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Abstract— This paper aims to address the robust convergence
problem that arises from discrete-time iterative learning control
(ILC) systems subject to random disturbances. Two alternative
approaches are considered in order to achieve the perfect output
tracking of the stochastic discrete-time ILC systems in the sense
of both expectation and variance, which use the tracking error
and the input error for analysis, respectively. It is shown that the
convergence results of two approaches to ILC can be established
by developing some statistical expressions in super-vector forms.
Moreover, it is demonstrated that the convergence results of two
approaches to ILC are not always equal, and they can keep the
same only in the case where the controlled plants are square.

Index Terms— Iterative learning control, discrete-time sys-
tems, random disturbances.

I. INTRODUCTION

Iterative learning control (ILC) is developed as an effective
technique aimed at the tracking performance improvement of
systems that operate repetitively over a finite time interval. Its
key feature is to use the information from previous operations
to update the control signal for the current operation, in order
to finally achieve the perfect tracking of any output reference
trajectory. Due to its effectiveness, ILC has attracted consid-
erable attention in many areas and applications over the past
two decades, as claimed and demonstrated in, e.g., [1]-[4].

In the literature, the robustness of ILC has been considered
a practically important issue with respect to, e.g., initial shifts
[5]-[8] and model uncertainties [9]-[12]. For the past decade,
the robustness issue arising from non-repetitive disturbances
has attracted considerable attention in ILC. In [13], [14], the
rejection of non-repetitive disturbances has been studied via
adding some filters to ILC. From the stochastic point of view,
the disturbance properties of ILC have been investigated, and
some promising statistical expressions have been obtained for
the control error in [15]-[20]. Using an H∞ analysis approach
to ILC (see, e.g., [21]-[23]), robust convergence results not
only can be established against iteration-varying disturbances
but also can be developed to derive formulas for the design of
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learning gains via the linear matrix inequality technique. In
general, two alternative approaches have been employed to
achieve such ILC developments, with one using the tracking
error for analysis directly ([13]-[15] and [19]-[23]), and the
other one using the input error for analysis and then inducing
the convergence results of the tracking error indirectly ([16]-
[18]). Under certain conditions, the zero output tracking can
be obtained by both approaches. However, this result for two
alternative approaches does not always hold, which in fact
requires the controlled plants being square. This observation
motivates the present study.

In this paper, the robust convergence of ILC is considered
for a class of discrete-time systems with disturbances varying
randomly from one iteration to the next, for which the two
alternative approaches to ILC are applied, respectively. From
the stochastic point of view, it demonstrates that although the
convergence results can be developed through both direct and
indirect approaches to ILC, they are equal only in the case
where the input number and output number of the controlled
plants are equal. In particular, this demonstration is given for
stochastic discrete-time ILC in the sense of both expectation
and variance.

Throughout this paper, E[·] and Var[·] represent the expec-
tation operator and the variance operator with respect to the
iteration domain, respectively, and q represents the forward
shift operator along the time axis, e.g., qx(t) = x(t +1) and
q−1x(t) = x(t− 1). Matrices are assumed to be compatible
for algebraic operations if their dimensions are not stated
explicitly. In particular, I and 0 denote the identity matrix and
the zero matrix with the required dimensions, respectively.
Additionally, ‖α‖2 =

√
αTα is the 2-norm of a vector α;

‖Ω‖2 = σ̄(Ω) is the 2-norm of a finite dimensional matrix
Ω, where σ̄(Ω) is the largest singular value of Ω; ‖Ω‖F =√

tr(ΩTΩ) is the F-norm of Ω, where tr(ΩTΩ) is the trace
of ΩTΩ.

II. PROBLEM FORMULATION

A. System Description

Let us consider the following class of MIMO discrete-time
systems over 0≤ t ≤ T −1, k ≥ 0:

yk(t) = Gp(q)uk(t)+ vk(t) (1)

where yk(t) is a p×1 output vector, uk(t) is an m×1 control
input vector, vk(t) is a p×1 disturbance vector, and Gp(q) is
a p×m transfer function matrix. For disturbances of system
(1), the following statistical assumptions are made.
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A1) Assume that {vk(t)} is a disturbance sequence which
is white in the iteration domain such that E [vk(t)] = 0
and for ∀l,

E
[
vk(t)vT

k+i(l)
]
=

{
Vtl , i = 0
0, otherwise (2)

where Vtl = V T
lt , and Vtt is positive-definite.

Generally, the disturbance sequence is also considered to be
white in the time domain, which results in Vtl = 0 for ∀t 6= l.
A2) It is assumed that u0(t) is bounded and uncorrelated

with vk(t), i.e.,

E
[
u0(t)vT

k (l)
]
= 0, ∀t, l. (3)

In particular, the initial control input can be set to zero, i.e.,
u0(t) = 0 is adopted for ∀t, to satisfy Assumption A2).

