
The Stability of Longest-Queue-First Scheduling With Variable Packet Sizes
Siva Theja Maguluri, Bruce Hajek and R. Srikant

Abstract— It is well known that the MaxWeight scheduling
algorithm is throughput-optimal in wireless networks. However,
its complexity is exponential in the number of links in an ad
hoc network. In this work, we consider a greedy variant of
the MaxWeight algorithm, called Longest Queue First (LQF).
A synchronous version of LQF is known to be throughput-
optimal under a topological condition called local pooling. Here
we study an asynchronous version of LQF which is suitable for
implementation in networks with variable packet sizes. We show
that asynchronous LQF is also throughput-optimal under the
local pooling condition.

I. INTRODUCTION

We consider the problem of scheduling in an ad hoc
wireless network. An ad hoc network consists of a collection
of wireless nodes with no infrastructure for centralized
coordination of scheduling decisions. Here we only consider
single-hop transmissions, i.e., a sender and a receiver directly
communicating without any intermediate relays. A link in
such a network refers to a transmitter-receiver pair. Not all
the links can be simultaneously active because of interfer-
ence. These constraints are represented by an interference
graph. Vertices in the interference graph correspond to the
links. If there is an edge between two vertices, then the
corresponding links interfere and so cannot transmit at the
same time. An example is shown in Figure 1.

Packets arrive to be transmitted over the links, and are
queued. Given the queue lengths at each link, a scheduling
algorithm has to choose a set of links that can transmit at
each given time, without violating interference constraints. In
other words, at any given time, the scheduler should choose
an independent set from the interference graph.

A wireless network is said to be stable if the queues in
the network are finite (to be defined more precisely later). A
scheduling algorithm is throughput-optimal if it can stabilize
the system for all sets of arrival rates that are stabilizable
under some algorithm. Thus, loosely speaking, a throughput-
optimal algorithm is able to sustain the maximum possible
throughput in the network. Throughput-optimality is a natural
performance criterion to evaluate a scheduling algorithm.

A well-known throughput-optimal algorithm is the
maxweight algorithm: each link is associated with a weight
which is a function of the queue length, usually the queue
length itself, and a schedule with the maximum weight is

Research supported by AFOSR Grant FA-9550-08-1-0432, ARO MURI
W911NF-08-1-0233, ARO MURI W911NF-07-1-0287, and AFOSR MURI
FA9550-10-1-0573.

The authors are with the Department of Electrical and Computer
Engineering, and the Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, IL 61801 USA. (e-mail: magulur1,b-
hajek,rsrikant@illinois.edu)

B
Link1

Interference

A

E F

Interference

C D
Link2

Link3

1

3

2

Fig. 1. Interference constraints for six users and three links and the
corresponding interference graph

chosen in each time slot from all possible schedules. Tassi-
ulas and Ephremides [1] have shown that the MaxWeight
scheduling algorithm is throughput-optimal under the as-
sumption that time is slotted and synchronized across links.
However its complexity increases exponentially with the
number of nodes, and so, it is difficult to implement. More-
over, it cannot be implemented in a distributed fashion.

Another class of scheduling algorithms are CSMA (carrier
sense multiple access) type random access algorithms. Under
CSMA, a node will sense whether the channel is busy before
it transmits a packet. If it detects that the channel is busy,
it will wait for a random back-off time. Since CSMA-type
algorithms can be easily implemented in a distributed man-
ner, they are widely used in practice (e.g., the IEEE 802.11
MAC protocol). Although the recent results on CSMA-
type random access algorithms show throughput-optimality,
simulation results indicate that the delay performance of
these algorithms can be significantly worse than that of the
MaxWeight algorithm under certain traffic conditions [2], [3],
[4], [5], [6].

Another alternative is a greedy approximation of
MaxWeight, viz., Longest Queue First (LQF). A link with the
longest queue is first added to the schedule, and all the links
interfering with it are removed, and this process is recursively
repeated till a maximal schedule is obtained. Ties are broken
at random.

LQF scheduling algorithm has very good performance for
a variety of network scenarios in simulations and experi-
ments. When time is slotted, Dimakis and Walrand [7] have
shown that LQF is throughput-optimal under a topological
constraint called local pooling. Several classes of graphs such
as trees, trees of cliques, perfect graphs, chordal graphs,
satisfy local pooling [8], [9], [10].

