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Abstract— We study the reach control problem (RCP) for
a single input affine system with a simplicial state space. We
extend previous results by exploring arbitrary triangulations
of the state space; particularly allowing the set of possible
equilibria to intersect the interior of simplices. In the studied
setting, it is shown that closed-loop equilibria, nevertheless, only
arise on the boundary of simplices. This allows to define a notion
of reach controllability which quantifies the effect of the control
input on boundary equilibria. Using reach controllability we
obtain necessary and sufficient conditions for solvability of RCP
by affine feedback.

I. INTRODUCTION

This paper studies the reach control problem (RCP) on

simplices. The problem is for an affine system defined on

a simplex S to reach a prespecified facet of the simplex in

finite time without first leaving the simplex. The problem has

been studied over a series of papers [3], [4], [5], [7], [2] due

to its fundamental nature among reachability problems. The

reader is referred to [1], [2], [3], [4], [5], [6], [7] for further

motivations, including how the problem arises in reachability

problems for hybrid systems. In [2] we studied RCP under

the assumption that the state space was triangulated so

that O, the set of possible equilibria of the affine system,

intersected with S was either the empty set or a face of

S. In this paper we assume O intersects the interior of

S, and we study only single input systems. Remarkably

it emerges that if an equilibrium appears using an affine

feedback to solve RCP, then the equilibrium is, nevertheless,

on the boundary of S. Using this fact, we propose a notion

of reach controllability for determining if RCP is solvable

by affine feedback. Simply put, an affine system is reach

controllable on a simplex if each equilibrium can be “pushed

off” the simplex boundary by an admissible affine feedback.

Because the feedback is affine, the equilibrium is affected by

the control input only through the control value applied at a

vertex among those vertices whose convex hull contains the

equilibrium. In sum, reach controllability measures the extent

to which the control input can affect the dynamics on faces

of the simplex. Using reach controllability, we obtain new

necessary and sufficient conditions for solvability of RCP in

the current setting.

Notation. Let S ⊂ R
n be a set. The closure is S , and

the interior is S◦. The relative interior is denoted ri(S), the
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relative boundary of S, denoted rb(S) is S \ ri(S), and ∂S
is the boundary of S. The symbol U represents a control

class such as open-loop controls, continuous state feedback,

affine feedback, etc. The notation 0 denotes the subset of

R
n containing only the zero vector. The notation 1 stands

for a vector with appropriate dimension whose entries are

one. Notation co{v1, v2, . . .} denotes the convex hull of a

set of points vi ∈ R
n. The notation ord(M) denotes the

order of the square matrix M .

II. BACKGROUND

We consider an n-dimensional simplex S :=
co{v0, v1, . . . , vn} with vertex set V := {v0, v1, . . . , vn}
and facets F0, . . . ,Fn (the facet is indexed by the vertex

it does not contain). Without loss of generality (w.l.o.g.)

we assume that v0 = 0. Let hi, i = 0, . . . , n be the unit

normal vector to each facet Fi pointing outside of the

simplex. Let F0 be the target set in S. Define the index sets

I := {1, . . . , n} and Ii := I \ {i} (note I0 = I).

Consider the affine control system defined on S:

ẋ = Ax+Bu+ a , x ∈ S , (1)

where A ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) =

m = 1. Let φu(t, x0) denote the trajectory of (1) under a

control u(t) starting from x0 ∈ S and evaluated at time t.
We are interested in studying reachability of the target F0

from S.

Problem 1 (Reach Control Problem (RCP)): Consider

system (1) defined on S. Find a feedback u(x) such that:

for every x0 ∈ S there exist T ≥ 0 and γ > 0 such that

(i) φu(t, x0) ∈ S for all t ∈ [0, T ],
(ii) φu(T, x0) ∈ F0, and

(iii) φu(t, x0) /∈ S for all t ∈ (T, T + γ).
RCP says that trajectories of (1) starting from initial condi-

tions in S exit S through the target F0 in finite time, while

not first leaving S.

Definition 1: A point x0 ∈ S can reach F0 with con-

straint in S with control class U, denoted by x0
S

−→ F0, if

there exists a control u of class U such that properties (i)-

(iii) of Problem 1 hold. We write S
S

−→ F0 by control class

U if for every x0 ∈ S, x0
S

−→ F0 with control of class U.
Define the closed, convex cones

Ci :=
{

y ∈ R
n : hj · y ≤ 0, j ∈ Ii

}

, i ∈ {0, . . . , n} .

Also define cone(S) := C0. Note that cone(S) is the tangent

cone to S at v0.

