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Abstract— This paper presents an extension of the L1 adap-
tive output feedback controller to a class of nonlinear systems
where nonlinearities satisfy a semiglobal Lipschitz condition.
The control algorithm consists of an output predictor which is
designed to predict the system’s output with arbitrary accuracy,
and a control law which is used to control the predictor output
instead of the actual system’s output. It is shown that the
adaptive output feedback controller ensures uniformly bounded
output tracking for the system. The performance bound can be
systematically improved by reducing the step size of integration.
Numerical simulation results are provided to illustrate the
algorithm’s performance.

I. INTRODUCTION

Output feedback control design for uncertain nonlinear
systems is a challenging task. Most of the existing output
feedback results impose restrictive assumptions on nonlinear-
ities. For example, in [1] [2], nonlinearities can only depend
on the measurement y; In [3], nonlinearities linearly depend
on the unmeasured states; In [4], the nonlinear systems
satisfy a global Lipschitz condition; In [5], it considers linear
growth condition with a constant growth rate for nonlinear
functions.

The separation principle based output feedback scheme
is a popular approach to address output feedback control
of nonlinear systems, especially those involve high gain
observer design. The separation theorem for the output feed-
back control with high-gain observer was proved in [6] where
it is shown that the trajectories of the state variables under
output feedback come arbitrarily close to the ones under
state feedback, as the observer gain becomes high enough.
In contrast, [5] proposed a nonseparation principle paradigm
for output feedback control by using a feedback domination
design method to construct a linear output compensator.
Another popular approach is the internal model based output
feedback control scheme [7] which used to handle the output
regulation problem with desired trajectories generated by an
exosystem.

This paper extends the adaptive output feedback control
design of [8] to a class of nonlinear systems in the presence
of unknown state-dependent and time-varying nonlinearities.
It considers that the nonlinear function satisfies a semiglobal
Lipschitz condition. Based on this Lipschitz condition and
additional assumptions, we prove that the difference be-
tween the output predictor and the actual system’s output is
bounded, and this bound can be arbitrarily small by reducing
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the step size of integration. In the classical separation prin-
ciple based scheme, the control law is designed to control
the actual system while L1 adaptive output feedback control
law proposed in this paper is to control the output predictor.

The paper is organized as follows. Section II gives the
problem formulation. In Section III, the novel L1 adaptive
control architecture is presented. In Section IV, some pre-
liminary results are developed towards the analysis of the
L1 adaptive controller. Uniform performance bounds are
presented in Section V. In Section VI, simulation results
are presented, while Section VII concludes the paper. Unless
otherwise mentioned, || · || will be used for the 2-norm of
the vector.

II. PROBLEM FORMULATION

Consider the following single–input single–output (SISO)
system

ẋ(t) = Amx(t) + bm

(
f(x, t) + au(t)

)
+ σ(t) ,

y(t) = c>mx(t) , y(0) = y0 , (1)

where x(t) ∈ Rn is the system state vector (unmeasurable),
u(t) ∈ R is the input, y(t) ∈ R is the system output, Am
is a known n× n Hurwitz matrix, bm, cm ∈ Rn are known
constant vectors, a is a positive constant, zeros of c>m(sI −
Am)bm lie in the open left-half s plane, f : Rn×R→ R is
an unknown nonlinear function, and σ(t) ∈ Rn are unknown
disturbances.

Assumption 1: [Semiglobal Lipschitz condition on x] For
any δ > 0, there exist L(δ) > 0 and B > 0 such that

|f(x, t)− f(x̄, t)| ≤ L(δ)‖x− x̄‖∞ , |f(0, t)| ≤ B ,

for all ‖x‖∞ ≤ δ and ‖x̄‖∞ ≤ δ uniformly in u and t.
Assumption 2: There exist Bσ > 0 such that

||σ(t)|| ≤ Bσ

for all t ≥ 0, where the numbers Bσ can be arbitrarily large.
The control objective is to design an adaptive output feed-
back controller u(t) such that the system output y(t) tracks
the reference system output ydes(t) described by