In all practical networks, packets have variable sizes.
However, one can segment the packets at the MAC (Medium

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 3770

1

2

3

4

7

8

0

6

5

Fig. 2. A star interference graph

Access Control) layer to be of equal size and implement
LQF. But this could lead to packet fragmentation and neces-
sitate reassembly at the receiver. Therefore, it is interesting
to investigate if LQF can be implemented directly on the
original packets. The problem with variable packet sizes is
that when a packet transmission is completed, other packets
in the network will, in general, be in the middle of their
transmission. So it is difficult to implement LQF which
requires sequential scheduling of links, starting with the
most congested links first. It should be noted that practical
scheduling algorithms such as the widely-used 802.11 suite
of protocols allow variable packet sizes.

A natural alternative is to do longest queue first scheduling
among the idle links, i.e., those that are not transmitting,
whenever some link finishes transmitting a packet, without
disturbing other transmitting links. In other words, include
the link with the longest queue among those that can be
allowed to transmit respecting interference constraints. But
it is not clear if this is stable. As an example, consider a star
interference graph with one link in the middle interfering
with many other links as shown in Figure 2. Under this
algorithm, once any of the outer links start transmitting, the
middle link will not get a chance unless all the outer links
empty their queues. But once the middle link gets a chance,
it transmits till its queue length is almost the same as the
others. Due to such extreme oscillations in behavior, at this
point, we are unable to determine if this algorithm is stable or
not. So, we introduce a small exponential delay between the
time a link finishes transmission and the next time any other
link is scheduled, so that there is finite probability that more
links finish transmission in this wait time. This is modeled
by having a centralized system clock that goes off every
exp(1/κ) seconds, and new links are added to the schedule
only at these clock tick times, where κ > 0 can be made
arbitrarily close to zero. Such a centralized clock can be
implemented by using a common random generator seed at
all links. We will see that with this wait period, asynchronous
LQF is throughput-optimal.

This paper is organized as follows. We will define the
system and explain the notation in the next section. In section

III, we will prove throughput-optimality of asynchronous
LQF. We will do this by defining fluid limit of the system,
showing that the fluid limit exists. We will then show stability
using the fluid limit. In section IV, we will present some
simulation results studying the importance of the wait period
for asynchronous LQF. We then present a short discussion
about a distributed implementation of this algorithm.

II. SYSTEM, MODEL AND NOTATION

In this section, we will describe a model for the wireless
network and explain the scheduling algorithm.

A. System

Consider a network of links, indexed from a set K. The
interference constraints are represented by an interference
graph. At any given time, the set of transmitting links should
form an independent set in this graph. A schedule is a binary
vector of length |K|, with 1’s corresponding to the links
that are allowed to transmit. Let M [K] be the set of all
maximal schedules of K, which correspond to the maximal
independent sets in the interference graph. Let Co(M [K])
be the convex hull of M [K]. Let Ai(t) be the cumulative
arrival process, i.e., the total number of arrivals, to link i up
to time t. It is assumed to be a Poisson process with rate λi.
Thus

Ai(t) = N1,i(λit),

where N1,i for i ∈ K are independent Poisson processes of
unit rate. Similarly Di(t) is the cumulative departure process
from link i. Then the queue length of the ith link at time t
is given by

Qi(t) = Qi(0) +Ai(t)−Di(t). (1)

Define

Q(t) = (Q1(t),Q|K|(t))

A(t) = (A1(t),, A|K|(t))

D(t) = (D1(t),, D|K|(t))

N1(λt) = (N1,1(λ1t), N1,2(λ2t),, N1,|K|(λ|K|t)).

