory as the output of
a linear system with input u. The constraints are that the
trajectory must pass near a set of M points at specified
time instants. The optimization is over the magnitude of
impulses, defined on a time grid, for the p-th derivative of
u. The `1-norm regularization yields a sparse vector of the
p-th derivative of u.

This paper also follows an `1-norm regularization ap-
proach to proposes an optimization formulation of the road-
way curve fitting problem in an unified framework that
jointly computes the arclength, finds the curvature switching
points, and fits the road segments to D. In contrast to [10],
the model is nonlinear, the independent variable is arclength
instead of time, and the optimization variables are selected
to achieve piecewise constant curvature. The basic concept is
to develop a road kinematic model with curvature as a state
variable, and then regulate the derivative of the curvature
using `1-norm regularization. This approach is capable of
rendering a sparse vector for the derivative of curvature.

This article is organized as follow. Section IV presents the
vehicle kinematics. Based on the vehicle kinematics and a
few assumptions, the road kinematic model is presented in
the Section V. With the road kinematic model, the problem is
formulated in the optimization framework in the Section VI.
The discussion of roadway data acquisition is presented in
the Section VII. The experimental results and data storage are
discussed in the Sections VIII and IX. The article concludes
in the Section X.

IV. VEHICLE KINEMATICS

The kinematic model of a vehicle traveling without slip
on a planar surface is

ṗx(t) = V (t) cos
(
ψ(t)

)
(1)

ṗy(t) = V (t) sin
(
ψ(t)

)
(2)

ψ̇(t) = ω(t) (3)

where [px, py] denotes position, ψ is the yaw angle of the
vehicle relative to the x-axis, and the inputs to the kinematic
model are the speed V and the angular rate ω.

V. ROAD MODEL

Given that the roadway is locally planar and intended
to be traveled by vehicles, the kinematic model of eqns.
(1-3) is the foundation of the roadway model. Since the
road shape is not evolving versus time but as a function
of arclength s, some modifications are necessary to derive
the road kinematic model.

Noting that ṗx(t) = dpx(t)/dt, ṗy(t) = dpy(t)/dt,
ψ̇(t) = dψ(t)/dt, and that ds = V (t)dt, eqns. (1-3) can
be rewritten as

dpx(t) = cos(ψ(t)) ds (4)
dpy(t) = sin(ψ(t)) ds (5)
dψ(t) = κ(t) ds (6)
dκ(t) = η(t) ds (7)

where κ = ω(t)/V (t) represents curvature and η is the
derivative of the curvature κ with respect to arc-length s.
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The equivalent discrete-time model by Euler integration is

px(k + 1) = px(k) + ∆s(k) cosψ(k) (8)
py(k + 1) = py(k) + ∆s(k) sinψ(k) (9)
ψ(k + 1) = ψ(k) + κ(k)∆s(k) (10)
s(k + 1) = s(k) + ∆s(k) (11)
κ(k + 1) = κ(k) + β(k) (12)

where s(k), κ(k) are the arclength and the curvature of the
k-th point on the curve, β(k) is the increment of κ(k) at
point k and β(k) = η∆s(k), ∆s(k) = V (k)Ts where Ts is
the integration time step.

Eqns. (8-12) define the road kinematic model with the
state vector:

x(k) = [px, py, ψ, s, κ](k). (13)

The model inputs are ∆s(k) and β(k). An important point to
notice here is that the curvature κ is exclusively controlled by
β which allows the `1-norm regularization approach to yield
trajectories with piecewise constant curvature. Note that this
road kinematic model is accurate only when the change of
ψ(k), equivalently κ(k)∆s(k), is sufficiently small. Phys-
ically, the separation between data points should be small
relative to the roadway radius of curvature (∆s(k)� 1

κ(k) ).