Definition 2: We say the invariance conditions are solv-

able if there exist u0, . . . , un ∈ R
m such that Avi+a+Bui ∈
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Ci for i = 0, . . . , n. Equivalently,

hj · (Avi + a+Bui) ≤ 0 , i ∈ {0, . . . , n}, j ∈ Ii . (2)

The inequalities (2) are called invariance conditions. These

Nagumo-like conditions guarantee that trajectories cannot

exit through the restricted facets F1, . . . ,Fn and are used

to construct affine feedbacks [4]. For general state feed-

backs (particularly those not satisfying convexity), stronger

conditions are needed to ensure that trajectories do not exit

restricted facets. To that end, for x ∈ S, define J(x) = {j ∈
I | x ∈ Fj}. Define the closed, convex cone

C(x) :=
{
y ∈ R

n : hj · y ≤ 0, j ∈ J(x)
}
.

Definition 3: We say a state feedback u(x) satisfies the

invariance conditions if Ax + Bu(x) + a ∈ C(x). Equiva-

lently, for all x ∈ S and j ∈ J(x),

hj · (Ax+Bu(x) + a) ≤ 0 . (3)

Given x ∈ S, let I(x) be the minimal index set such that

x ∈ co{vi | i ∈ I(x)}. A form of (3) we will often employ

is as follows. Suppose x ∈ co{vi | i ∈ I(x)}. Using the

properties of the simplex [2], one can show this implies x ∈
Fj , for j ∈ I \ I(x). Then (3) becomes

hj · (Ax+Bu(x) + a) ≤ 0 , j ∈ I \ I(x) .

For Problem 1 the following necessary and sufficient condi-

tions have been established for the case of affine feedback.

Theorem 4: [5], [7] Given the system (1) and an affine

feedback u(x) = Kx + g, where K ∈ R
m×n, g ∈ R

m,

and u0 = u(v0), . . . , un = u(vn), the closed-loop system

satisfies S
S

−→ F0 if and only if (a) the invariance conditions

(2) hold, and (b) there is no equilibrium in S.

Let B = Im(B), the image of B. Define the set of possible

equilibrium points

O := { x ∈ R
n : Ax+ a ∈ B} .

One can show that either O = ∅ or O is an affine space with

m ≤ dim(O) ≤ n. Notice that the vector field Ax+Bu+ a
on O can vanish for an appropriate choice of u, so O is

the set of all possible equilibrium points of the system. Also

define the set of open-loop equilibrium points

E := { x ∈ R
n : Ax+ a = 0} .

Define OS := S ∩ O and ES := S ∩ E . Clearly E ⊂ O
and ES ⊂ OS . The following result was proved in [2] for

the case when the state space is triangulated so that OS is

a κ-dimensional face of S. Here we generalize to arbitrary

triangulations.

Theorem 5: If the invariance conditions (2) are solvable

and B ∩ cone(S) 6= 0, then S
S

−→ F0 by affine feedback.

III. NECESSARY CONDITIONS

The goal of this paper is to obtain new necessary and suf-

ficient conditions for solvability of RCP by affine feedback;

unlike the conditions of Theorem 4, we seek conditions that

lead to a synthesis of the controller. We begin with necessary

conditions for solvability. Suppose

OS = co{o1, . . . , oκ+1}

and define IOS
:= {1, . . . , κ+ 1}. Also define

cone(OS) :=
⋂

i∈IOS

C(oi) .

This cone consists of all vectors that simultaneously satisfy

all invariance conditions at all vertices oi, i ∈ IOS
. In

the following two results, no assumption is made on the

placement of OS with respect to S.

Lemma 6 ([4]): If S
S

−→ F0 by a continuous state feed-

back u(x), then u(x) satisfies the invariance conditions (3).

Theorem 7: Suppose OS 6= ∅. If S
S

−→ F0 by continuous

state feedback u(x), then B ∩ cone(OS) 6= 0.

IV. PRELIMINARIES

In this section we present preliminary technical results that

will enable us to characterize (in Section V) useful geometric

properties of OS and ES . We begin by posing the main

assumptions for the rest of the paper. In [2] we assumed

that if OS 6= ∅, then OS is a κ-dimensional face of S,

where 0 ≤ κ ≤ n. More generally, if the intersection is

arbitrary, then OS is a convex polytope. In the present paper

we assume OS is a simplex that intersects the interior of S.

Finally, we restrict OS so that it does not touch F0. The

latter is an extra restriction on the geometry that must be

addressed in future work.

Assumption 8:

(A1) OS = co{o1, . . . , oκ+1}, a κ-dimensional simplex

with m ≤ κ < n.

(A2) If ES 6= ∅, then ES = co{ǫ1, . . . , ǫκ0+1}, a κ0-

dimensional simplex with 0 ≤ κ0 ≤ κ.

(A3) OS ∩ S◦ 6= ∅.