ẋdes(t) = Amxdes(t) + bmk̄gr(t) ,

ydes(t) = c>mxdes(t) , (2)

where k̄g = −(c>mA
−1
m bm)−1, r(t) is a given bounded

reference input signal with r(t) ≤ ‖r‖L∞ .
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III. L1 ADAPTIVE OUTPUT FEEDBACK CONTROLLER

We consider the following output predictor

˙̂x(t) = Amx̂(t) + bmau(t) + σ̂(t) ,

ŷ(t) = c>mx̂(t) , ŷ(0) = y0 , (3)

where σ̂(t) ∈ Rn is the vector of adaptive parameters. We
can find matrix Bum ∈ Rn×(n−1) such that b>mBum = 0 and
rank([bm Bum]) = n. Then, equation (3) can be written as

˙̂x(t) = Amx̂(t) + bm(au(t) + σ̂1) +Bumσ̂2 ,

ŷ(t) = c>mx̂(t) , ŷ(0) = y0 , (4)

where σ̂1(t) represents the matched component of the uncer-
tainties σ̂(t), and σ̂2(t) represents the unmatched component.

Letting ỹ(t) = ŷ(t)−y(t), the update law for σ̂(t) is given
by

σ̂(t) = σ̂(iT ), t ∈ [iT, (i+ 1)T ) ,

σ̂(iT ) = −Φ−1(T )µ(iT ) , i = 0, 1, 2, · · · , (5)

where Φ(T ) =
∫ T

0
eΛAmΛ−1(T−τ)Λdτ and

µ(iT ) = eΛAmΛ−1T11ỹ(iT ) , i = 0, 1, 2, 3, · · · . (6)

The control signal is defined as follows[
σ̂1(t)
σ̂2(t)

]
=

[
bm Bum

]−1
σ̂(t) , (7)

u(s) = kgr(s)− C1(s)
σ̂1(s)

a
−C2(s)M(s)σ̂2(s) , (8)

where r(s) is the Laplace transformation of the refer-
ence signal r(t), kg = − 1

a (c>mA
−1
m bm)−1, M(s) =

c>m(sI−Am)−1Bum
c>m(sI−Am)−1bma

, both C1(s) and C2(s) are low pass
filters with unit DC gain, C2(s) needs to ensure that
C2(s)c>m(sI−Am)−1Bum

c>m(sI−Am)−1bm
is a proper transfer function. σ̂1(s)

and σ̂2(s) are Laplace transformations of matched uncer-
tainties σ̂1(t) and unmatched uncertainties σ̂2(t) respectively.
The L1 adaptive controller consists of (3), (5) and (8).

IV. PRELIMINARIES FOR THE MAIN RESULT

Since Am is Hurwitz, there exists a positive-definite matrix
P = P> > 0 that satisfies the following Lyapunov equation

A>mP + PAm = −Q, Q > 0 .

From the properties of P , there exits a non-singular matrix√
P such that

P = (
√
P )>
√
P .

Given the vector c>m(
√
P )−1, let D be a (n− 1)× n matrix

that contains the null space of c>m(
√
P )−1, i.e.,

D(c>m(
√
P )−1)> = 0 . (9)

Then we define

Λ =

[
c>m
D
√
P

]
. (10)

and let

α = λmax(Λ−>PΛ−1)∆2 (11)

where ∆ = 2‖Λ−>Pbm‖(L(γx)γx+B)
λmin(Λ−>QΛ−1)

+ 2‖Λ−>P‖Bσ
λmin(Λ−>QΛ−1)

, γx is
a positive constant, L(γx) is a Lipschitz constant. Consider
the inverse of Λ as

Λ−1 =
[
%1 %2

]
, (12)

where %1 represents the first column of Λ−1, and %2 repre-
sents the rest columns.

Further let

%3(s) = C1(s)
1

a
1>1
[
bm Bum

]−1

+C2(s)M(s)S
[
bm Bum

]−1
(13)

where 11 ∈ Rn is the basis vector with first element 1 and

all other elements zero, S =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1


(n−1)×n

.