Packet lengths are assumed to be exponentially distributed
with mean 1/µi at link i. Packet lengths are assumed to
be mutually independent and independent of the arrival
processes. Thus, when a link i is scheduled, packets depart
at rate µi. Let µ = (µ1, µ2,µK). The set of all pairs
(λ, µ) so that there is some scheduling policy under which
the system is stable is called the capacity region. We say that
the system is stable if

lim
C→∞

lim sup
t→∞

P (|Q(t)| ≥ C) = 0 (2)

where |Q(t)| is the total queue size in the network. Let C be
the set of all pairs (λ, µ) for which there is a φ ∈ Co(M [K])
such that λ

µ < φ where λ/µ < φ, means λi/µi < φi for
all i. We will use this notation throughout the paper when
comparing vectors. The following proposition establishes
that C is an outer bound on the capacity region. We will

3771

show in the next section that asynchronous LQF algorithm
stabilizes the system for any (λ, µ) ∈ C. Thus C is the
capacity region.

Proposition 1: No scheduling policy can stabilize the sys-
tem if (λ, µ) ∈ Cc.

We skip the proof, as it follows along the same lines of a
similar proof in [1], Lemma 3.3.

B. Algorithm and Model

There is a centralized scheduling clock. Scheduling is done
only when this clock ticks, so the tick times of this clock are
called scheduling times. At each scheduling time, the clock
is reset by exp(1/κ), an exponentially distributed amount
of time with mean κ. Let C(t) be the last scheduling time
before or equal to t.

When a link finishes transmitting a packet, it stops
transmission, and waits for the next scheduling time. At a
scheduling time, a link with the longest queue that does not
interfere with any of the transmitting links is included in
the schedule. This process is done recursively i.e., if there
are more links that can be added to the schedule without
interfering with the existing links, the largest among them is
included in the schedule. When a link is chosen in a schedule,
it turns ON if it has non-zero queue length, transmits one
packet, and then turns OFF. It remains in the OFF state till
the next scheduling time. We will call this time duration till
the next scheduling time, the wait period of a link.

Define Si(t) to be a binary function showing the ON-OFF
state of link i with 1 for ON state and 0 for OFF state. Define
Tm(t) ≥ 0 to be the cumulative time the schedule m was
chosen up until time t. Note that during a time period when
a schedule is chosen, not all of the links in that schedule are
ON because some links may have finished transmission and
are waiting for the next scheduling time and some links may
not have any packets to transmit.

Recall that packet transmission durations at link i are
assumed to be exponentially distributed with mean 1/µi, so
the cumulative departure process is a Poisson process as long
as the link is ON. Assuming {N2,i(t) : i ∈ K} to be a set
of independent Poisson processes with rate 1, which are also
independent of the arrival processes, we have

Di(t) = N2,i(µi

ˆ t

0

Si(s)ds). (3)

Let N2(µt) = (N2,1(µ1t), N2,2(µ2t),N2,|K|(µ|K|t)). At
a scheduling time, all the links with nonzero queue lengths
that are scheduled, are ON. So when t = C(t),

Si(t) =

∑

m∈M [K]

mi
dTm

dt

∣∣
t+

if Qi(t) > 0

0 otherwise

where dTm

dt

∣∣
t+

is the right derivative of Tm(t) at t and is 1
only for the schedule that is chosen at t = C(t) while it is 0
for all other maximal schedules. For scheduled links, Si(t)

changes to 0 (OFF) when there is a departure. It remains
zero for unscheduled links. So for all t,

Si(t) = Si(C(t))− [Di(t)−Di(C(t))] .

Moreover, only a maximal schedule is chosen at any time.
So, ∑

m∈M [K]

Tm(t) = t. (4)

We say that (λ, µ) is κ-feasible if there is a φ ∈
Co(M [K]) such that λi

µi
+ κλi < φi for all i ∈ K.

Let Ui(t) =
´ t
0
Si(C(τ))dτ . In words, between any two

scheduling times, either Ui increases at rate one or it is
constant. It increases at rate one between two scheduling
times if link i is in the ON state at the first scheduling time.
Intuitively, Ui(t) is the amount of time that the server for
link i is called upon, including the leftover bits of scheduling
intervals after service completion times. Note that, if t1 is a
scheduling time and Qi(t) > 0 for all t ∈ (t1, t2),

Ui(t2)− Ui(t1) =
∑

m∈M [K]

mi (Tm(t2)− Tm(t1)) . (5)