(A4) OS ∩ F0 = ∅.

The following basic properties of OS and ES derive from

the fact that they are formed as intersections of affine spaces

and a simplex.

Lemma 9: Suppose Assumptions (A1)-(A3) hold. If

dim(OS) ≥ 1, then rb(OS) ⊂ ∂S. If dim(ES) ≥ 1, then

rb(ES) ⊂ rb(OS) ⊂ ∂S.

Recall the index set IOS
:= {1, . . . , κ + 1} and define

the index set IES
:= {1, . . . , κ0 + 1}. First we examine an

implication of the fact that OS ∩ S◦ 6= ∅ on the index sets

I(ok) and I(ǫk).

Lemma 10: Suppose Assumptions (A1), (A3), and (A4)

hold. Then each set I(ok), k ∈ IOS
, has a nonzero exclusive

member. That is, there exists ek ∈ I(ok), ek 6= 0 and ek 6∈
I(oj), for all j 6= k.

Lemma 11: Suppose Assumptions (A2)-(A4) hold. Then

either ES ∩S◦ = ∅ or each set I(ǫk), k ∈ IES
, has a nonzero

exclusive member. That is, there exists ek ∈ I(ǫk), ek 6= 0
and ek 6∈ I(ǫj), for all j 6= k.

Suppose Assumptions (A1), (A3), and (A4) hold, and

suppose we reorder indices {0, . . . , n} so that indices that
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belong to more than one set I(ok), k ∈ IOS
, are listed first.

These are the shared indices
⋃

1≤i,j≤κ+1, i6=j

I(oi) ∩ I(oj) . (4)

In light of (A4), assume w.l.o.g. this list begins with index 0.

Next, we list indices that correspond to exclusive members

of I(o1), . . . , I(oκ+1), respectively, and in this order. By

Lemma 10 the exclusive member lists are non-empty. Also

by (A3), all elements of {0, . . . , n} are included in the new

ordering since ∪κ+1
j=1 I(oj) = {0, . . . , n}. In the sequel we

call this an ordering according to exclusive members of

{I(ok)}.

We now turn to an algebraic characterization of points in

ES . Define the matrices

H := [h1 . . . hn] , Y := [Av1 . . . Avn]

and

Γ := HTY , γ := HTa . (5)

Suppose ES 6= ∅. Assume that x ∈ ES and x =
∑n

i=0 βivi
for some βi ∈ [0, 1],

∑
i βi = 1. By the properties of

the simplex (Lemma 4.4, [2]), one can show that H is

nonsingular. Hence, we have

Ax+ a = 0 ⇐⇒ HT (Ax+ a) = 0

⇐⇒
n∑

i=1

βiH
TAvi +HTa = 0

⇐⇒ Γβ + γ = 0 (6)

where β = (β1, . . . , βn). Note that the derivation uses

the fact that v0 = 0. In the sequel, points in ES will be

characterized using (6). Using (6) we can relate geometric

properties of ES and OS to certain restrictions on the form

of matrices Γ and γ. There are several distinct cases.

Lemma 12: Suppose dim(ES) = κ0 with κ0 ≥ 0 and

assume that ES ∩ S◦ 6= ∅. Then, Γ and γ cannot have the

form

Γ =




Γ11 Γ12 . . . Γ1(p+2)

0 Γ22 0 0

0 0
. . . 0

0 0 0 Γ(p+2)(p+2)


 , γ =




γ1
0
...

0


 .

(7)

where p ≥ κ0 and ord(Γii) ≥ 1, i = 2, . . . , p+ 2. Vector γ
is partitioned corresponding to the partition of Γ.

Lemma 12 gives the the algebraic consequences of the

statement ES ∩ S◦ 6= ∅. The next result gives the analogous

algebraic consequences when ES is empty or is a face of

OS .

Lemma 13: Suppose Assumption 8 holds. In addition,

suppose that either ES = ∅ or ES = co{o1, . . . , oκ0+1} with

0 ≤ κ0 ≤ κ. Then the following cannot hold simultaneously:

hj ·Avi = 0 , hj · a = 0 , (8)

where i ∈ I(ok), j ∈ I \ I(ok), and k ∈ IOS
.

Proof: [Proof of Lemma 13] Suppose by way of contra-
diction that constraints (8) hold simultaneously. First suppose

ES = co{o1, . . . , oκ0+1} with 0 ≤ κ0 ≤ κ. Let x ∈ ES and
x =

∑n

i=0 βivi for some βi ∈ [0, 1],
∑

i βi = 1. Using (5),
(6), and (8), and ordering indices by exclusive members of
{I(ok)}, we obtain

Γ11β1 + . . .+ Γ1(κ+2)β(κ+2) + γ̂1 = 0,
Γ22β2 = 0,

.

