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Abstract— This paper considers the local performance analy-
sis of uncertain polynomial systems. A method for estimating an
upper bound of the local L2 → L2 gain is presented. The gain
upper bound condition is formulated in terms of a dissipation
inequality that incorporates an integral quadratic constraint to
model the uncertainty. For polynomial systems, the dissipation
inequality can be verified using sum-of-squares optimizations.
This approach is applied to systems with actuator position
and rate limits. The effectiveness of the proposed method is
demonstrated on two numerical examples.

I. INTRODUCTION

Practical applications of feedback control systems involve
actuator saturation with amplitude and rate limits. Such
systems exhibit nonlinear behavior and are an important
aspect when analyzing and synthesizing any feedback control
system. Ignoring the effects of actuator saturation can lead to
performance degradation and even instability. This is particu-
larly critical for flight control systems. Fighter aircraft have
high maneuverability requirements and are usually pushed
to their operational limits. The effects of actuator saturation
can be catastrophic when the aircraft is operating at the edge
of its flight envelope. Saturation may cause pilot-induced
oscillations leading to degraded performance and even out-
of-control departure. In fact, pilot-induced oscillations due
to saturation are the reason for the crash of a Grippen [3]
and the YF-22 crash landing [6].

Several methods exist to analyze the stability of a linear
system in feedback with a nonlinear element [14]. Circle
and Popov criteria are commonly used among those methods
[14]. The Circle criterion analyzes a linear time invariant
(LTI) system in feedback with a memoryless, time-varying
sector bounded static nonlinearity. The Popov criterion an-
alyzes an LTI system with a memoryless, static sector-
bounded nonlinearity. The Circle and Popov criteria are
used in [8], [21] to estimate Lyapunov functions by solving
Linear Matrix Inequality (LMI) conditions providing stability
and performance guarantees for linear systems with actuator
saturation. Another method, not involving Circle and Popov
criteria, can be found in [7], where the saturated linear
systems are analyzed by expressing the saturation function
as a convex combination of piecewise linear functions.

A majority of the research on analyzing feedback control
systems with actuator saturation assumes both the plant and
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the controller are linear. This is a restrictive modeling as-
sumption, especially for flight control systems. As mentioned
before, the aircraft is more likely to operate in saturation
on the limits of the operational boundary. Assuming linear
dynamics for an aircraft operating on the boundary of the
flight envelope can lead to erroneous conclusions about the
system. Analyzing nonlinear systems with saturated input
is still an ongoing research problem. In [26], the controller
synthesis problem was investigated for polynomial systems
with saturating input employing the Control Lyapunov Func-
tion (CLF) approach. However, analysis tools for nonlinear
systems in feedback with actuator saturation are not yet well-
developed.

The work in this paper is motivated by the need for
tools to analyze the performance of nonlinear systems in
feedback with actuator saturation. The paper first derives
the more general problem of estimating the local L2 →
L2 gain for a special class of uncertain nonlinear systems
with polynomial vector fields. The local L2 → L2 gain is
estimated using a dissipation inequality that uses an integral
quadratic constraint to incorporate the effect of the uncer-
tainty. The dissipation inequality condition is solved via the
Sums-of-Square (SOS) optimization framework. Solutions
are computationally tractable for small to medium sized
dynamical systems (≤ 8−10 states). The results are applied
to a short period aircraft model with rate saturation. Finally,
the conclusions and future work are given in Section V.

II. PROBLEM FORMULATION

Consider the feedback interconnection in Figure 1. The
input-output equations associated with this interconnection
are given by Equations 1 and 2.
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Fig. 1. Feedback Interconnection of G− ∆
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(1)

w = ∆(v) (2)

In this setup, ∆ is assumed to be a causal, bounded operator
on L2. G is a dynamical system expressed by polynomial
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vector fields of the following form:

ẋ = f(x, d, w) (3)[
e
v

]
= h(x) (4)

where x ∈ Rn is the state vector, d ∈ Rnd is the exogenous
input, e ∈ Rne is the regulated output. w ∈ Rnw and
v ∈ Rnv are the interconnection signals between G and ∆.
Moreover, f : Rn×Rnd×Rnw → Rn and h : Rn → Rne+nv
are both multivariable polynomials. Assume f(0, 0, 0) =
0 and h(0) = 0. Note, h is not considered as a function
of input w and d, i.e. G has no direct feedthrough from the
inputs (d,w) to the outputs (e, v).