Let Yi(u) = Di(U
−1
i (u)) for u ≥ 0, where U−1i (u) =

min{t : Ui(t) ≥ u}. Call Yi the service yield process for
link i. In words, Yi(u) is the number of service completions
at link i when the total amount of time the link was scheduled
and has non zero queue (this includes the amount of time
the link was in the ON state and the time it was waiting
for a scheduling time after service completion within a
scheduling interval) reaches u. The service yield processes
for different links are dependent in a complicated way, due
to correlations induced by the scheduling policy and the fact
that the scheduling times are global. However, for fixed i,
the distribution of the random process (Yi(u) : u ≥ 0) does
not depend on the arrival process or scheduling policy. It is
the same as if i were the only link in the network and the
queue at link i had an infinite backlog. Yi(u) is a counting
process and the distribution of time between two consecutive
increments is a sum of two exponential distributions (one
corresponding to service completion i.e., link being in ON
state and the other corresponding to the time waiting for
the next scheduling time). Specifically, Yi(u) is a renewal
process with rate 1

κ+1/µi
.

Since the arrival process is a Poisson process and packet
lengths and scheduling times are exponentially distributed,
the system is a Markov chain with state X = (Q,S).
Therefore, stability of this system is equivalent to positive
recurrence of the underlying Markov chain.

C. Local Pooling

We will show throughput-optimality of asynchronous LQF
when the interference graph satisfies a condition called local
pooling[7].

Definition 1: A set of links L ⊂ K is said to satisfy local
pooling if there exists a nonzero vector α ∈ RK+ such that
αTφ is a positive constant for all φ ∈ Co(M [L]). We say

3772

that local pooling is satisfied if every subset of K satisfies
local pooling.

Remark 1: If L ⊂ K satisfies local pooling, then there
are no two vectors φ̃, φ̂ ∈ Co(M [L]) such that φ̃ > φ̂.

Lemma 1: If L ⊂ K satisfies local pooling, for any κ-
feasible (λ, µ) and for any φ ∈ Co(M [L]), there is a k ∈ L
such that λk

µk
+ κλk < φk.

Proof: If this were not true, then we have a φ ∈
Co(M [L]) such that λk

µk
+ κλk ≥ φk for all k ∈ L. Also,

there is a φ̃ ∈ Co(M [L]) such that λk

µk
+ κλk < φ̃k for all

k ∈ L since (λ, µ) is κ-feasible. This means φ̃k > φk for
all k ∈ L, contradicting local pooling.
When local pooling is satisfied, for a fixed κ-feasible pair
(λ, µ), define

ε∗ = inf
L⊂K

{
inf

φ∈Co(M [L])

{
max
k∈L

(φk −
λk
µk
− κλk)

}}
.

From Lemma 1, we have that ε∗ > 0 since we have a
maximization over k. So, for any (λ, µ) that is κ feasible
and L ⊂ K and φ ∈ Co(M [L]), there is a k ∈ L such that
(φk − λk

µk
− κλk) ≥ ε∗ .

III. THROUGHPUT-OPTIMALITY OF ASYNCHRONOUS
LQF

In this section, we will show that the Markov chain
describing the system is positive recurrent as long as (λ, µ)
lies within a region that is slightly smaller (depending on
κ) than C. One way to show positive recurrence is using
the idea of fluid limits as shown in [11]. We will first show
that the fluid limit exists and satisfies certain properties. We
will then use these properties of fluid limits to show positive
recurrence of the Markov chain.

A. Fluid Limits

We need the following definitions and lemma to show the
existence of fluid limit.

Definition 2: A deterministic trajectory q = (qi(t) : t ≥
0, i ∈ K) satisfies the κ-LQF constraint if q is absolutely
continuous and(
−(κ+ 1/µi)

(qi(b)− qi(a))− (b− a)λi
(b− a)

)
i∈A

∈ Co(M(A))

whenever

0 ≤ a < b, A ⊂ K, such that
qi(t) > qj(t) for a ≤ t ≤ b, i ∈ A, j ∈ K \A

and qi(t) > 0 for i ∈ A.
A set of links L is said to be a dominating set at time t if
Qi(t) > Qj(t) for all i ∈ L, j ∈ K�L.

Definition 3: A schedule is called an LQF schedule if its
restriction to any dominating set L ⊂ K is maximal in M [L].

