
  

  

Abstract—Considering the existence of uncertainty of 
complex dynamical systems, in contrast to traditional modeling 
approach to characterizing dynamical systems in Euclidean 
space, the dynamics of complex industrial processes is 
characterized by the move of operating condition patterns in 
pattern moving space. First, the operating condition patterns 
of complex dynamical systems are partitioned into C pattern 
classes constructing pattern moving space, and then pattern 
class variable characterizing the movement of operating 
condition patterns in pattern moving space is defined. Each 
pattern class characterized (quantified) by an interval-valued 
number can be considered as the “calibration” in pattern 
moving space. For modeling the move of pattern class variable 
in pattern moving space, interval autoregression model (IAR) is 
defined and applied to modeling the movement of pattern class 
variable in pattern moving space. Finally, Experimental results 
are then presented that indicate the validity and applicability of 
the proposed approach. 

I. INTRODUCTION 

N real world, there are many complex dynamical 
systems in metallurgy, chemical industry and building 

materials etc. (e.g. blast furnace, sintering machine, cement 
rotary kiln and so on.) which are characterized by too many 
parameters, nonlinearity, time-varying, and spatial 
distribution[1][2][3]. Therein, there is a series of physical 
chemistry reactions of  heat transfer and matter transfer, 
burning thermodynamics and chemistry reaction dynamics, 
moving boundary, hydrodynamics and aerodynamics. It is 
difficult to characterize the dynamics. In addition, the 
mapping relationships between inputs and outputs can’t be 
described by classic Newton's laws of mechanics, but be 
described only by statistics. For example, even under the 
same experimental conditions, the obtained data usually 
differ from one to another. Thus, the traditional modeling 
approach based on input/output data characterized in  
Euclidean space is not appropriate for modeling the 
relationship between inputs and outputs of a complex 
industrial process.  
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For this class of complex production process systems, there 
is lack of effective dynamics description methods. We try to 
give a new method to describe the movement law obeying 
statistics by using statistical principal, pattern recognition and 
control theory. 

For modeling of complex dynamical systems, a 
pattern-based process identification approach emulating 
human in dealing with process response was originally 
introduced in [4]. Generally, the existing methods for 
pattern-based process identification can be divided into four 
classes [5], namely the key-values approach [6][7] , the 
qualitative evaluation approach [8], the elementary pattern 
recognition approach [9], and the curve fitting approach [10] 
[11]. In these methods, Pattern recognition is mainly used to 
solve system model identification or system state estimation 
problems. Here pattern is not considered as a moving 
variable. 

Pattern recognition (classification) can be considered as a 
mapping from patterns to class labels. The patterns belonging 
to the same pattern class may have many different “values” as 
the existing uncertainty in a real “system” that produce the 
patterns, but from the point of view of pattern class, they have 
the same “value”- the same pattern class label. So the 
approach of patterns characterized (quantified) by pattern 
class is insensitive to uncertainty in a real “system”. In this 
paper, in contrast to traditional modeling approach to 
characterizing dynamical systems in Euclidean space, the 
dynamics of complex dynamical systems is characterized by 
the moving of operating condition pattern from one pattern 
class to another in pattern moving space. First, the collected 
multi-dimensional actual operating condition data of complex 
dynamical systems are reduced to one dimensional data. Then, 
the one dimensional data are partitioned into C pattern classes 
constructing the pattern moving space, and pattern class 
variable is defined in it. Each pattern class represented by an 
interval-valued number can be considered as a scale value of 
pattern moving space. The pattern samples belonging to the 
same pattern class have the same scale value in pattern 
moving space, and are represented by the same 
interval-valued number. That is, we view the considered 
systems at the level of pattern class and capture only the 
dominant characteristics of the process. We are not concerned 
about the exact value of the operating condition data of the 
complex dynamical systems, but concerned about the pattern 
classes which the operating condition data of complex 
dynamical systems belong to. After pattern moving space is 
constructed and pattern class variable is defined in this space, 
the prediction model is built as follows: 
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Where )(kdx is pattern class variable, )(⋅F denotes 
classification, )(~ kxd is the initial prediction output of pattern 
class variable and )()(~ ⋅= fkxd  is a kind of initial prediction 
model. 