..
Γ(κ+2)(κ+2)β(κ+2) = 0 .

(9)

Here γ̂1 := γ1. Also βi, i = 2, . . . , κ+ 2 correspond to the

exclusive members of I(o1), . . . , I(oκ+1), respectively, and

β1 corresponds to the indices in (4). Note that by Lemma 10,

dim(βi) ≥ 1 i = 2, . . . , κ + 2. Suppose that ord(Γii) = pi
i = 2, . . . , κ+2. From the second equation of (9), we deduce

that if rank(Γ22) = p2, then β2 = 0 for all x ∈ ES . This

means that no exclusive members of I(o1) appear in I(x),
for any x ∈ ES . In particular, from Lemma 10, o1 6∈ ES , a

contradiction. Thus, rank(Γ22) < p2. Similarly rank(Γii) <
pi, i = 2, . . . , κ0 + 2. This means that (9) provides at most

n − (κ0 + 1) independent constraints to define ES . Hence,

dim(ES) ≥ κ0 + 1, a contradiction.
Second, suppose ES = ∅. For each k ∈ IOS

, Aok + a :=
λkB and λk 6= 0 since ES = ∅. Using (8), for each k ∈ IOS

,

hj · (Aok + a) = hj ·
(

∑

i∈I(ok)

α
k
i (Avi + a)

)

= 0 , j ∈ I \ I(ok)

where
∑

i∈I(ok)
αk
i = 1 and αk

i > 0 for i ∈ I(ok).
Combining with (8), this gives

hj · Avi = 0 , hj · a = 0 , hj · B = 0 , (10)

where i ∈ I(ok), j ∈ I \ I(ok), and k ∈ IOS
. Now

suppose x ∈ OS and x =
∑n

i=0 βivi for some βi ∈ [0, 1],∑
i βi = 1. Let u(x) be any affine feedback that satisfies

Ax + a + Bu(x) = 0. The same reasoning that yields (6)

gives a formula

Γβ + γ +HTBu(x) = 0 , (11)

where β = (β1, . . . , βn). Using (5), (11), and (10), and

ordering indices by exclusive members of {I(ok)}, we obtain

(9) with γ̂1 := γ + HTB
∑n

i=1 βiu(vi). Note that we use

the fact that u(x) is affine. Suppose that ord(Γii) = pi, i =
2, . . . , κ+2. From the second equation of (9), we deduce that

if rank(Γ22) = p2, then β2 = 0 for all x ∈ OS , so x ∈ ∂S.

This contradicts Assumption (A3). Thus, rank(Γ22) < p2.

Similarly rank(Γii) < pi, i = 2, . . . , κ+ 2. This means that

(9) provides at most n− (κ+ 1) independent constraints to

define OS . Hence, dim(OS) ≥ κ+ 1, a contradiction.

V. PROPERTIES OF EQUILIBRIUM SET

In this section we exploit the algebraic properties discov-

ered in the previous section, and particularly we examine

their geometric consequences. The most important result is

that equilibria cannot appear in the interior of S when the

necessary conditions for solvability of RCP are satisfied. First

we present a technical lemma that links the appearance of

an equilibrium with algebraic constraints of the type studied

in the previous section.
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Lemma 14: Suppose that Avi+a ∈ Ci for i ∈ {0, . . . , n}.

Suppose there exists x ∈ OS and j ∈ I \ I(x) such that

0 ∈ I(x) and hj · (Ax+ a) = 0. Then

hj ·Avi = 0 , hj · a = 0 , i ∈ I(x) .
Proof: Let x ∈ OS as above and suppose x =∑

i∈I(x) αivi, where
∑

i∈I(x) αi = 1 and αi > 0. By

assumption, there exists j ∈ I \ I(x)

hj · (Ax + a) = hj ·
∑

i∈I(x)

αi(Avi + a) = 0 .

Also by assumption, hj · (Avi + a) ≤ 0, i ∈ I(x). Since

αi > 0 it follows

hj · (Avi + a) = 0 , i ∈ I(x) . (12)

Since 0 ∈ I(x) and v0 = 0 we obtain hj ·Avi = 0, hj ·a = 0,

i ∈ I(x).
The previous algebraic results lead to a remarkable prop-

erty on the placement of equilibria in S: under the as-

sumption that the necessary conditions of Lemma 6 and

Theorem 7 hold, open-loop equilibria can only appear on

the boundary of S.

Theorem 15: Suppose that Assumption 8 holds. Also sup-

pose Avi+a ∈ Ci for i ∈ {0, . . . , n} and B∩cone(OS) 6= 0.

If ES 6= ∅, then ES ⊂ rb(OS) ⊂ ∂S.