A scheduling time instant t is called a reset time if all the
links in the network are in the OFF state just before time t.
Note that an LQF schedule is chosen at any scheduling time
that is a reset time.

Lemma 2: Given C > 0, the probability that there is
no reset time in a time interval of duration C decays
exponentially in C. In other words, there exists α, β > 0
so that for any time t, the probability that there is no reset
time in the interval [t, t+C] is less than or equal to βe−αC .

Proof: Consider a fixed time t. Let N0 = bC/2κc
where b.c is the floor function.

Let E1 be the event that there are fewer than N0 schedul-
ing points in [t, t + C]. Let E2 be the event that there is
no reset time among the first N0 scheduling intervals. Then,
P (E1 ∪E2) is an upper bound on the probability that there
is no reset time in the interval [t, t+ C].

Since the time between any two scheduling times is expo-
nentially distributed, the number of scheduling times within a
time interval of length C is a Poisson random variable with

mean C/κ. Therefore, P (E1) = p1 =
N0∑
n=0

e−C/κ (C/κ)n

n! .

Then

p1
2N0

= e−C/κ
N0∑
n=0

(C/κ)n

n!

1

2N0

≤ e−C/κ
N0∑
n=0

(C/κ)n

n!

1

2n

≤ e−C/κ
∞∑
n=0

(C/2κ)n

n!

= e−C/2κ.

Thus, we have p1 ≤ (e/2)−C/2κ, which is of the form
e−α1C for some α1 > 0.

Resets in different scheduling intervals are dependent, due
to the scheduling policy and queue length. But the probability
that there is a reset during an interval is minimized if initially
ALL of the links are transmitting at the beginning of that
interval. In that case, there is still a positive probability
p that a reset occurs since each transmission ends in an
exponential amount of time independent of others, and the
scheduling interval also ends in an exponential amount of
time independent of the transmission times. Thus, for each
scheduling interval, no matter what happened in the earlier
scheduling intervals, the conditional probability of a reset in
that interval is at least p. Thus, P (E2) ≤ p2 = (1 − p)N0 ,
which is of the form e−α2C for some α2 > 0.

Let α = min(α1, α1). Using the union bound, we have
that P (E1 ∪E2) ≤ p1 + p2. Thus, the probability that there
is no reset time in interval [t, t+C] is less than or equal to
2e−αC .
Now we will establish the existence of fluid limits.

Proposition 2: Consider a sequence of systems, indexed
by n and n → ∞, with the initial queue length for the nth

system, Qn(0), such that
∑
i∈K

Qni (0) ≤ n. The arrival process

is the same for all the systems, and the queue evolves accord-
ing to the asynchronous LQF scheduling policy described
in section II-A. Then, a limit (Q(t), D(t), T (t), Y (u)) of(
Qn(nt)
n , D

n(nt)
n , T

n(nt)
n , Y

n(nu)
n

)
exists almost surely as

n→∞, in the topology of uniform convergence on compact

3773

sets, along some subsequence. Moreover, there is a set Ω in
the probability space with probability measure 1 over which
Q(t) satisfies the κ-LQF constraint and

Qi(t) = Qi(0) + λit−Di(t), t ≥ 0 (6)∑
m∈M [K]

dTm
dt

= 1, a.e. t ≥ 0 (7)

Y (u) =
µi

1 + κµi
u, u ≥ 0 (8)

We skip the proof here because of space constraints.
The Proof uses the Arzela-Ascoli theorem and a functional
law of large numbers to show the existence of a limit
(Q(t), D(t), T (t), Y (u)). We then use Lemma 2 and the
Borel-Cantelli lemma to prove that Q(t) satisfies the κ-LQF
constraint with probability 1. The Complete proof can be
found in [12].
Note that the fluid limit is in general a random process
and need not be a deterministic function. Also note that the
fluid limit need not be unique. One can in general obtain
different fluid limits by choosing a different subsequence
of {1, 2, 3, ...}. However, it should be noted that the above
theorem states that every fluid limit satisfies the κ-LQF
constraint.

B. Stability of the Fluid Limit and Positive Recurrence of
the Markov Chain

For any κ-feasible (λ, µ), we will show that the
continuous-time Markov chain, X = (Q,S), is positive
recurrent by showing that the fluid limits reach zero in a
finite time.