The norm of %4 is given by

‖%4‖ = ‖(sI−Am)−1bma‖L1‖%3‖L1

+‖(sI−Am)−1‖L1 . (14)

Letting

1>1 e
ΛAmΛ−1t =

[
ηy0(t) η̄>y0(t)

]
, (15)

SeΛAmΛ−1t =
[
ηz0(t) η̄z0(t)

]
, (16)

where ηy0(t) ∈ R and η̄>y0 ∈ Rn−1 contain the first and 2

to n elements of the row vector 1>1 e
ΛAmΛ−1t respectively,

ηz0(t) ∈ R(n−1)×1 and η̄z0 ∈ R(n−1)×(n−1) contain the first
and 2 to n columns of the matrix SeΛAmΛ−1t respectively.
We further introduce the following functions

βy0(T ) = max
t∈[0, T ]

|ηy0(t)|, β̄y0(T ) = max
t∈[0, T ]

‖η̄y0(t)‖, (17)

βz0(T ) = max
t∈[0, T ]

‖ηz0(t)‖, β̄z0(T ) = max
t∈[0, T ]

‖η̄z0(t)‖. (18)

Let

η1(T ) =

∫ T

0

‖1>1 ς(T − τ)‖dτ , (19)

η2(T ) =

∫ T

0

|1>1 ς(T − τ)bm|dτ , (20)

where T is any positive constant, ς(T − τ) =
eΛAmΛ−1(T−τ)Λ, and further define

ν(T ) = ‖φ(T )‖
√

α

λmax(P2)
+ η1(T )Bσ

+η2(T )(L(γx)γx +B) , (21)

where φ(T ) ∈ Rn−1 is a vector, which consists of 2 to n
elements of 1>1 eΛAmΛ−1T , and P2 is positive definite.
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Let

β1(T ) = max
t∈[0, T ]

∫ t

0

‖1>1 ς(t− τ)‖dτ , (22)

β2(T ) = max
t∈[0, T ]

∫ t

0

|1>1 ς(t− τ)bm|dτ , (23)

β3(T ) = max
t∈[0, T ]

∫ t

0

‖Sς(t− τ)‖dτ , (24)

β4(T ) = max
t∈[0, T ]

∫ t

0

‖Sς(t− τ)bm‖dτ , (25)

β5(T ) = max
t∈[0, T ]

∫ t

0

|1>1 ς(t− τ)Φ(T )ϕ(T )11|dτ,(26)

β6(T ) = max
t∈[0, T ]

∫ t

0

‖Sς(t− τ)Φ(T )ϕ(T )11‖dτ,(27)

where ϕ(T ) = eΛAmΛ−1T and further define

γỹ = βy0(T )ν(T ) + β̄y0(T )

√
α

λmax(P2)

+ β5(T )ν(T ) + β1(T )Bσ

+ β2(T )(L(γx)γx +B) , (28)

γz̃ = βz0(T )ν(T ) + β̄z0(T )

√
α

λmax(P2)

+ β6(T )ν(T ) + β3(T )Bσ

+ β4(T )(L(γx)γx +B) . (29)

For the proof of stability and uniform performance bounds,
the choices of C1(s), C2(s), and integration step T together
with system dynamics need to ensure that their exists γx
such that

‖%1‖γỹ(T ) + ‖%2‖γz̃ + ‖%4‖‖AmΛ−111‖ν(T )

+ ‖%4‖(‖bm‖(L(γx)γx +B) +Bσ)

+ ‖%4‖‖AmΛ−1‖
√

α

λmax(P2)
+ ‖r̄t′‖L∞ < γx(30)

V. ANALYSIS OF L1 ADAPTIVE CONTROLLER

In this section, we analyze the performance bounds of the
L1 adaptive controller. Let x̃(t) = x̂(t) − x(t). The error
dynamics between (1) and (3) are

˙̃x(t) = Amx̃(t) + σ̂(t)− bmf(x, t)− σ(t) , (31)
ỹ(t) = c>mx̃(t), ỹ(0) = 0 . (32)