This paper is concerned with estimating the induced L2

gain of the interconnection (Figure 1) from d to e. One
issue is that the polynomial system G will not, in general,
be globally stable. If the system is only locally stable then
a sufficiently large disturbance can drive the state and the
output of the system unbounded. Hence, the notion of local
L2 gain is introduced where attention is restricted to “local”
inputs d that satisfy ||d||2 ≤ R where R ∈ R+. Formally,
the local L2 gain is defined in Equation 5.

γR := sup
d∈L2,||d||2≤R

x(0)=0

||e||2
||d||2

(5)

Computing the exact input-to-output gain γR for nonlin-
ear systems is a challenging problem. Instead, we will be
interested in estimating lower and upper bounds of the gain.
Lower bounds will be computed using the method of [28] and
this paper will derive conditions to compute upper bounds.

III. LOCAL L2 → L2 GAIN ANALYSIS

This section provides an approach to estimate an upper
bound on the local L2 energy gain. The approach is divided
into three steps. First, the operator ∆ is modeled using the
Integral Quadratic Constraint (IQC) framework [17], [18].
Second, a dissipation inequality is formulated which provides
a condition to estimate the local L2 energy gain bound
[12]. Finally, a computational approach is proposed using
the Sum-of-Squares (SOS) framework in Section III-C.

A. Review of IQCs

IQCs, introduced in [18], provide a general framework
for robustness analysis of linear dynamical systems with
respect to uncertainties or nonlinearities. IQCs are used to
constrain the input-output behavior of the uncertainties or
nonlinearities. It is required that ∆ be a bounded, causal
operator which maps from L2 → L2.

Let Π : jR → C(nv+nw)×(nv+nw) be a measurable,
bounded Hermitian-valued function. ∆ is said to satisfy the
IQC defined by Π, if for all v ∈ L2, with w = ∆(v), the
following inequality holds [18],∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0 (6)

where v̂(jω) and ŵ(jω) are Fourier transforms of v and w,
respectively. If the IQC multiplier Π is rational and uniformly

bounded on the imaginary axis, then Equation 6 has an
equivalent time domain expression. In that case, Π can be
factorized as, Π(jw) = Ψ(jw)∗MΨ(jw), where M is a
constant matrix and Ψ(s) is a stable Linear Time Invariant
(LTI) filter. The time domain interpretation of the IQC in
Equation 6 can be formulated as [18]:∫ ∞

0

yψ(t)TMyψ(t)dt ≥ 0 (7)

where yΨ is the output of the following state-space realiza-
tion (See Figure 2).

w-∆
v -

-
- Ψ(s) -yψ

Fig. 2. Time Domain Interpretation of IQCs

ẋΨ(t) = AΨxΨ +BΨ1v +BΨ2w (8)
yΨ(t) = CΨxΨ +DΨ1v +DΨ2w (9)
xΨ(0) = 0 (10)

Moreover, ∆ is said to satisfy the “hard” IQC defined by Π
if, ∫ T

0

yψ(t)TMyψ(t)dt ≥ 0 ∀ T <∞ (11)

∆ is said to satisfy the “soft” IQC defined by Π if it is not
“hard”, i.e. if the time domain quadratic constraint does not
hold for all finite time intervals T. The notions of “soft” and
“hard” depend on the factorization of Π [24]. The dissipation
inequality condition derived in this paper assumes that the
“hard” conditions hold, i.e. the time-domain IQC condition
is valid over all finite time intervals.

B. Local Dissipation Inequality Formulation

This section develops a dissipation inequality for estimat-
ing a local L2 energy gain bound for the interconnection
in Figure 1. The knowledge of ∆ is incorporated in the
dissipation inequality via an IQC representation of ∆. The
main result for formulating the dissipation inequality is based
on the connection between IQC theory and dissipation theory
shown in [12], [24]. This connection [12], [24] is established
for the special class of “hard” IQC factorizations.