Proof: Suppose by way of contradiction there is x ∈ S◦

such that Ax+ a = 0. By Lemma 9, x ∈ ri(OS).
First, suppose dim(ES) = 0 and let b ∈ B ∩ cone(OS).

Since dim(OS) ≥ 1, w.l.o.g., at least one pair of vertices of

OS , say (o1, o2), satisfy Ao1 + a = η1b and Ao2 + a = η2b
with η1 < 0 and η2 > 0. Since b ∈ C(o1),

hj · b ≤ 0 , j ∈ I \ I(o1) .

By assumption

hj · (Ao1 + a) = hj · (η1b) ≤ 0 , j ∈ I \ I(o1) .

Since η1 < 0, the previous two inequalities imply hj · b = 0,

j ∈ I \ I(o1). Equivalently we get

hj · (Ao1 + a) = 0 , j ∈ I \ I(o1) .

Then by Lemma 14 we get

hj · Avi = 0 , hj · a = 0 , i ∈ I(o1) , j ∈ I \ I(o1) . (13)

Suppose w.l.o.g. I(o1) = {0, 1, . . . , q} for some 1 ≤ q ≤
n−1 (note that 0 ∈ I(o1) by (A4); q < n since dim(OS) ≥
1 by (A3); and q ≥ 1, otherwise o1 = v0 and x ∈ S◦

together imply OS ∩F0 6= ∅, a contradiction to (A4)). Now

write (13) using (5). This yields (7) with two diagonal blocks

A11 ∈ R
q×q and A22 ∈ R

(n−q)×(n−q). Thus, p = 0 in (7).

This contradicts Lemma 12.

Second, suppose dim(ES) = κ0 with κ0 > 0. Then

hj · (Aǫk + a) = 0 , j ∈ I \ I(ǫk) , k ∈ IES
,

where I \ I(ǫk) 6= ∅ by Lemma 9. By Lemma 14 we have

hj ·Avi = 0 , hj ·a = 0 , i ∈ I(ǫk) , j ∈ I\I(ǫk) , k ∈ IES
.

(14)

Suppose we order {0, . . . , n} according to exclusive mem-

bers of {I(ǫj)}. Now write (14) using (5). This yields (7)

with p = κ0 and ord(Γii) ≥ 1, i = 2, . . . , κ0 + 2. This

contradicts Lemma 12.

Remark 16: Theorem 15 extends to the case when an

affine feedback u = Kx+g is applied to the system (1). For

then we obtain the closed-loop system ẋ = (A+BK)x+a+
Bg = Ãx+ ã, and the analysis can be repeated for the sets

Õ and Ẽ . We conclude that using any affine feedback that

solves the invariance conditions and under Assumption 8,

closed-loop equilibria can only appear on the boundary of

S.

Corollary 17: Suppose that Assumption 8 holds. Also

suppose Avi+a ∈ Ci for i ∈ {0, . . . , n} and B∩cone(OS) 6=
0. Then dim(E) ≤ dim(O) − 1.

In Theorem 15 we showed that the set of equilibria ES lies

in the relative boundary of OS . In the following we show

further that ES is indeed a face of OS .

Theorem 18: Suppose that Assumption 8 holds. Also sup-

pose Avi+a ∈ Ci for i ∈ {0, . . . , n} and B∩cone(OS) 6= 0.

If ES 6= ∅, then ES = co{o1, . . . , oκ0+1}, a κ0-dimensional

face of OS , where 0 ≤ κ0 < κ.

Proof: Suppose ES 6= ∅ but is not a face of OS . By

Theorem 15, ES ⊂ rb(OS). Hence, ES can be expressed as

ES = co{ǫ1, . . . , ǫκ0+1} ⊂ co{o1, . . . , op}

where 2 ≤ p < κ + 1. Define Î(ES) := {1, . . . , p} as the

minimal index set such that for all x ∈ ES , x ∈ co{oi | i ∈
Î(ES)}. Since ES is on a face but not an entire face of OS

and since the faces of OS are simplices, at least one of the

vertices of ES , say ǫ1, is not a vertex of OS . Hence, there

exist 2 ≤ q ≤ p and αi ∈ (0, 1) with
∑q

i=1 αi = 1 such that

ǫ1 =
∑q

i=1 αioi. Let y(oi) := Aoi + a = λiB with λi ∈ R,

i ∈ IOS
. Then,

y(ǫ1) = 0 =

q∑

i=1

αiy(oi) =

(∑

i

αiλi

)
B .

Thus
∑q

i=1 αiλi = 0. Since αi > 0, either λi = 0 for all

i ∈ {1, . . . , q}, or there exists at least one pair of vertices

of OS , say (o1, o2), such that λ1 < 0 and λ2 > 0. For

the first case, define ÔS = co{o1, . . . , oq}. Then ÔS ⊂ ES .