This is a prediction process including two steps. The first 
step is to obtain the initial prediction output )(~ kxd  based on 
the initial prediction model )()(~ ⋅= fkxd  modeled by interval 
autoregression model (IAR) proposed in this paper. The 
second step is to obtain the finial output pattern class 
variable )(kdx  by classifying the initial prediction 
output )(~ kxd .  

This paper is organized as follows. After the introduction 
the preliminary knowledge about interval arithmetic is 
presented in Section 2. In Section 3, moving pattern-based 
forecasting model of a class of complex production process. 
In Section 4, one real example is considered to demonstrate 
the validity and applicability of the proposed approach. 
Finally, Section 5 concludes this paper.  

II. PRELIMINARY KNOWLEDGE 
In this section, we briefly look at some important 

formulations in interval arithmetic [12]. 

A.  Interval arithmetic 
An interval-valued number can be represented by its lower 

and upper bounds as ],[ UL aaA = , or, equivalently, by its 

midpoint and radius as ),( RC aaA = , where 

2/)( ULC aaa +=  and 2/)( LUR aaa −= . Let A  and B  
be two intervals represented by its lower and upper bounds, 
the operations defined on the interval-valued numbers are, 
respectively. 

BA + = [ UULL baba ++ , ]                            (2) 
],[ UL aaA ⋅⋅=⋅ λλλ                                         (3) 

Where λ  is a constant and λ >0. 
If the interval-valued number A  and B are represented by 

its midpoint and radius, the operations defined on the 
interval-valued numbers are respectively: 

A + B = ( CC ba + , RR ba + )                         (4)                                                                                                                            
),( RC aaA ⋅⋅=⋅ λλλ                                   (5) 

Where “||” is absolute value notation.                                                    

B. Hausdorff distance 
  The Hausdorff distance is often used to measure the 

distance between two interval data. The concept of Hausdorff 
distance is stated as follows. Assume that two interval-valued 
numbers are 1X  and 2X , 1X =( 1a , 1c ), 2X =( 2a , 2c ).  The 
Hausdorff distance between 1X and 2X  is defined as: 

          ||||),( 212121 ccaaXXD −+−=              (6) 

III. MODELING OF COMPLEX DYNAMICAL SYSTEMS BASED 
ON MOVING PATTERN 

In this paper, the dynamics of complex dynamical systems 
is characterized by the move of operating condition patterns 
in pattern moving space. So, we need to construct pattern 
moving space firstly. 

A. Construction of pattern moving space 
Firstly, the multi-dimensional operating condition data are 

reduced to one dimensional data using principal component 
analysis.  This can be considered as a process of feature 
extraction. Then, by fuzzy c-mean (FCM) clustering 
algorithm, the one-dimensional operating condition samples 
are partitioned into C pattern classes, that is, CPPP ,,, 21 L . The 
collection of those classes forms pattern moving space which 
corresponds to the considered complex production process. 
An explanatory example for demonstrating the constructed 
pattern moving space is shown in Figure 1. The samples 
pattern belonging to the same pattern class have the same 
“scale” value in pattern moving 
space.

Fig.1 Patttern moving space composed of  six pattern classes. The horizontal 
axis denotes the values of dimension reduced running status samples, and 
vertical axis denotes membership function values corresponding to 
dimension reduced running status samples. 
If the data is collected in a long enough period of time, the 

pattern moving space constructed based on these actual 
operating condition data can be considered as the running 
subspace of the system. Dynamics description and control 
problems can be discussed in this space. When the actual 
operating condition sample is out of the pattern moving space, 
the pattern moving space can be expanded by using the 
following method. When a new operating condition sample is 
classified into its belonging class, the distance between the 
operating condition sample and this class centre is calculated. 
If this distance is more than the class radius, then a new 
pattern class generates. Detail algorithm can refer to[13][14]. 
In this paper, the new operating condition sample is used as a 
new class centre and the membership function can be 
computed for the new pattern class. 