Figure 3 shows the analysis interconnection structure
which is obtained by simply replacing the relation w = ∆(v)

with the time domain IQC constraint,
∫ T

0
yψ(t)TMyψ(t)dt ≥

0. This interconnection is used to formulate the dissipation
inequality provided in Theorem 1. For notational simplicity,

let, x̃ =

[
x
xψ

]
and F (x̃, w, d) =

[
ẋ
ẋψ

]
.

Theorem 1: Assume the interconnection of G and ∆ is
well-posed and ∆ satisfies the hard IQC defined by Π =
Ψ∗MΨ. If ∃ a smooth, continuously differentiable function
V : Rnx+nxψ → R and real numbers γ, λ > 0 such that:
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Fig. 3. Analysis Interconnection Structure

V (0) = 0 and V (x̃) ≥ 0 ∀ x̃ (12)

ΩV,R2 := {x̃ : V (x̃) ≤ R2}

∇V · F (x̃, w, d) ≤ dT d− 1

γ2
eT e− λ(yTψMyψ)

∀x̃ ∈ ΩV,R2 ,∀d ∈ Rnd and ∀w ∈ Rnw (13)

then ||d||2 < R implies ||e||2 ≤ γ||d||2.
Proof: The theorem assumes the dissipation inequality

holds only over a sublevel set, ΩV,R2 . Hence, the proof
first ensures that the state remains in the sublevel set for
all finite time. Let x̃(0) = 0 and d be any input such that
||d||2 < R. Since the interconnection is assumed to be well-
posed, unique solutions to the ODEs exist for all finite time.
Assume ∃ a T1 > 0 such that x(T1) /∈ ΩV,R2 . Define
T2 := infx(T )/∈ΩV,R2

T . By continuity of the ODE solutions,
x(T2) ∈ ∂ΩV,R2 , where ∂(ΩV,R2) indicates the boundary of
the set ΩV,R2 . We can conclude that x(t) ∈ ΩV,R2 for all
t ∈ [0, T2]. Thus the dissipation inequality holds along the
trajectory from [0, T2]. Integrating this dissipation inequality
gives:∫ T2

0

V̇ (x̃)dt ≤
∫ T2

0

(dT d− 1

γ2
eT e)dt−

∫ T2

0

λ(yTψMyψ)dt

Since the hard IQC satisfies
∫ T2

0
λ(yTψMyψ)dt ≥ 0 and

V (x̃(0)) = 0, this inequality gives:

R2 = V (x̃(T2)) ≤
∫ T2

0

dT d dt ≤ ||d||22 < R2

This is a contradiction and hence the assumption that ∃
a T1 > 0 such that x(T1) /∈ ΩV,R2 is not true. Thus
||d||2 < R implies x(t) ∈ ΩV,R2 for all finite time. Hence
the dissipation inequality holds along the trajectories of x̃
for all finite time.

Integrating the dissipation inequality (Equation 13) from
t = 0 to t = T with the initial condition x̃(0) = 0 and using
V (x̃(0)) = 0 and V (x̃(T ) ≥ 0 yields:

0 ≤
∫ T

0

λ(yTψMyψ)dt ≤
∫ T

0

(dT d− 1

γ2
eT e)dt

This implies that 1
γ2

∫ T
0
eT e dt ≤

∫ T
0
dT d dt for all finite

time T and hence ||e||2 ≤ γ||d||2.
Remark 1 Notice, ||e||2||d||2 ≤ γ implies γR ≤ γ. Hence, γ

provides an upper bound estimate of the local L2 gain.

Remark 2 The dissipation inequality formulated is re-
strictive in the sense that it is applicable only when hard
factorization exists for the IQCs. Additionally, the theorem
also requires the storage function to be positive definite.
In [24], it was incorrectly claimed that this dissipation
inequality condition is equivalent to the standard frequency
domain IQC condition when G is restricted to be a linear
system. The dissipation inequality condition in Theorem 1 is,
for general multipliers, a more conservative condition than
the standard frequency-domain IQC test. However, we are
interested in polynomial G and the conservativeness of the
bound is being investigated.