For system (1), our objective is such that the convergence
of both expectation and variance of the tracking error be-
tween the system output yk(t) and the desired output trajec-
tory yd(t) is achieved in the presence of random disturbances
varying from one iteration to the next. Towards this end, the
updating law considered in this paper is given by

uk+1(t) = uk(t)+L(q)ek(t) (4)

where L(q) is an m× p polynomial gain operator, and ek(t) =
yd(t)− yk(t) is the tracking error.

Remark 1: From the ILC system (1) and (4), it is easy to
derive that

uk(t) = Gu(q)uk−1(t)+L(q) [yd(t)− vk(t)]

= Gk
u(q)u0(t)+

k−1

∑
i=0

Gk−i−1
u (q)L(q) [yd(t)− vi(t)]

(5)

where Gu(q) = I−L(q)Gp(q). Then for i≥ 0, combining (2)
and (3) with (5) leads to

E
[
uk(t)vT

k+i(l)
]
= 0, ∀t, l (6)

i.e., Assumptions A1) and A2) imply that uk(t) is uncorre-
lated with vk+i(t) for i≥ 0.

B. System Representation
As demonstrated in, e.g., [3], [4], [19], [22], [23], a pure

iteration-domain representation for linear discrete-time ILC
systems can be established using the super-vector approach.
With this approach and in a compact form, the system (1)
and ILC law (4) can be described respectively as

yk = Gpuk +vk (7)

uk+1 = uk +Lek (8)

where yk, uk, vk, ek = yd−yk, yd are super-vectors lifted to
contain T time points. For example, let r denote the relative
degree of system (1) and then denote Gp(q) = ∑∞

i=r Hiq−i and
L(q) = ∑r

i=0 Liqi, where Hi and Li are matrices of appropriate
dimensions. In this case, if the super-vectors are defined in
the form of

yk =
[
yT

k (r), · · · , yT
k (T −1+ r)

]T

uk =
[
uT

k (0), · · · , uT
k (T −1)

]T

vk =
[
vT

k (r), · · · , vT
k (T −1+ r)

]T

then (7) and (8) hold with matrices Gp and L given by

Gp =




Hr 0 · · · 0

Hr+1
. . . . . .

...
...

. . . . . . 0
Hr+T−1 · · · Hr+1 Hr




L =




Lr 0 · · · · · · 0
...

. . . . . . . . .
...

L0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · L0 · · · Lr




.

Clearly, Gp is the corresponding pT ×mT lower-triangular
block Toeplitz matrix whose elements are the pulse response
coefficients (or Markov parameters), and L is also a lower-
triangular block Toeplitz matrix which is of mT× pT dimen-
sions and results from the polynomial operator L(q).

Remark 2: For {vk}, Assumption A1) implies E [vk] = 0,
E

[
vkvT

k+i

]
= 0, i 6= 0 and E

[
vkvT

k

]
= V, where V is a positive-

definite block matrix formed by Vtl . Using Assumptions A1)
and A2), it leads to (6) which gives E

[
ukvT

k+i

]
= 0, i≥ 0.

In ILC, the convergence objective is generally carried out
in two alternatives: either directly using the tracking error
for analysis or using the control input error for analysis and
then indirectly inducing convergence of the tracking error.
This paper considers two alternatives for analysis separately,
discusses differences between the results obtained with them,
and presents some conditions under which these differences
can be eliminated. In order to present the convergence result,
the following lemma will be used.

Lemma 1: Let X and Y be two real matrices of appropriate
dimensions. Then

(1) [24, p. 298]: limk→∞ Xk = 0 if and only if ρ(X) < 1,
i.e., the spectral radius of X is strictly less than one;

(2) [24, p. 300]: ∑∞
k=0 Xk is well defined if and only if

ρ(X) < 1;
(3) [24, p. 313]: ‖XY‖F ≤min{‖X‖2 ‖Y‖F ,‖X‖F ‖Y‖2}.

III. DIRECT APPROACH

Let us consider the convergence analysis of ILC using the
tracking error directly. First of all, it is easy to show that the
expected tracking error satisfies (see [22], [23])

E [ek] = GeE [ek−1]+E [vk−1]−E [vk]
= GeE [ek−1]

= Ge
kE [e0]

(9)

where Ge = I−GpL. Next, denote êk = ek−E [ek]. Then the
variance matrix of the tracking error Var [ek] is considered of
the form

Var [ek] = E
[
êkêT

k
]
. (10)

From [22], [23], an expression of Var [ek] can be given as

Var [ek] = GeVar [ek−1]Ge
T +GpLV+V(GpL)T (11)
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and the stationary value of the variance matrix can be found
as the solution to the Lyapunov equation

Π = GeΠGe
T +GpLV+V(GpL)T . (12)

Using (11) and (12) can lead to

Var [ek]−Π = Ge (Var [ek−1]−Π)Ge
T

= Ge
k (Var [e0]−Π)Ge

kT
.