The following lemma is similar to the one proved for the
case of discrete time in [7]. We skip the proof here for lack
of space and it can found in [12].

Lemma 3: For any κ-feasible (λ, µ), if local pooling
holds, then any (deterministic) trajectory, (Q(t) : t ≥ 0)
satisfying the κ-LQF, Q(t) = 0 holds for any t ≥ τ , where

τ = max
i∈K

Qi(0)
max
i∈K

(κ+1/µi)

ε∗
.

From Proposition 2 and Lemma 3, we have that the limit
Q(t) : t ≥ 0 is such that Q(t) = 0 for all t ≥ τ . This will
then imply positive recurrence of the original system. This
can be proved using the standard techniques in literature [11].
Thus, in summary we have the following theorem.

Theorem 1: If (λ, µ) is κ-feasible, then the system is
positive recurrent. �
For any (λ, µ) ∈ C, there is a κ > 0 such that (λ, µ)
is κ-feasible. Thus, by choosing κ small enough, any rate
pair (λ, µ) in the capacity region is stabilizable with asyn-
chronous LQF.

IV. DISCUSSION

In this section we will present simulation results to under-
stand if the scheduling clock is important. We will then dis-
cuss whether a distributed implementation of asynchronous
LQF is feasible.

0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
0

2000

4000

6000

8000

10000

12000

14000

l
1

A
vg

 Q
ue

ue
 le

ng
th

l
2
=9*l

1

With scheduling clock
without scheduling clock

Fig. 3. Comparison of performance with and without wait period

A. Importance of Scheduling Clock

It is not clear if the small wait period which we introduced
for the purpose of proving stability is really required. The
fluid limit approach that we have used will probably not work
in the case without wait period. As an example, consider the
star interference graph, and a sequence of initial conditions,
such that lim

n→∞
Qn

i (0)
n = 1 for all i. If the outer links

are scheduled at the beginning, no two outer links finish
transmitting a packet at the same time. So the middle link
gets a chance to transmit only after all but one of the outer
queues are empty. The queue length of the middle link
increases in fluid limit till that time. Therefore, we do not
have a negative drift of maximum queue length in fluid limit.

Consider the network with star interference graph with
six outer links. Figure 3 shows simulations on this network.
The arrival rate to the outer links, λ2, is chosen to be 9 times
that to the central link, λ1; i.e., λ2 = 9 ∗ λ1. The average
service rate of each packet is 1 unit and the average rate of
the scheduling clock is 10; i.e., the average duration between
scheduling times is 0.1 units. Rate λ1 = 0.1 is the boundary
of the capacity region, and λ1 = .09 is the boundary of
the 0.1-feasible region (i.e., feasible region with wait period
1/10). Figure 3 suggests that the system would be stable
even without the wait period. The figure has been plotted by
uniformizing the system and averaging the observed queue
lengths at 100 million events, where each event can be either
an arrival, departure or scheduling clock tick.

Figure 4 shows a plot of average queue length as the
wait period changes when λ2 = 9 ∗ λ1 and λ1 = .097.
The queue length plotted here is averaged over observations
at one billion events. We see no increase in the average
queue length when kappa decreases to zero, which suggests
that the algorithm is stable even without a wait period
after completion of transmissions. The average queue length
increases for higher κ because, for fixed arrival and service
rates, a longer wait period is closer to the boundary of the
corresponding κ-feasible region.

3774

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

k − Average wait time

A
ve

ra
ge

 q
ue

ue
 le

ng
th

l
2
=9*l

1
; l

1
=.097

Average queue length of all links
Average Queue length of link 0

Fig. 4. Average queue length with the wait period

B. Distributed Implementation of Asynchronous LQF

The assumption of having a centralized clock can easily
be removed. A common seed can be used at all the nodes for
generating pseudo-random numbers that are used to simulate
the scheduling clock. Then, a distributed decision can be
made at the scheduling times, similar to the synchronous
LQF case as follows.