Remark 3 The operator ∆ can be modeled as conic
combinations of several multipliers. Hence, the term
λ(yTψMyψ) in the dissipation inequality can be replaced by∑p
i=1 λi(y

T
ψi
Miyψi). Less conservative bounds on the L2

gain will be computed if more IQCs are used.

C. Computation of L2 → L2 Gain

This section turns the dissipation inequality conditions
provided by Theorem 1 into a Sum-of-Squares (SOS) [15],
[20] optimization problem. This is handled by relaxing the
non-negativity of the original constraints with SOS con-
straints.

The dissipation inequality can be solved to estimate how
the L2 energy gain varies for different input size, R. There
are two equivalent questions one may ask: (i) Given R such
that ||d||2 < R, what is a tight upper bound for the induced
L2 → L2 gain γ , or (ii) Given the upper bound γ what
is the largest value of R such that ||e||2 ≤ γR whenever
||d||2 < R? We focus on answering the latter question.

The dissipation inequality (Equation 13) in Theorem 1 can
be expressed as the following set containment condition:

ΩV,R2 ⊂{(x̃, w, d) : ∇V · F (x̃, w, d) ≤ dT d

− 1

γ2
eT e− λ(yTψMyψ)} (14)

The set containment constraint in Equation 14 is replaced
with a sufficient condition involving non-negative poly-
nomials [2], [20] by applying generalized S-procedure, a
simplification of the Positivstellensatz conditions.

−[(R2 − V )s(x̃, w, d)+∇V · F (x̃, w, d)− dT d

+
1

γ2
eT e+ λ(yTψMyψ)] ≥ 0 (15)

where the function s(x̃, w, d) ≥ 0 is a decision variable of
the optimization, i.e. it is found as part of the optimization.
If s(x̃, w, d) and V (x̃) are restricted to be polynomial,
both constraints involve the non-negativity of polynomial
functions. The non-negativity conditions can be replaced by
sufficient SOS constraints. Finally, the dissipation inequality
conditions provided in Theorem 1 are reformulated as an
SOS optimization problem, which can be solved by freely
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available software [1], [16], [22], [25].

R̄ := maxR

subject to:
V (x̃) is SOS, V (0) = 0 (16a)

− [(R2 − V )s(x̃, w, d) +∇V · F (x̃, w, d)− dT d

+
1

γ2
eT e+ λ(yTψMyψ)] is SOS (16b)

λ > 0 (16c)
s(x̃, w, d) is SOS (16d)

Note, the optimization problem in Equation 16 is bilinear
in decision variables. For example, the term V s(x̃, w, d) in
Equation (16b) is bilinear in decision variable. If either V or
s is fixed then the problem is quasiconvex and can be solved
via bisection on R. Thus a V -s type iteration is proposed
[9]–[11], [27] where V is solved for fixed s and vice versa.
The storage function V in the iteration is initialized with the
linearized storage function VL by solving the following SOS
condition.

−∇VL · FL(x̃, w, d)−dT d+
1

γ2
L

eT e+ λ(yTψMyψ) is SOS

where FL represents the linearization of F and γL is the L2

energy gain with G = FL in Figure 1. Now, the V -s iteration
algorithm is applied for a given γ > γL. The V -s iteration
steps are:

1) R2/s Step: Hold V fixed and solve for s and R̄

R̄ := maxR

subject to:
Equation (16b) - (16d)

2) V step: Hold R̄, s(x̃, w, d) fixed and solve for V
satisfying Equation (16a) - (16c).

3) Repeat R2/s and V step as long as the R̄ continues
to increase.

An interior-point linear matrix inequality solver is used
in the SOS framework to find the solution to the above
algorithm. Notice that the maximization of R in the R2/s
step is done independently of the feasibility search of the
storage function in V step. There is no guarantee that the V
step will provide a different storage function at each iteration
step. It is possible to obtain the same storage function from
the previous step. While this is possible, it typically happens
that the solver returns a different V that allows R to be
increased at the next iteration. This step can be understood
by the fact that interior point solvers try to return a solution
at the analytic center of set specified by the linear matrix
inequality constraints. Thus the V step typically returns a
feasible V that is “pushed away” from the constraints. A
more formal theory for the behavior of this feasibility step
is an open question.