(13)

If two conditions related to Ge = I−GpL are presented as

ρ (Ge) < 1 (14)

‖Ge‖2 < 1 (15)

then the following convergence results can be derived based
on (9) and (13).

Proposition 1: Consider system (1) satisfying Assump-
tions A1) and A2). If the ILC law (4) is applied, then

i) limk→∞ E [ek] = 0 if and only if (14) holds, and this
convergence is monotonic in the sense of the 2-norm
if (15) holds;

ii) limk→∞ Var [ek] = Π if and only if (14) holds, and this
convergence is monotonic in the sense of the F-norm
if (15) holds;

where Π is the solution to the equation (12).
Proof: See [22], [23] for the details.

Remark 3: Clearly, the zero-mean disturbance in MIMO
systems offers nothing to the expected value of the tracking
error, which coincides with and, thus, extends the result
obtained for SISO systems (see, e.g., [20]). Since fulfillment
of (15) implies that of (14), (15) provides a sufficient but not
necessary condition for convergence of E [ek].

Remark 4: For convergence of the variance of the track-
ing error, (15) presents also a sufficient but not necessary
condition. For its stationary value Π, (14) can guarantee that
it is the unique solution to equation (12). Otherwise, assume
that Π̂ is another solution to (12). Then it follows from (12)
immediately that Π and Π̂ satisfy

Π− Π̂ = Ge

(
Π− Π̂

)
Ge

T = Ge
n
(

Π− Π̂
)

Ge
nT, ∀n≥ 0.

Since (14) or (15) implies limn→∞ Ge
n = 0, let n → ∞ to

obtain Π̂ = Π and then the uniqueness of the solution Π. In
this case and by Lemma 1, a series form of Π can be derived
from (12) as

Π =
∞

∑
i=0

Ge
i
[
GpLV+V(GpL)T

]
Ge

iT

= GpL
∞

∑
i=0

Ge
iVGe

iT +
∞

∑
i=0

Ge
iVGe

iT (GpL)T .

Also, the above convergence properties can be pulled from
the basic properties of the Lyapunov equation.

IV. INDIRECT APPROACH

Next, a convergence analysis of the ILC process is de-
veloped by using the control input error1. To this end, two
conditions related to Gu = I−LGp are introduced as

ρ (Gu) < 1 (16)

‖Gu‖2 < 1. (17)

Obviously, both of them can ensure that LGp is nonsingular.
With this fact, define u∞ = (LGp)

−1 Lyd, ∆uk = u∞ − uk,
∆ûk = ∆uk−E [∆uk] and Var [∆uk] = E

[
∆ûk∆ûT

k

]
. Then the

results of Propositions 2-6 can be proved, and their proofs
are given in the Appendix.

Proposition 2: Consider system (1) satisfying Assump-
tions A1) and A2). If the ILC law (4) is applied, then

1) limk→∞ E [∆uk] = 0 if and only if (16) holds, and this
convergence is monotonic in the sense of the 2-norm
if (17) holds;

2) limk→∞ Var [∆uk] = Πu if and only if (16) holds, and
this convergence is monotonic in the sense of the F-
norm if (17) holds;

3) limk→∞ E [ek] = e∞ and limk→∞ Var [ek] = Πe if (16) or
(17) holds;

where
Πu = GuΠuGu

T +LVLT (18)

e∞ =
[
I−Gp (LGp)

−1 L
]

yd (19)

Πe = GpΠuGp
T +V. (20)

From Proposition 2, it is clear that limk→∞ E [uk] = u∞,
and then limk→∞ E [ek] = e∞, hold under the condition (16)
or (17). In particular, e∞ = 0 always holds for SISO systems
since L and Gp are both nonsingular in this case. However,
the zero convergence of E [ek] may not be achieved for
MIMO systems, as stated in the following proposition.

Proposition 3: Consider system (1) satisfying Assump-
tions A1) and A2). If the ILC law (4) is applied, then under
the condition (16) or (17), limk→∞ E [ek] = 0 if and only if
m = p holds, i.e., the number of inputs and that of outputs
are equal.

Clearly, m = p is required by MIMO systems to ensure
that the expected tracing error converges to zero. Otherwise,
if m < p, then there exists a residual error e∞. Actually, in
this case, ρ (Gu) < 1 implies ρ (Ge) = 1 and, hence, it can
also be proved directly from (9) that the expected tracking
error still converges, but it does not converge to zero any
longer.