Some time period after every scheduling clock tick is
designated as a control time slot. This time slot is further
divided into a finite number of subslots. A node is allowed to
contend for transmission at a scheduling time t0 only if none
of its neighbors are transmitting at t0. Each contending node
at time t0 chooses a number t, uniformly at random between
k/Qi and k/(Qi + 1), for some fixed number k, where Qi
is its queue length. It then chooses the subslot into which
t + t0 falls. A node announces its intent to transmit in its
chosen subslot only if none of its neighbors have announced
before it. All the nodes that have successfully announced
start transmission of data packets at the end of the control
slot. Ties are broken at random.

If the division into subslots is infinitesimally fine, this will
be an exact implementation of the LQF algorithm since a
node with longer queue length has a higher priority. However
even when we have a finite number of subslots, extensive
simulations in [6] show that the above implementation can
approximate LQF well.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have studied an asynchronous version
of the LQF algorithm for an ad hoc wireless network when
packet lengths are variable. This algorithm is throughput-
optimal if there is a small wait period between departures
and schedules. It is not clear if this wait period is essential
for throughput-optimality. Proving or disproving throughput-
optimality without wait period is one open question.

While the distributed algorithm with infinitesimally fine
subslots is throughput-optimal (under the local pooling con-
dition), the required precision in the clocks and response
speed of the nodes are both unbounded. With finite clock pre-
cision, we might not have a proof of throughput-optimality.

So an open problem is to provide a provably optimal,
distributed algorithm for which both the precision in the
clocks and the response speed in the nodes are bounded
independently of the number of nodes and number of packets
in the network.

Throughput-optimality is a first order criterion. Delay
performance of an algorithm is more important in practice.
Understanding the delay performance of asynchronous LQF
is an interesting topic for further research.

One extension of the results in this paper is to allow
general arrival and departure processes with appropriate
assumptions on the tails. We believe that this can be done
using standard techniques from the literature as in [11].

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput
in multihop radio networks,” IEEE Trans. Automatic Control, vol. 37,
pp. 1936-1948, Dec 1992.

[2] R. R. Boorstyn, A. Kershenbaum, B. Maglaris, and V. Sahin,
“Throughput analysis in multihop CSMA packet radio networks,”
IEEE Transactions on Communications, vol. 35, no. 3, pp. 267–274,
March 1987.

[3] S. C. Liew, C. Kai, J. Leung, and B. Wong, “Back-of-the-envelope
computation of throughput distributions in CSMA wireless networks,”
IEEE Trans. on Mobile Computing vol. 9, no. 9, pp 1319-1331, Sept
2010.

[4] J. Shin and D. Shah. (2010, Apr). Randomized Scheduling
Algorithm for Queueing Networks. [Online]. Available:
http://arxiv.org/pdf/0908.3670

[5] L. Jiang and J. Walrand, “A distributed CSMA algorithm for through-
put and utility maximization in wireless networks,” presented at
Allerton Conference on Communication, Control, and Computing,
Monticello, Illinois, 2008.

[6] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length based
CSMA/CA algorithms for achieving maximum throughput and low
delay in wireless networks,” in Proceedings of IEEE INFOCOM,
March 2010.

[7] A. Dimakis and J. Walrand, “Sufficient conditions for stability of
longest-queue-first scheduling: Second-order properties using fluid
limits,” Adv. in Appl. Probab., vol. 38, no. 2, pp. 505-521, 2006.

[8] A. Brzezinski, G. Zussman, and E. Modiano, “Enabling distributed
throughput maximization in wireless mesh networks - A partitioning
approach,” in Proceedings of ACM MOBICOM’06, September 2006.

[9] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless
networks,” in Proceedings of IEEE INFOCOM’08, April 2008.

[10] M. Leconte, J. Ni, and R. Srikant, “Improved bounds on the throughput
efficiency of greedy maximal scheduling in wireless networks,” in
Proceedings of the 10th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), May 2009.

[11] J. G. Dai, “On positive Harris recurrence of multiclass queueing
networks: A unified approach via fluid limit models,” Annals of
Applied Probability, vol. 5, pp. 49-77, 1995.

[12] S. Maguluri, B. Hajek and R. Srikant, “The Stability of Longest-
Queue-First Scheduling With Variable Packet Sizes,” Technical Report,
http://hdl.handle.net/2142/26514

3775