B. The quantification of pattern classes 
In fact, each pattern class obtained in the above section is a 

qualitative description about pattern. In order to characterize 
quantitatively the dynamics of complex industrial processes 
in pattern moving space, each pattern class must be quantified  
In this paper, we adopt interval-valued numbers to quantify 
the pattern classes. 

First, Finding the maximum U
iI  and minimum L

iI among 
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the samples belonging to the same pattern class iP , 
Ci ,,1 L= , where C is the number of pattern classes 

constructing the pattern moving space. Then, the maximum 
U
iI  and minimum L

iI are used to construct an interval-valued 

number ],[ U
i

L
ii III = . Thus, ],[ U

i
L
ii III =  is the 

interval-valued number characterizing pattern class iP  
quantitatively. Let },,,{ 21 CIIII L= , it is the quantitative 
pattern moving space corresponding to pattern moving space 
P defined in above section. Here, quantified pattern classes 
are ordered from small to big in terms of the center values of 

iI s. That is, Caaa <<< L21 , where 
2

U
i

L
i

i
II

a
+

= , 

Ci ,,1 L= .  An demonstrating example of quantitative 
pattern moving space is shown in Fig.1(b). 

C. The definition of pattern class variable  
In contrast to traditional modeling approach to 

characterizing dynamical systems in Euclidean space, in this 
paper, the dynamics of complex dynamical systems is 
characterized by the move of operating condition patterns in 
pattern moving space.   

In moving pattern-based modeling approach, operating 
condition pattern )(ky characterized (quantified) in 
Euclidean space is re-quantified in pattern class space. That is, 
by computing the membership degree ki,μ of the kth 

operating condition pattern sample )(ky  in the ith cluster 
based on the membership functions obtained in the process of 
pattern class space construction, Ci ,,1 L= , 
if )(max ,,,1, kiCikj μμ L== , then )(ky  is classified into the jth 

pattern class jP , and jI  is assigned to )(ky . jI  is the new 

“measure value” in the quantitative pattern moving space for 
the operating condition pattern sample )(ky . Note that at any 
instant k , )(ky  is classified into one, and only one pattern 
class.  So, )(ky  have an  uniquely “measure value” jI  in the 

quantitative pattern moving space },,,{ 21 CIIII L= . 
Assuming that { })(ksx and { })(kmx denotes measurement 

sample time series and sample pattern time series, 
respectively. Then pattern class variable must satisfy the 
following transformation: 

))(()( ksxTkmx =                            (7) 
))(()( kmxFkdx =                            (8) 

Where )(⋅T  and )(⋅F denote feature extraction and 
classification , respectively, )(kdx is the pattern class 
variable . 

Obviously, pattern class variable has two main 
characteristics:  

(i) It is a variable over time. 
(ii) It has the class attribute.  
Pattern class variable is used to describe the variation of 

pattern class to which operating condition pattern belong over 
time in pattern moving space. And it together with pattern 
moving space forms the basis of the proposed modeling 
approach. The pattern class variable’s metric form is not 
unique. In this paper, interval-valued number is  used as its 
metric form. That is, given at time instant t, )(kmx is 

classified into pattern class i , then let ],[)( U
i

L
ii IIIkdx == . 

Thus, a pattern sample time series in Euclidean space is 
transformed into a pattern class variable time series in pattern 
moving space. 

For example, if the pattern moving space consists of C 
pattern classes, then pattern class variable )(kdx  will transfer 
between the C pattern classes.  