VI. PROBLEM FORMULATION

The road curve fitting problem can be formulated as a non-
linear constrained optimization with `1-norm regularization
in the following way:

P0 : min
x(0),β(k),∆s(k)

∑
‖y(k)−W (k)‖22 + λ ‖b‖1 (14)

subject to the road dynamic model constraint defined in eqns.
(8-12) and

−∆s(k) ≤ 0, k = 0, ..., N − 1 (15)

where y(k) = [px(k), py(k)] is the curve fit trajectory
location at the k-th arc length according to eqns. (8-12),
b = [β(0), ..., β(N − 1)], W (k) ∈ D = {Nk, Ek}Nk=0 is
the measured position along the road, and λ is a parameter
that weights the tradeoff between trajectory smoothness
and accuracy of the data fit. The inequality constraint (15)
ensures that the increments of arc length are non-negative.

It is well known that `1-norm regularization is able to
render sparse results [10], [11], in the sense that most of
the elements of the vector b are zero. Because the non-zero
elements in the sparse vector b represent the discontinuities
in curvature κ(k), the constraint of piecewise constant curva-
ture can be enforced in the above formulation. Optimization
problem P0 finds the best tradeoff between the road curve
data fit and the number of changes in the curvature.

In order to solve the optimization problem P0, there is a
standard trick to convert the `1-norm into a vector dot prod-
uct by introducing additional inequality constraints. Thus,
by defining the positive vector z = [z(0), ..., z(N−1)]T , the
optimization problem (14) can be rephrased as

min
x(0),β(k),∆s(k)

∑
‖y(k)−W (k)‖22 + λ1T z (16)

subject to the constraints in eqns. (8-12), (15) and

−z(k) ≤ β(k) ≤ z(k), k = 0, ..., N − 1 (17)

If a stacked vector is defined as:

X = [x(0), ..., x(N),b, z,∆S]

where ∆S = [∆s(0), ...,∆s(N − 1)], then the optimization
problem can be further written into a more compact form:

P1 : min
X
f(X)

s.t. q(X) = 0

c(X) ≤ 0

where f(X) is the cost function in (16), q(X) is the equal-
ity constraints in eqns. (8-12), and c(X) is the inequality
constraints in (15) and (17).

Now the optimization problem is in a standard form and
thus can be solved by classical interior-point algorithms
(such as “fmincon” in MATLABr). To get a better result,
we can solve the optimization problem iteratively [10]:
• Solve the optimization problem P1 using λ = λ1 to get

a sparse vector b (b = [β(0), ..., β(N − 1)])
• Add additional constraints: β(k) = 0 for k ∈ K =
{k| |β(k)| ≤ β0} and choose a different λ = λ2.

• Then solve the new optimization problem again.
Typically, the problem converges in two iterations. In this
paper, β0 is chosen to be 10−4. Other more refined methods,
such as weighted `1 minimization [12], can also be applied
here to solve P0.

VII. ROADWAY DATA

The following section demonstrates the algorithm. To
attain the lane-level accuracy, a set of accurate roadway data
is required. At the time the paper was written, a smoothing
algorithm had not yet been implemented; therefore, the data
that we use is the result of real-time vehicle state estimation.
A test vehicle was instrumented with a Carrier Phase Differ-
ential GPS aided Inertial Navigation System (INS) [13]–[17]
that is capable of achieving vehicle positioning accuracies
better than 0.1m while the vehicle is maneuvering at highway
speeds. The INS state vector is saved at a 30 Hz rate. Only
the INS position estimates are used in the approach that
follows. To acquire data for the examples portion of this
paper, we drove the test vehicle along a roadway that was
of interest.

The vehicle drove at a maximum speed of 60 miles/h and
the sampling rate is 30Hz. Therefore, ∆s(k) is less that 0.81
meter which is small relative to the (minimum) radius of
curvature (1/κ) experienced in the data set. Therefore, the
road kinematic model of eqns. (8-12) is applicable. The data
is obtained for a trajectory merging onto Highway 215 at Fair
Isle Dr. in Riverside CA. This dataset contains 800 points
(376 m in arc length).