This means ǫ1, a vertex of ES , is expressible as a convex

combination of points in ES , a contradiction. For the second

case, we have λ1 < 0 and λ2 > 0. If λp+1 = 0, then op+1 ∈
ES , and p + 1 ∈ Î(ES), a contradiction. Therefore, assume

w.l.o.g. that λp+1 > 0. Then there exists x ∈ co{o1, op+1}
s.t. Ax+ a = 0. Hence, p+ 1 ∈ Î(ES), a contradiction.

VI. REACH CONTROLLABILITY

In this section we define the notion of reach controllability.

Simply put, this notion describes the condition when a

velocity vector 0 6= b ∈ B ∩ cone(OS) can be injected into

the system at vertices of S that contribute to the generation

of equilibria on OS . For the rest of the paper and without

loss of generality we make the following assumption.
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Assumption 19: If the invariance conditions (2) are solv-

able, then they hold for (1) with u = 0.

This assumption is made to avoid complexity of the notations

only. Indeed, by Lemma 6, solvability of the invariance

conditions is a necessary condition for solvability of RCP

by continuous state feedback. To achieve Assumption 19 one

applies an affine feedback transformation u = Kx+ g + w
such that (A+BK)vi+(Bg+ a) ∈ Ci for i = 0, . . . , n and

w is the new exogenous input. In this manner, there is no

loss of generality in assuming that the invariance conditions

already hold for the presented system (1) with u = 0.

Definition 20: Suppose B ∩ cone(OS) 6= 0. We say the

triple (A,B, a) is reach controllable if either ES = ∅; or

ES = co{o1, . . . , oκ0+1} with 0 ≤ κ0 < κ, and for each

k ∈ IES
, there exists i ∈ I(ok) and ui > 0 such that Avi +

Bui + a ∈ Ci.
We now explain reach controllability in informal terms.

Consider the open-loop system ẋ = Ax+a whose equilibria

are given by ES . By Theorem 15 we know these equilibria

lie on a face of S. In this situation, RCP is solvable if we

are able to “push” the equilibria off the face of S by help of

an affine feedback. Thus, for any single equilibrium x̄, one

necessary condition, as we will later show, is to be able to

inject a non-zero velocity component b ∈ B ∩ cone(OS) in

at least one of the vertices of S whose convex hull contains

x; that is, one of the vertices vi with i ∈ I(x). At the

same time, the injection of this b component should not

induce a violation of the invariance conditions at vi. By

convexity of affine feedbacks, a b component will appear

in the velocity vector at x. This in turn has the effect to

eliminate the equilibrium at x. Of course, other equilibria

may appear. The restriction that one must use b ∈ B ∩ OS

is a consequence of Lemma 21 below, and this guarantees

that no further equilibria appear as a result of applying the

newly made feedback to the open-loop system. In sum, the

notion of reach controllability captures that there exists an

affine feedback that “pushes” all equilibria of the open-loop

system off S while also preserving the invariance conditions.

We now present two properties of reach controllability.

First, we show that reach controllability is intrinsic in the

sense that it is not affected by affine feedback transformations

that preserve the invariance conditions. Second, we relate

reach controllability to the existence of a coordinate transfor-

mation that decomposes the dynamics to those that contribute

to open-loop equilibria and quotient dynamics. First, we need

two technical results that provide insight on the allowable

velocity vectors at vertices of OS .

Lemma 21: Suppose that Assumption 8 holds. Also sup-

pose Avi + a ∈ Ci for i ∈ {0, . . . , n}. If ∃ 0 6= b ∈
B ∩ cone(OS), then for each k ∈ IOS

,

Aok + a = λkb ,

where λk ≥ 0.

Proof: By Theorem 18, if ES 6= ∅, then ES =
co{o1, . . . , oκ0+1}. Then the result is obviously true for

vertices of OS also in ES because Aok +a = 0 for k ∈ IES
.

Second, consider vertices of OS that are not vertices of ES

(including the case when ES = ∅). For these the coefficients

λk, k ∈ IOS
\ IES

must all have the same sign; otherwise,

by convexity there is x ∈ co{ok | k ∈ IOS
\ IES

} such that

Ax + a = 0, which implies x ∈ ES , a contradiction. Now

if each λk > 0 for k ∈ IOS
\ IES

, we are done. Suppose

instead λk < 0 for k ∈ IOS
\ IES

. By assumption

hj · b ≤ 0 , j ∈ I \ I(ok), k ∈ IOS
.

Also

hj ·(Aok+a) = hj ·(λkb) ≤ 0 , j ∈ I\I(ok), k ∈ IOS
\IES

.