Thus, while quantified pattern class which can be 
considered as a  quantitative “calibration” in pattern moving 
space is used to re-quantify original operating condition 
pattern )(ky  at time instant k , the corresponding pattern 
class variable time series )(kdx  is formed. At time instant k , 
the value of  )(kdx  equals to the quantified value jI  of 

pattern class into which the operating condition pattern )(ky  
is classified.  

D. Modeling of Complex dynamical systems based on 
pattern class variable  
In this paper, as interval-valued numbers is used as pattern 

class variable’s metric form, so, in fact pattern class variable 
time series is an interval-valued number time series. In our 
previous work, Interval T-S fuzzy model is proposed in 
[15][16]. For modeling the moving of pattern class variable in 
pattern moving space, interval autoregression model (IAR) is 
defined in this paper. 

Definition: Given an interval-valued time series 
)(kX , nk ,,2,1 L= , where )(kX  is an interval-valued 

number at time instant k , ))(),(()( kXkXkX rc= , )(kX c  
and )(kX r  are the center and radius of interval-valued 
number )(kX , respectively, ,)( RkX c ∈ , RkX r ∈)( , 

0)( ≥kX r , Then Interval Autoregression Model (IAR) is 
defined as follows:  

)(
)2()1()( 210

mkX
kXkXkX

cm

cc

−⋅+
+−⋅+−⋅+=

θ
θθθ L

                   (9) 

Where m is the order of the IAR model, ,0θ ,1θ ,2θ …, mθ  
are constant interval-valued parameters, 

),( irici θθθ = , mi ,,2,1,0 L= . 
The dynamics of complex dynamical systems is 

characterized by the transition of pattern class variable )(kdx  
in pattern moving space. The forecasting model based on 
pattern class variable is as follows:                                                  

)))()2(),1(((
))(~()(

mkdxkdxkdxfF
kxdFkdx

−−−=
=

L
         (10)  

4969



  

m  is the order of the considered dynamic systems; in this 
paper, m is assumed to be known priorly. )(kdx  is the pattern 
class variable, )(⋅F denotes classification, )(~ kxd is the initial 
prediction output of pattern class variable and )()(~ ⋅= fkxd  is 
a kind of initial prediction model. 

The proposed moving pattern based modeling approach is 
composed of two steps. 

1) Constructing the initial prediction model using the 
interval autoregression model (IAR).  

The initial prediction model  based on IAR  is as follows: 
)()1()(~

10 mkdxkdxkxd cmc −++−+= θθθ L           (11)                                                                                                          
Where  )( jkdxc −  represents the centre of pattern class 

variable )( jkdx −  at time instant jk − , that is, if the value 

of  )( jkdx −  is equal to ],[ U
i

L
ii III =  at time instant jk − , 

and then )( jkdxc −  is equal to 
2

U
i

L
i II + .  ),( lrlcl θθθ =  is 

an interval-valued number, lcθ  and lrθ  are the centre and 
radius of lθ , respectively. ml ,,2,1,0 L= , mj ,,2,1 L= . 
From formula (4) and (5), formula (11) can be reformulated 
as follows:     
 

|)))(||)2(||)1(|
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 Furthermore, )(~ kxd  can be expressed as 

)(~ kxd =( )(),( kk t
r

t
c xθxθ )                            (12) 

Where cθ = t
m ),,,( 10 θθθ L , t

mrrrr ),,,( 10 θθθ L=θ , the 
notation “t” denotes the transpose of a vector or a matrix. 

t
ccc mkdxkdxkdxk ))(,),2(),1(,1()( −−−= Lx  

t
ccc mkdxkdxkdxk ))(,,)2(,)1(,1(|)(| −−−= Lx  

)(kt
cxθ  and )(kt

r xθ  are the centre and radius of the initial 

predicted interval output )(~ kxd , respectively. 
The parameters in (12) are obtained by minimizing the 

following objective function J  in (13) subject to the 
constraints 0≥jrθ  as the radius of an interval is greater than 

or equal to zero,  mj ,,2,1,0 L= . In fact, this is a quadratic 

programming problem. Where )(~ kxd L , )(~ kxd U  are the 
lower and upper bound of the initial prediction output )(~ kxd , 

respectively, )(kdx L , )(kdxU  are the lower and upper bound 
of real pattern class variable )(kdx  at time instant k , 
respectively. 