This data acquisition methodology results in two sources
of roadway position estimation error. The first source is the
error in the INS estimate of the vehicle position. The second
source is the inability of the driver to exactly follow the
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roadway centerline. While the INS vehicle position error is
small (< 0.1m) and uncorrelated for lags greater than a few
seconds. The driver error is bounded only by one half the lane
width, but may be biased and correlated over short periods
of time. Nonetheless, the curve fit results show excellent
performance and will only be further enhanced when the
input data D is the result of a smoothed data fusion process.

Eventually it is expected [18], [19] that large volumes of
vehicle position data will become available when volunteer
drivers allow their GPS enabled cell phones to be used as
probes. While this data source will introduce new challenges
(e.g., detection of lane changes, detection of erroneous data,
estimation of phone position relative to the vehicle center),
it also highlights the fact that in the near future large
volumes of lane data will become available and reliable
methods for automatically extracting high-accuracy maps
will be required. Existing and emerging roadway geometry
data collection methods are discussed in [5].

VIII. EXPERIMENTAL RESULTS

Trial 1 used λ1 = 150 in the first iteration of the
optimization and λ2 = 180 in the second iteration of the
optimization. The results are shown in Fig. 1. The upper left
subplot shows the trajectory drawn on the tangent plane. The
coordinates of the road have been shifted to be centered at
zero. The red asterisks indicate the points where discrete
changes in curvature occur (i.e., nodes, see Section IX).
The travel direction is from left to right. The top right
subplot shows the trajectory yaw angle which is continuous
and piecewise linear. The blue curve in the right subplot
in the second row shows the curvature κ, which clearly
exhibits the piecewise constant property. For the comparison
purpose, we also plot the curvature computed from the spline
curve fit method [8] using cubic Hermite splines. For spline
method 1 (green), we choose the spline knots evenly every
50 meters. For spline method 2 (red), we choose the same
knots at the points of curvature discontinuity identified by
the `1 optimization. It is clear that in both cases, the spline
curvature is not piecewise constant. In addition the variation
of the spline curvature is significantly larger than is necessary
to fit the D. Finally, the spline curvature has the incorrect
sign at some locations.

The bottom right subplot shows the change in curvature,
i.e. β, which is an impulse train as desired. The left subplot
in the second row shows the curve fit error that is computed
pointwise as

e(k) = ~N(k) · (W (k)− y(k))

where ~N(k) = [sinψ(k),− cosψ(k)]T is the (right) normal
vector to the fitted curve at the k-th point. Therefore, e(k)
is positive if W (k) is on the right hand side of the fitted
curve and negative if W (k) is on the left hand side of the
fitted curve. It is clear that the magnitude of the curve fit
error is less than 5 cm at most locations and never larger

TABLE I
OPTIMIZATION PERFORMANCE

MSE (×10−3)
Test s ∈ [0, 115]m s ∈ [115, 375]m s ∈ [0, 375]m #Nodes

1: 1.42 0.31 0.76 11
2: 0.49 0.27 0.34 15

than 10 cm. 1 In addition, it is clear that the road has two
portions. The first portion of the road has high curvature
while the second portion has lower curvature. The dividing
line is marked in the subplot by the red dash vertical line
that corresponds to the fourth curvature change. The mean
square error (MSE) for each portion of the road is shown
in row one of Table I. Table I also shows summary results
of a second trial using λ1 = 20 and λ2 = 80. For both
trials, the MSE is greater in the first portion of the road than
the second portion. This is reasonable given that the driver
has greater difficulty keeping the vehicle on the centerline
of the road when the road has significant curvature. Table
I also shows that the different choice of weights λ did not
drastically change the accuracy nor the number of required
nodes. The bottom left subplot displays the unbiased error
auto-correlation function showing that the spatial correlation
of the error drops below 4 × 10−4 in a few meters. This
illustrates that the fit error, as mentioned in Section VII, is
only correlated over a short time periods.