Considering the following state transformation

ξ̃ = Λx̃ , (33)

it follows from (32) that

˙̃
ξ(t) = ΛAmΛ−1ξ̃(t) + Λσ̂(t)− Λbmf(x, t)

−Λσ(t) , (34)
ỹ(t) = ξ̃1(t) , (35)

where ξ̃1(t) is the first element of ξ̃(t).
Theorem 1: Given the system in (1) and the L1 adaptive

controller in (3), (5) and (8) subject to (30), if x(0) <

γx, and x̂(0) in the output predictor is chosen such that
z̃>(0)P2z̃(0) ≤ α, then

‖ỹ‖L∞ ≤ γỹ(T ) , (36)
‖z̃‖L∞ ≤ γz̃ , (37)
‖x‖L∞ < γx , (38)
‖u‖L∞ < γu , (39)

γ̄ỹ(T ) and γz̃ are introduced in (28) and (29) respectively,
γx is a positive constant, and

γu = ‖%3‖L1‖AmΛ−111‖ν(T ) + ‖kgrt′‖L∞

+ ‖%3‖L1‖AmΛ−1‖
√

α

λmax(P2)

+ ‖%3‖L1
‖bm‖(L(γx)γx +B) + ‖%3‖L1

Bσ(40)
Proof. Since x(0) < γx and x(t) is continuous, then
assuming the opposite implies that there exist t′ such that

x(t′) = γx , (41)

while

‖xt′‖L∞ ≤ γx . (42)

At first, we prove that for all iT < t′ one has

|ỹ(iT )| ≤ ν(T ) , (43)
z̃>(iT )P2z̃(iT ) ≤ α . (44)

We prove the bounds in (43) and (44) by induction. At the
beginning, when t = 0 we have

ỹ(0) = 0 ≤ ν(T ) , (45)
z̃>(0)P2z̃(0) ≤ α . (46)

where P2 is positive definite. In the next step, we will prove
that if (43) and (44) hold at time jT , then they also hold at
time (j + 1)T .

It follows from (34) that

ξ̃((j + 1)T ) = eΛAmΛ−1T ξ̃(jT )

+

∫ T

0

ς(T − τ)σ̂(jT )dτ

−
∫ T

0

ς(T − τ)bmf(x, jT + τ)dτ

−
∫ T

0

ς(T − τ)σ(jT + τ)dτ. (47)

Since

ξ̃(jT ) =

[
ỹ(jT )

0

]
+

[
0

z̃(jT )

]
, (48)

equation (47) can be written as

ξ̃((j + 1)T ) = χ((j + 1)T ) + ζ((j + 1)T ) , (49)
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where

χ((j + 1)T ) = eΛAmΛ−1T

[
ỹ(jT )

0

]
+

∫ T

0

ς(T − τ)σ̂(jT )dτ , (50)

ζ((j + 1)T ) = eΛAmΛ−1T

[
0

z̃(jT )

]
−
∫ T

0

ς(T − τ)σ(jT + τ)dτ

−
∫ T

0

ς(T − τ)bmf(x, jT + τ)dτ .(51)

Substitution of the adaptive law (5) into (50) results in

χ((j + 1)T ) = 0 . (52)

Following from (51), consider ζ(t) as the solution of the
following dynamics

ζ̇(t) = ΛAmΛ−1ζ(t)− Λbmf(x, t)− Λσ(t) , (53)

ζ(jT ) =

[
0

z̃(jT )

]
, t ∈

[
jT, (j + 1)T

]
. (54)

Consider the following function

V (t) = ζ>(t)Λ−>PΛ−1ζ(t) (55)

over t ∈ [jT, (j + 1)T ]. Note that Λ is non-singular and
P is positive definite, Λ−>PΛ−1 is positive definite, and
therefore V (t) is a positive definite function. It follows from
Lemma 2 in [8] and (54) that

V (ζ(jT )) = z̃>(jT )P2z̃(jT ) ≤ α . (56)