IV. APPLICATIONS

This section presents two examples involving estimation
of the L2 energy gain bound. The first example deals with
the amplitude saturation and the second example is a flight
control system with rate saturation.

A. Amplitude Saturation

Consider the feedback interconnection shown in Figure 1
with ∆ denoting a normalized unit amplitude saturation
function. The dynamics of G are given as:

ẋ1 = −x1 + x2 + αx2
2

ẋ2 = −x2 + d+ w[
e
v

]
=

1

2

[
x1

x1

]
The normalized unit saturation function is given by:

∆(v) := sat(v) =

 1 if v > 1
v if |v| ≤ 1
−1 if v < −1

(17)

The goal is to estimate the upper bound of the L2 → L2

gain from d to e for different values of α. The term α
is a ’weighting’ on the nonlinearity of the dynamics. For
α = 0, G reduces to a linear model. In that case, the L2

gain from d to e can be computed by using the IQCβ [13]
toolbox. The saturation is modeled as a [0, 1] sector bounded
nonlinearity. The L2 gain computed with the IQCβ toolbox
for the linear plant (α = 0) is γ = 1.0. The gain bounds
as α goes to zero will be compared with the linear analysis
results obtained for α = 0. The purpose of this example is
to understand the conservatism introduced by the dissipation
inequality condition.

The first step in analyzing the problem is to model the
saturation in the IQC framework. This entails replacing the
precise relation w = sat(v) with the time domain IQC,∫ T

0
yψ(t)TMyψ(t)dt ≥ 0. In this specific example, the [0 1]

sector bounded nonlinearity is considered, which satisfies the
multiplier:

Π1 =

[
0 1
1 −2

]
(18)

The dissipation inequality condition is solved to estimate
the local L2 gain for three different values of α. The L2

gain is estimated with a quadratic storage function and the
multiplier s is a quadratic function of [x1;x2;w; d]. Figure 4
shows that as α goes close to zero, the dissipation inequality
recovers the linear results. Both the dissipation inequality
results for the nonlinear system and the linear results ob-
tained by IQCβ could be improved by using additional IQCs.
Several different Π’s are known for amplitude saturation in
literature [12]. The Popov IQC is one such multiplier.

B. Short Period Control with Rate Saturation

The L2 gain estimation technique is applied to the NASA’s
Generic Transport Model (GTM) aircraft [5], [19] under rate
saturation. A polynomial model of the GTM short period
dynamics with pitch rate (q) feedback is considered. Details
on the polynomial modeling can be found in [4].

Consider Figure 5. P is a two-state polynomial model
of the GTM longitudinal-axis short-period dynamics. The
states are x := [α q] where α is the angle of attack (rad)
and q is the pitch rate (rad/s). A proportional pitch rate (q)
feedback control law is considered and is denoted by K.
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Elevator deflection (δe in radian) is the control input. An
exogenous disturbance d affects both states and enters into
the plant additively. The goal is to estimate an upper bound of
the local L2 gain from d to e = q under rate limit saturation.
For simplicity, the rate limit in this example is designed to
have a bandwidth of 1 rad/s. In reality, the GTM rate limit
bandwidth is faster than 1 rad/s.

r = 0
- g- K - g?

d

- g- sat - 1
s

? δe
- P

q
-

6

Fig. 5. Feedback interconnection of GTM short period dynamics

The polynomial short period model (P ) is given by:

α̇ = −1.492α3 + 4.239α2 + 2.402× 10−1αδe

+ 3.063× 10−3αq − 6.491× 10−2δ2
e + 6.226× 10−3q2

− 3.236α− 3.166× 10−1δe + 9.227× 10−1q

q̇ = −7.228α3 + 18.36α2 + 41.50αδe − 45.34α− 59.99δe

− 4.372q

The control law used in this example is δecmd := −Kq,
where K = 4 π

180 .
IQC Modeling of Rate Saturation: The first step is to

model the rate limit saturation within the IQC framework.
In the rate limiter, an integrator appears in combination with
a saturation. This interconnection is not L2 stable and hence
the IQC framework cannot be used. However, [23] resolves
this issue by encapsulating the nonlinearity in an artificial
feedback loop, as shown in Figure 6. Let the feedback
encapsulated rate limiter be denoted by δ̃e = Γsat(δecmd).
This is defined by the relations,

δ̇e = sat(δecmd − δe), δe(0) = 0

δ̃e = δe + sat(δecmd − δe)

The following IQC multipliers are used to model the feed-
back encapsulated rate limit saturation, δ̃e = Γsat(δecmd).