The algorithm optimally selects the number and the
locations of curvature change points jointly to minimize
the cost function defined in (16). Therefore, this algorithm
eliminates the need of any pre-processing to search for
curvature change. Moreover, there are only two parameters
to tune (λ and β0). Regarding computational complexity, the
optimization algorithm is very efficient (done in less than 2
minutes) for dataset presented herein. However, due to the
nonlinearity in eqns. (8-12), the problem is not a convex
optimization problem. Hence, sometimes the optimization
algorithm converges slowly. But by choosing a different λ
the problem can usually be solved quickly.

IX. DATA STORAGE AND REALTIME USAGE

At the completion of the optimization, we obtain the opti-
mal curve as a sequence of points T = {x(k), β(k)}Nk=0 (see
eqn. (13)). Only the nodes (N = {x(k + 1) | β(k) 6= 0})
need to be stored as they are sufficient to exactly represent
T . To clarify the presentation, we use n to count over
the nodes in N . For node n, we denote its position as
Pn =

[
px(n), py(n)

]>
.

Applications require a parameterized function γ(s) that
computes the trajectory T as a function of arclength s ∈
[0, sN ]. Using only the nodes N , the procedure is as follows:

1) Given s ∈ [0, sN ), find n such that s ∈ [sn, sn+1).

1The discrete changes in the curve fit error are caused by the realtime
Kalman filter corrections at GPS measurement times GPS. These would be
absent if smoothed data were available.

5296



2) If κn = 0, then this segment is a line; therefore,

γ(s) = Pn + µTn

where µ = s−sn
sn+1−sn and Tn = Pn+1 − Pn. The

curvature is zero and the direction is ψn which should
match the four quadrant arctangent of T .

3) If κ 6= 0, then the segment is a circle. The center of
the circle can be computed by either

Pc = Pn +Rn ~Nn

Pc = Pn+1 +Rn ~Nn+1

where Rn = 1
|κn| is the radius of curvature and ~Nn =

−sign(κn)[sinψn,− cosψn]T is the inward pointing
unit normal. Both equations should yield exactly the
same center location, which is useful as a check. The
direction of the tangent to the circle at s is

ψ(s) = ψn + κn(s− sn).

The location on the circle at arclength s is

γ(s) = Pc −Rn ~N(s)

where ~N(s) = −sign(κn)[sinψ(s),− cosψ(s)]T .
The above computation procedure is straightforward and
exactly represents T . The resulting γ(s) is available for
realtime applications.

In comparison with traditional roadway representations
that store only [sn, Pn] and use linear connections, the
approach above requires storage of [sn, Pn, ψn, κn] which
is two extra parameters. The tradeoff is that a more accurate
roadway representation is obtained. In addition, it may turn
out that with the improved representation, the nodes can
be more widely spaced, allowing for the overall memory
requirements per lane to stay constant.

X. CONCLUSIONS AND FUTURE RESEARCH

This article has discussed the problem of generating
roadway trajectory curve fits that accurately match available
data while enforcing roadway characteristics known from the
design principles (i.e., piecewise constant curvature). The
article includes experimental results and discussion of the
straightforward analytic trajectory representation in terms of
nodes.

This work could be extended in several different direc-
tions. First, ultimately, the curve fit procedure must work
in three dimensions. A challenge in that extension is that
the vertical and lateral curvature changes are independent.
Second, the INS or smoothing process maintains an estimate
of the position error covariance matrix at each time instant.
This error covariance matrix could be incorporated as a time
varying weight into the trajectory optimization procedure.
This article has only used the measured position data in the
cost function. The INS or smoothed trajectory also has other
information (e.g., velocity, attitude, angular rate) that might
be useful.
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Fig. 1. Test 1 results. Upper left – Tangent plane trajectory position. Second row left – Error vs arclength. Bottom left – Autocorrelation of error vs
arclength. Upper right – Trajectory yaw angle vs arclength. Second row right – Curvature κ computed from 3 different methods vs arclength. Bottom right
– Change in curvature vs arclength.
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