Following from (53) over t ∈ [jT, (j + 1)T ], we obtain
the derivative of V (t)

V̇ (t) = −ζ>(t)Λ−>QΛ−1ζ(t)

− 2ζ>(t)Λ−>Pbmf(x, t)

− 2ζ>(t)Λ−>Pσ(t) . (57)

It follows from Assumption 1 and (42) that

|f(x, t)| ≤ L(γx)γx +B . (58)

From Assumption 2 and (58), we can further derive the upper
bound of V̇ (t) over t ∈ [jT, (j + 1)T ]

V̇ (t) ≤ −λmin(Λ−>QΛ−1)‖ζ(t)‖2

+2 ‖ζ(t)‖‖Λ−>Pbm‖(L(γx)γx +B)

+2 ‖ζ(t)‖‖Λ−>P‖Bσ . (59)

If

V (t) ≥ α , (60)

then, from(55) and the definition of α we have

‖ζ(t)‖ ≥
√

α

λmax(Λ−>PΛ−1)

≥ 2‖Λ−>Pbm‖(L(γx)γx +B)

λmin(Λ−>QΛ−1)

+
2‖Λ−>P‖Bσ

λmin(Λ−>QΛ−1)
, (61)

which together with (59) yields

V̇ (t) ≤ 0 . (62)

It follows from (56), (60) and (62) that

V (t) ≤ α , ∀t ∈ [jT, (j + 1)T ] . (63)

Using the result of Lemma 2 in [8] together with (63), one
can derive that

z̃>((j + 1)T )P2z̃((j + 1)T ) ≤ α , (64)

which implies that (44) holds for (j + 1)T .
It follows from (48), (49), (51) and (52) that

ỹ((j + 1)T ) = 1>1 ζ((j + 1)T )

= 1>1 eΛAmΛ−1T

[
0

z̃(jT )

]
−1>1

∫ T

0

ς(T − τ)bmf(x, jT + τ)dτ

−1>1
∫ T

0

ς(T − τ)σ(jT + τ)dτ , (65)

By using definitions in (19), (20) and (21), we arrive at the
following upper bound

|ỹ((j + 1)T )| ≤ ‖φ(T )‖‖z̃(jT )‖+ η1(T )Bσ

+η2(T )(L(γx)γx +B)

≤ ν(T ) , (66)

This confirms the upper bound in (43) holds for (j + 1)T .
Hence, (43) and (44) hold for all iT ≤ t′.

For all iT + t ≤ t′, where 0 ≤ t ≤ T , it follows from (34)
that

ỹ(iT + t) = 1>1 eΛAmΛ−1tξ̃(iT )

+1>1

∫ t

0

ς(t− τ)σ̂(iT )dτ

−1>1
∫ t

0

ς(t− τ)σ(iT + τ)dτ

−1>1
∫ t

0

ς(t− τ)bmf(x, iT + τ)dτ , (67)

z̃(iT + t) = SeΛAmΛ−1tξ̃(iT ) + S

∫ t

0

ς(t− τ)σ̂(iT )dτ

−S
∫ t

0

ς(t− τ)σ(iT + τ)dτ

−S
∫ t

0

ς(t− τ)bmf(x, iT + τ)dτ . (68)

Considering (43)-(44) and recalling the definitions of βy0(T ),
β̄y0(T ), β1(T ), β2(T ), and β5(T ) in (17), (22), (23) and
(26), we arrive at the following upper bound

|ỹ(iT + t)| ≤ βy0(T )ν(T ) + β̄y0(T )

√
α

λmax(P2)

+ β5(T )ν(T ) + β1(T )Bσ

+ β2(T )(L(γx)γx +B) . (69)

5428



Similarly, by introducing (18), (24), (25), and (27), we have

‖z̃(iT + t)‖ ≤ βz0(T )ν(T ) + β̄z0(T )

√
α

λmax(P2)

+ β6(T )ν(T ) + β3(T )Bσ

+ β4(T )(L(γx)γx +B) . (70)