Since λk < 0, the previous two inequalities imply

hj · b = hj · (Aok + a) = 0 , j ∈ I \ I(ok), k ∈ IOS
\ IES

.
(15)

Also hj · (Aok + a) = 0, j ∈ I \ I(ok), k ∈ IES
. Then by

Lemma 14,

hj ·Avi = 0 , hj ·a = 0 , i ∈ I(ok) , j ∈ I\I(ok) , k ∈ IOS
.

(16)

By Lemma 13, this is a contradiction.

Corollary 22: Suppose that Assumption 8 holds. Also

suppose Avi + a ∈ Ci for i ∈ {0, . . . , n}. If ∃ 0 6= b ∈
B ∩ cone(OS), then for all x ∈ O, Ax+ a = λ(x)b, where

λ(x) ≥ 0.

Theorem 23: Suppose that Assumptions 8 and 19 hold

and ∃0 6= b ∈ B ∩ cone(OS). Then, reach controllability

is invariant under affine feedback transformations which

preserve the invariance conditions.

Now we explore the second property of reach control-

lability: that it suggests a decomposition of the dynamics

into those contributing to open-loop equilibria and quotient

dynamics. It is noted that a complete geometric characteri-

zation of reach controllability has not yet been obtained, but

the following result gives a first evidence that one may exist.

Lemma 24: Suppose Avi + a ∈ Ci for i ∈ {0, . . . , n}.

Also suppose there exists x ∈ ES such that x ∈
co{v0, . . . , vq}. Then there exists a coordinate transformation

z = T−1x such that the transformed system has the form

ż =

[
A1 ⋆
0 A2

]
z +

[
a1
0

]
+

[
b1
b2

]
u , (17)

where A1 ∈ R
q×q , a1 ∈ R

q , b1 ∈ R
q, A2 ∈ R

(n−q)×(n−q),

and b2 ∈ R
n−q for q > 0.

VII. MAIN RESULT

The following result provides constructive necessary and

sufficient conditions for solvability of RCP in the studied

setting.

Theorem 25: Consider the system (1) and suppose As-

sumption 8 and 19 hold. We have S
S

−→ F0 by affine

feedback if and only if

(i) The invariance conditions (2) are solvable.

(ii) B ∩ cone(OS) 6= 0.

(iii) (A,B, a) is reach controllable.

To prove the theorem we first require a technical lemma

on the selection of b ∈ B ∩ cone(OS).
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Lemma 26: Suppose that Assumption 8 holds. Also sup-

pose Avi + a ∈ Ci for i ∈ {0, . . . , n}. If ∃ 0 6= b ∈
B ∩ cone(OS), then −b 6∈ B ∩ cone(OS).

Proof: Suppose not. Then for all k ∈ IOS

hj · b ≤ 0 , j ∈ I \ I(ok)

hj · (−b) ≤ 0 , j ∈ I \ I(ok) .

This implies hj · b = hj · (Aok + a) = 0, j ∈ I \ I(ok),
k ∈ IOS

. By Lemma 14,

hj ·Avi = 0 , hj · a = 0 , i ∈ I(ok) , j ∈ I \ I(ok) , k ∈ IOS
.

By Lemma 13 this is a contradiction.

Proof: [Proof of Theorem 25] (=⇒) Since the invari-

ance conditions are solvable, by Assumption 19, they are

solvable using u = 0. Now if ES = ∅, by Theorem 4,

S
S

−→ F0 by affine feedback u(x) = 0. Alternatively, if

ES 6= ∅, then by Theorem 18, ES = co{o1, . . . , oκ0+1} with

0 ≤ κ0 < κ. Following Lemma 26, w.l.o.g. we can take

B = b ∈ B ∩ cone(OS). By reach controllability, for each

k ∈ IES
, there exist ik ∈ I(ok) and uik > 0 such that

Avik +Buik + a ∈ Cik . (18)

Select ik ∈ I(ok) and uik > 0 as above. Set ui = 0 for the

remaining vertices of S. Form the associated affine feedback

u(x) = Kx+ g and let y(x) := Ax+Bu(x) + a. Consider

any x ∈ ES . There exist ξk > 0 with
∑

k ξk = 1 such that

x =
∑

k ξkok. Also for each ok , there exist αjk > 0 with∑
jk∈I(ok)

αjk = 1 such that ok =
∑

jk∈I(ok)
αjkvjk . By

construction, for each k ∈ IES
there exists ik ∈ I(ok) such

that u(vik) > 0 and the remaining controls are zero. Then

by convexity

y(x) =
∑

k

ξk(Bu(ok)) =
∑

k

∑

jk∈I(ok)

ξkBαjku(vjk) =: ǫb ,

where ǫ > 0. Thus, y(x) 6= 0 for all x ∈ ES . Next consider

OS\ES . We claim y(x) 6= 0 for all x ∈ OS\ES . Suppose not.