δecmd
- g- sat - 1

s
- g -
δe? δ̃e

6

Fig. 6. Feedback encapsulation of rate limit

1) The gain from δecmd to δ̃e is shown not to exceed
√

2 in
[23]. This forms the basis of the following multiplier.

ΠΓ1
=

[
2 0
0 −1

]
(19)

2) Another IQC multiplier can be derived by observing
that the relation from (δecmd − δe) to δ̇e can be
modeled as a [0, 1] sector bounded nonlinearity. The
corresponding IQC multiplier is:

ΠΓ2 =

[
0 jω

jω+1

(· )∗ −2( jω
jω+1 )∗( jω

jω+1 )

]
(20)

3) Any conic combination of the above two multipliers
are also considered as an appropriate IQC multiplier
for the Γsat operator: ΠΓ :=

∑2
i=1 ciΠΓi for any ci ≥

0 (i = 1, 2)
Remark Note the IQCs are provided for the encapsulated

rate limiter, Γsat. Hence to use the IQCs for the encapsulated
rate limit, an (s + 1) filter is introduced at the output of
the rate limit and a 1

(s+1) filter is introduced at the input
of P . The feedback interconnection of P̃ = P

s+1 and the
encapsulated rate limit is then analyzed. The input-to-output
gain from d to e(= q) of this modified loop is equivalent to
the d to e gain for the original problem.

The L2 → L2 gain from d to q is estimated for the
GTM dynamics under rate saturation. The rate saturation is
modeled with a conic combination of the multipliers ΠΓi

for i = 1, 2. The multiplier s is a quadratic function of
[α; q;xΨ; δe; d]. xΨ is the state of the Ψ filter used in the
factorization of ΠΓ2

. Figure 7 indicates how the induced
gain of the system varies as the size of the disturbance
||d||2 increases. The horizontal axis indicates the size of the
disturbance, ||d||2 and the vertical axis shows the estimated
bounds of the induced gain from d to q. The upper bounds
are estimated for both quadratic (marked as –x) and quartic
(marked as -�) storage function. The induced gain for
the linearized system is also shown (marked as --). The
lower bound (marked as -o) is estimated using the algorithm
proposed in [28]. The linear gain is estimated by solving
the dissipation inequality for the linearized system and is
computed to be 1.65. The quadratic and quartic storage
function prove that the system can tolerate a disturbance
input of size ||d||2 < 0.4 and ||d||2 < 0.5, respectively.
The lower bound demonstrates that the system gain becomes
unbounded for ||d||2 < 1.83. Note, for small ||d||2 the lower
bound is below all three gains (linearized, quartic, quadratic).
This is expected since the three gains are supposed to be
upper bounds on the actual gain.
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Fig. 7. Estimation of induced L2−L2 gain bounds for GTM short period
under rate limit

The upper bound results are conservative. The conser-
vativeness is possibly due to the IQCs that are used for
modeling rate saturation. The IQC in Equation 19 is constant
and the other dynamic IQC in Equation 20 arises from mod-
eling the saturation as sector bound nonlinearity. Research
is underway to understand the appropriate use of dynamic
IQCs to reduce conservatism.

V. CONCLUSION AND FUTURE WORK

A method for estimating the upper bound of the induced
L2 gain for uncertain polynomial dynamical systems is pre-
sented. The method relies on merging the dissipation theory
with the IQC framework. The SOS optimization framework
has been used for computing the bounds. The technique
has been applied for the case of saturation nonlinearity.
Ultimately, the goal is to reduce the conservativeness of
this method by including a rich description of IQCs. The
framework will be extended to handle multiple nonlinearities.
We also intend to quantify the conservativeness of the results
by estimating the lower bound of the induced gain.
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