Then, for all t ∈ [0, t′], it follows from (69) - (70) and
definitions of γỹ(T ) in (28) and γz̃ in (29) that

|ỹ(t)| ≤ γỹ(T ) , (71)
‖z̃(t)‖ ≤ γz̃ . (72)

Since x(t) = x̂(t)− x̃(t), we have

‖x(t)‖ ≤ ‖x̂(t)‖+ ‖x̃(t)‖ . (73)

It follows from (33) that

x̃(t) = Λ−1ξ̃(t) = Λ−1

[
ỹ(t)
z̃(t)

]
. (74)

Then, the upper bound of x̃(t) is written as

‖x̃(t)‖ ≤ ‖%1‖ |ỹ(t)|+ ‖%2‖ ‖z̃(t)‖ , (75)

where %1 and %2 are introduced in (12).
Furthermore, it follows from (3) that

x̂(s) = (sI−Am)−1bmau(s) + (sI−Am)−1σ̂(s)

+(sI−Am)−1x0 . (76)

Then, we arrive at following upper bound of

‖x̂t′‖L∞ ≤ ‖(sI−Am)−1bma‖L1
‖ut′‖L∞

+‖(sI−Am)−1‖L1
‖σ̂t′‖L∞ + ‖r0‖L∞(77)

over t ∈ [0, t′],where r0(s) = (sI−Am)−1x0.
From (7) and (8), we arrive at the following upper bound

‖ut′‖L∞ ≤ ‖%3‖L1 ‖σ̂t′‖L∞ + ‖kgrt′‖L∞ , (78)

where %3 is defined in (13). Substitution of (78) into (77)
yields

‖x̂t′‖L∞ ≤ ‖%4‖‖σ̂t′‖L∞ + ‖r̄t′‖L∞ , (79)

where ‖%4‖ is defined in (14), and ‖r̄t‖L∞ = ‖(sI −
Am)−1bmakg‖L1‖rt‖L∞ + ‖r0‖L∞ .

From the adaptive law in (5) and (6), we have∫ T

0

ς(T − τ)σ̂(iT )dτ + eΛAmΛ−1T11ỹ(iT ) = 0 . (80)

We further obtain that

ỹ(iT ) = (1− 1>1 eΛAmΛ−1T11)ỹ(iT )

−
∫ T

0

1>1 ς(T − τ)σ̂(iT )dτ

= −
∫ T

0

1>1 ς(T − τ)AmΛ−111ỹ(iT )dτ

−
∫ T

0

1>1 ς(T − τ)σ̂(iT )dτ . (81)

It follows from (65) that

ỹ(iT ) =

∫ T

0

1>1 ς(T − τ)AmΛ−1

[
0

z̃((i− 1)T )

]
dτ

−
∫ T

0

1>1 ς(T − τ)bmf(x, (i− 1)T + τ)dτ

−
∫ T

0

1>1 ς(T − τ)σ((i− 1)T + τ)dτ . (82)

Following from the relation between (81) and (82), (58) and
Assumption 2, we arrive at the following upper bound

‖σ̂(iT )‖ ≤ ‖AmΛ−111‖|ỹ(iT )|
+ ‖AmΛ−1‖‖z̃((i− 1)T )‖
+ ‖bm‖(L(γx)γx +B) +Bσ . (83)

Note that σ̂(t) is piece-wise continuous, and following from
(43) and (44), we obtain

‖σ̂t′‖L∞ ≤ ‖AmΛ−111‖ν(T )

+ ‖AmΛ−1‖
√

α

λmax(P2)

+ ‖bm‖(L(γx)γx +B) +Bσ . (84)

Substitution of (84) into (79) yields

‖x̂t′‖L∞ ≤ ‖%4‖‖AmΛ−111‖ν(T ) + ‖r̄t′‖L∞

+ ‖%4‖‖AmΛ−1‖
√

α

λmax(P2)

+ ‖%4‖(‖bm‖(L(γx)γx +B) +Bσ) .(85)

Finally, following from (73), (75) and (85), we obtain the
upper bound of x(t)