Then there is x =
∑

i∈I(x) αivi with αi > 0 and
∑

i αi = 1
such that y(x) = Ax + Bu(x) + a = 0. That is Ax + a =
−Bu(x) = −b

∑
i∈I(x) αiui =: −γb. Note that γ 6= 0,

otherwise x ∈ ES , a contradiction. Also, γ cannot be negative

since αi > 0 and ui ≥ 0 by construction. Finally, suppose

γ > 0. Then there must be i ∈ IOS
such that Aoi + a =

λib with λi < 0. This contradicts Lemma 21. We conclude

y(x) 6= 0 for all x ∈ OS . Finally, by (18) and the fact that

ui = 0 for the remaining vertices, the invariance conditions

hold with u(x). By Theorem 4, S
S

−→ F0 using u(x).

(⇐=) Suppose S
S

−→ F0 by affine feedback u(x) =
Kx + g. By Theorem 7, B ∩ cone(OS) 6= 0. Also, by

Theorem 4, Avi +Bu(vi) + a ∈ Ci, i ∈ {0, . . . , n}. Hence,

by Assumption 19, u = 0 solves the invariance conditions. If

ES = ∅, then (A,B, a) is reach controllable. Alternatively,

if ES 6= ∅, then by Theorem 18 ES = co{o1, . . . , oκ0+1}
where 0 ≤ κ0 < κ. Following Lemma 26, w.l.o.g. we can

take B = b ∈ B∩ cone(OS). Suppose (A,B, a) is not reach

controllable. Then there exists k0 ∈ IES
such that for all

i ∈ I(ok0
), Avi + Bu(vi) + a ∈ Ci implies u(vi) ≤ 0.

Since u(ok0
) =

∑
i∈I(ok0 )

αiu(vi) for some αi ∈ (0, 1),

we obtain u(ok0
) ≤ 0. Thus, Aok0

+ Bu(ok0
) + a = ξk0

b
with ξk0

< 0. It follows that Aok +Bu(ok) + a = ξkb with

ξk < 0 for all k ∈ IOS
(for otherwise by convexity there is

x ∈ co{ok | k ∈ IOS
} such that Ax + Bu(x) + a = 0, a

contradiction. Because Aok + Bu(ok) + a ∈ C(ok), we get

−b ∈ cone(OS), a contradiction with Lemma 26.

We present an example of Theorem 25 where reach

controllability fails.

Example 27: Consider a simplex S = co{v0, . . . , v4},

where v0 = 0 and vi = ei, the ith Euclidean coordinate.

Consider the following affine system

ẋ =




−1 0 1 0
−3 −6 −3 −2
0 0 −4 0
0 0 0 4


x+




−3
−5
8
4


u+




0
3
1
0




(19)

Let b := (−3,−5, 8, 4). We make several observations. First,

B∩coneS = 0 because h1 ·b = 3 > 0 and h3 ·(−b) = 8 > 0,

so Theorem 5 cannot be applied. Second, it can be verified

that O :=
{
x ∈ R

n | x1 = x2 = x4 +
1
4 , x3 = −2x4 +

1
4

}
.

Setting x4 = 0 in the defining equations for O, we get o1 :=(
1
4 ,

1
4 ,

1
4 , 0

)
. Setting x3 = 0, we get o2 :=

(
3
8 ,

3
8 , 0,

1
8

)
. Thus,

OS = co{o1, o2} where o1 = 1
4v0 +

1
4v1 +

1
4v2 +

1
4v3 ∈ F4

and o2 = 1
8v0 + 3

8v1 + 3
8v2 + 1

8v4 ∈ F3. Also we have

that Ao1 + a = 0 and Ao2 + a 6= 0, so ES = {o1}. We

observe that dim(OS) = 1, dim(ES) = 0, OS ∩ F0 = ∅,

and OS ∩ S◦ 6= ∅. Because o1 ∈ F4 and o2 ∈ F3, we have

cone(OS) =
{
y ∈ R

n | h3 · y ≤ 0, h4 · y ≤ 0
}

. Clearly

b ∈ B∩cone(OS), so solvability of RCP by continuous state

feedback cannot be ruled out by Theorem 7. Also it can be

verified that the invariance conditions (3) are satisfied when

u = 0, so solvability of RCP by continuous state feedback

cannot be ruled out by Lemma 6. Nevertheless, for the given

simplex S and system (19), RCP is not solvable by affine

feedback. This is due to the fact that (A,B, a) is not reach

controllable according to the Definition 20. Indeed Avi+a+
Bui ∈ Ci results in ui = 0 for ∀ i ∈ I(o1).
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