mj

tkkdx

tkkdx
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(13) 
2)  After obtaining the initial prediction output )(~ kxd , the 

finial prediction output )(ˆ kxd can be obtained by classifying 
the initial prediction output )(~ kxd  into the pattern class 
which is nearest to the initial prediction output )(~ kxd by 
calculating the Hausdorff distance between the initial 
prediction output )(~ kxd and each pattern class represented by 
interval-valued number in pattern moving space. That is , if 

( ))),(~(minarg
,,2,1

i
Ci

IkxdDj
L=

= , then the final prediction 

output )(ˆ kxd  is equal to jI , where ],[ U
i

L
ii III =  is an 

interval, L
iI  and U

iI  are the minimum and maximum sample 
value among operating condition samples that belong to 
pattern class i , respectively, Ci ,,2,1 L= , C  is the number 
of pattern class in pattern moving space. )),(~( iIkxdD  denotes 
the Hausdorff distance between interval-valued number 

)(~ kxd  and iI .  

IV. NUMERICAL EXAMPLE 
In this chapter, one practical example- sintering process of 

Anyang (one city of  Henan Province of China) iron and steel 
plant is given to verify the validity of the proposed moving 
pattern-based forecasting model. 

In the example, the actual operating condition data 
collected from sintering process of Anyang iron and steel 
plant are used. The data consist of 864 output samples of a 
sintering process and the sampling time is 25s. The operating 
condition pattern )(kX  is the first principal component of 
exhaust gas temperatures of three wind boxes. In this example, 

)(kX  is normalized by statistical normalization, that 

is,
σ

μ−= XZ , where μ  and σ  are the mean and standard 

deviation of X  , respectively. Fig.2 shows the 864 
normalized samples )(kZ . In this example, 864 normalized 
samples )(kZ  are used to constructing the pattern moving 
space by fuzzy c-means (FCM) clustering algorithm. Here, 
the cluster number is set to 22. The 22 pattern classes iP  
represented by interval-valued numbers are shown in Table I. 
The normalized samples )(kZ  in Euclidean space and the 
corresponding pattern class variable time series )(kdx  
characterized by intervals in pattern moving space are shown 
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in Figure 3, 100,,2,1 L=k . From Figure 3, we can see that 
the transition of pattern class variable from one pattern class 
to another in pattern moving space can also characterize 
change of normalized operating condition pattern )(kZ  at 
large. 

In this example, the first 500 samples are used to train the 
proposed model; the others are used to validate the model. 
The initial prediction model based on IAR is as follows: 

)4()3(
)2()1()(~

43

210

−+−+
−+−+=

kdxkdx
kdxkdxkxd

cc

cc

θθ
θθθ                         (18) 

 Where )1( −kdxc  is the centre of )1( −kdx . Based on 
formula (13), the interval parameters in IAR model are 
obtained and shown in Table 2. 

In Figure 4, the solid line and dotted line represent the 
upper bound and lower bound of initial prediction output 