‖xt′‖L∞ ≤ ‖%1‖γỹ(T ) + ‖%2‖γz̃ + ‖r̄t′‖L∞
+ ‖%4‖‖AmΛ−111‖ν(T )

+ ‖%4‖‖AmΛ−1‖
√

α

λmax(P2)

+ ‖%4‖(‖bm‖(L(γx)γx +B) +Bσ) .(86)

By considering stability condition, (86) becomes

‖xt′‖L∞ < γx , (87)

which contradicts (42) and proves (38). Following from (38),
(71) and (72), we further obtain results (36) and (37). It
follows from (38), (78) and (84) that

‖u‖L∞ < ‖%3‖L1
‖AmΛ−111‖ν(T ) + ‖kgrt′‖L∞

+ ‖%3‖L1
‖AmΛ−1‖

√
α

λmax(P2)

+ ‖%3‖L1
‖bm‖(L(γx)γx +B) + ‖%3‖L1

Bσ

< γu (88)

which proves (39) and concludes the proof.
Remark 1: By making the bandwidth of low pass filters

C1(s) and C2(s) large enough, the control law (8) can ensure
that lims→0 ŷ(s) = ydes(s). The result (36) in Theorem 1
together with the control law guarantee that the difference
between y(t) and ydes(t) is bounded, and the bound can
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be reduced by decreasing the integration time step T . In
practice, we can always make the bandwidth of low pass
filters compatible with the control channel specifications.

VI. SIMULATIONS

Consider the system in (1) with

Am =

[
0 1
−1 −1.4

]
, σ(t) =

[
sin(0.4t)
sin(0.2t)

]
,(89)

bm =

[
0
1

]
, cm =

[
1 0

]
, (90)

f(x, u, t) = 2u+ (sin(x1) cos(x2))u+ e−tx2

+ sin(t)x1 + ln(1 + |x1x2|) , (91)

The control objective is to design u(t) to achieve tracking of
the desire system output ydes(t) in (2) with a bounded ref-
erence input r(t). In the implementation of the L1 adaptive
controller, set integration step T = 1e−4, Q = I, and hence

P =

[
1.4143 0.5

0.5 0.7143

]
, and Λ =

[
1.0000 0
−0.5916 −0.8452

]
.

Two low pass filters are designed as C1(s) =
40

s+ 40
,

C2(s) =
70

s+ 70
.

The simulation results of the L1 adaptive controller for the
constant reference input r(t) = 1 are shown in Figs. 1(a)-
1(b). Next, we change the unknown function to f(x, u, t) =
3u+ (sin(x2

1) cos(x2))u+ e−tx2 + sin(t)x1 + x1 sin(x2
2) +

u2x2, unknown disturbances to σ(t) =

[
sin(0.4t)

1 + sin(8t)

]
with

the new reference input r(t) = 0.5sin(0.3t), and apply the
same controller without re-tuning. The system response and
control signal are plotted in Figs. 2(a)-2(b).

(a) y(t) (solid) and ydes(t) (dashed)

(b) Time-history of u(t)

Fig. 1. Performance for r(t) = 1 and f(x, u, t) = 2u +
(sin(x1) cos(x2))u+ e−tx2 + sin(t)x1 + ln(1 + |x1x2|).

VII. CONCLUSIONS

This paper presents an extension of the L1 adaptive
output feedback controller to a class of nonlinear systems
where nonlinearities satisfy a semiglobal Lipschitz condition.
The algorithm contains an output predictor and a predictor

(a) y(t) (solid) and ydes(t) (dashed)

(b) Time-history of u(t)

Fig. 2. Performance for r(t) = 0.5sin(0.3t) and f(x, u, t) = 3u +
(sin(x2

1) cos(x2))u+ e−tx2 + sin(t)x1 + x1 sin(x2
2) + u2x2.

based feedback control law. It is proven that the difference
between the predicted output and the actual system’s out-
put is bounded, which can be systematically improved by
reducing the step size of integration. The simulation results
show uniformly bounded tracking performance by using this
adaptive output feedback control design.
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