)(~ kxd obtained by the IAR, respectively, and the dash-dot 
line and dashed line represent the upper bound and lower 
bound of the real pattern class variable time series )(kdx  
with time from 505 to 864, respectively. From Fig.4, we can 
see that the upper bound of the output of IAR is always great 
than equal to the lower bound of the output of IAR for the 
testing samples. After the initial prediction output )(~ kxd is 
classified, the final outputs )(ˆ kxd of the proposed model are 
obtained. In Figure 5, the solid line and dotted line represent 
the upper bound and lower bound of the final outputs of the 
proposed model, the dash-dot line and dashed line represent 
the upper bound and lower bound of the real pattern class 
variable time series )(kdx  with time from 505 to 864. By 
comparing Figure 4 with Figure 5, we can see that the small 
difference between initial prediction output )(~ kxd  and the 
corresponding real pattern class variable time series )(kdx at 
some time instant (for example k=508-515, 685-693, 662-669 
etc.) is eliminated after )(~ kxd  is classified. 
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Figure 2. The normalized operating condition samples time series )(kZ  of 
the sintering process of Anyang  iron and steel plant. 
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Figure 3. The normalized operating condition samples time series )(kZ  
(dots) in Euclidean space and the corresponding pattern class variable time 
series )(kdx (segments) characterized by intervals in the pattern moving 
space. 
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Figure 4. The initial prediction outputs )(~ kxd  (solid line and dotted line) 
obtained by IAR and the real pattern class variable time series 

)(kdx (dash-dot line and dashed line) for the testing sample with time from 
505 to 864. 
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Figure 5. The final outputs )(ˆ kxd (solid line and dotted line) of the proposed 

model after initial prediction output )(~ kxd is classified by the classification 

and the real pattern class variable time series )(kdx (dash-dot line and 
dashed line) for the testing sample with time from 505 to 864. 
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Table I QUANTIFICATION OF PATTERN CLASSES  

iP  ],[ U
i

L
ii III =  

1    [-4.4856, -4.0391] 
2    [-3.8872, -3.3746] 
3    [-3.1872, -2.6340] 
4    [-2.5955, -1.9612] 
5    [-1.9172, -1.4535] 
6    [-1.4458, -1.0406] 
7    [-1.0377, -0.7228] 
8    [-0.7136, -0.4651] 
9     [-0.4576, -0.2304] 

10     [-0.2210, -0.0196] 
11     [-0.0168,   0.2212] 
12     [0.2330,    0.5212] 
13     [0.5257,    0.8140] 
14     [0.8200,    1.0430] 
15 [1.0558,    1.2668] 
16 [1.2733,    1.5059] 
17 [1.5243,    1.7098] 
18 [1.7245,    1.8674] 
19 [1.9008,    2.0266] 
20 [2.0719,    2.2223] 
21 [2.2682,    2.4397] 
22 [2.4494,    2.7607] 

 

 

 

 

 

V.  CONCLUSION 
In this paper, in contrast to traditional modeling approach 

to characterizing dynamical systems in Euclidean space, the 
dynamics of complex dynamical systems is characterized by 
the movement of pattern class variable in pattern moving 
space. That is, we view the considered complex dynamical 
systems at the level of pattern class and capture only the 
dominant characteristics of the process. Each pattern class in 
pattern moving space can be considered as a “scale”.  
Operating condition patterns belonging to the same pattern 
class are characterized (measured) by the same “scale” value 
(interval-valued number).  Thus, operating condition time 
series in Euclidean space is transformed into pattern class 
variable time series in pattern moving space. The proposed 
interval autoregression model (IAR) and interval data 
classifier are used to model the transition of pattern class 
variable in pattern moving space. Experimental results are 

presented that indicate the validity and applicability of the 
proposed moving pattern-based forecasting model. 

In future work, new clustering method used to constructing 
pattern moving space, the metric of multi-dimensional 
operating condition pattern, and the model order 
determination of the proposed model in pattern moving space 
need to be researched. In addition, fault detection and 
interval-valued time series forecasting based on the proposed 
model are also our future study field. 
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TABLE II THE IDENTIFIED INTERVAL PARAMETERS IN IAR MODEL 

0θ  (0.0029, 0.1074) 

1θ  (1.0761, 0.0343) 

2θ  (0.1776,0.0000) 

3θ  (-0.0446,0.0000) 

4θ  (-0.2267,0.0000) 
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