For Var [∆uk], it can be easily proved that under the
condition (16) or (17), its stationary value Πu is the unique
solution to (18) (see Remark 4 for the same sketch of proof).
In this case, the series form of Πu can be obtained from (18)
as follows

Πu =
∞

∑
i=0

Gu
iLVLTGu

iT.

1Although convergence of the tracking error can still be achieved, it is
worth pointing out that the convergence results of the tracking error derived
in the previous subsection can not be always derived any longer using the
control input error for analysis in this section.
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But, for the induced Πe, such development about uniqueness
may not work.

Proposition 4: Let Πu be the solution to (18) and Πe be
given by (20). Then Πe still satisfies the equation (12), i.e.,

Πe = GeΠeGe
T +GpLV+V(GpL)T . (21)

Particularly, if m = p is satisfied, then under the condition
(16) or (17), Πe = Π holds and is the unique solution to (12).

As a matter of fact, the expression of (11) can still work
for the variance matrix of the tracking error. Hence, it can be
obtained from (11) that Var [ek] converges when k→∞, but it
can not be derived from (13) any more that limk→∞ Var [ek] =
Π, since now ρ (Ge)≤ 1 can only be ensured. In this case,
it is obvious from Proposition 4 that the stationary variance
matrix of the tracking error should satisfy not only (12) but
also (20). Furthermore, this proposition implies that only
when m = p holds, the matrix expressions for the variance
of both input error and tracking error have unique stationary
solutions simultaneously.

In the literature that uses the input for the ILC convergence
analysis, a general assumption is the realizability of the
desired output trajectory (see, e.g., [16]-[18]). An advantage
of this assumption is that the errors for both control input
and output tracking can be guaranteed to converge to zero.
Here such an assumption is made as follows.
A3) It is assumed that yd(t) is a realizable desired output

trajectory. That is, there exists a unique control input
ud(t) generating this trajectory for the nominal plant,
i.e., yd(t) = Gp(q)ud(t).

Based on Assumption A3), let ud be defined in the same way
with uk and then let δuk = ud−uk, δ ûk = δuk−E [δuk] and
Var [δuk] = E

[
δ ûkδ ûT

k

]
. In this case, the following result can

be proved.
Proposition 5: Consider system (1) satisfying Assump-

tions A1)-A3). If the ILC law (4) is applied, then the
following convergence results hold.

a) limk→∞ E [δuk] = 0 if and only if (16) holds, and this
convergence is monotonic in the sense of the 2-norm
if (17) holds;

b) limk→∞ Var [δuk] = Πu if and only if (16) holds, and
this convergence is monotonic in the sense of the F-
norm if (17) holds;

c) limk→∞ E [ek] = 0 and limk→∞ Var [ek] = Πe if (16) or
(17) holds;

where Πu and Πe are given by (18) and (20), respectively.
Clearly, the condition (16) or (17) enables both E [δuk]

and E [ek] to possess zero convergence. However, the results
of Proposition 5 work in limited cases because Assumption
A3) requires that the number of inputs should be equal to
that of outputs, as claimed in the following proposition.

Proposition 6: The Assumption A3) is valid only when
m = p holds.

It is worth noting that if m = p, then (16) or (17) implies
that Gp is nonsingular. Consequently, it follows that ud =
Gp

−1yd. This, together with Proposition 6, further implies
that the Assumption A3) requires the system inverse in

essence. Hence, with this assumption, the model inverse-
based ILC can be discussed, in particular, for the SISO
systems (see, e.g., [20]). On the contrary, when m 6= p,
Proposition 6 implies that Proposition 5 does not hold and,
in this case, only the general results of Proposition 2 hold.
For more details of the invertibility of discrete-time systems,
see [25].

Remark 5: For the SISO systems, some statistical expres-
sions have been provided for disturbed ILC in time [19]
and frequency [20] domains, but convergence conditions
have not been studied. Here for the MIMO systems, error
expressions have been developed for evaluation of stochastic
ILC, and two general methods in the ILC analysis have been
both considered and differences between them have been
disclosed. Moreover, conditions have been presented for both
asymptotic stability and monotonic convergence analyses of
the stochastic ILC process.

V. CONCLUSIONS

In this paper, the robust convergence of ILC for discrete-
time systems subject to random disturbances have been dis-
cussed, and two alternative approaches have been considered.
Using the tracking error for analysis directly, the zero output
tracking of the desired trajectory can be guaranteed in the
sense of both expectation and variance, which however may
not hold if the input error is used for analysis. It has been
demonstrated that only when the input number is equal to
the output number, the two approaches to ILC can obtain the
equal convergence results.

APPENDIX

PROOFS OF PROPOSITIONS 2-6

Proof: [Proof of Proposition 2]: Either (16) or (17)
implies that u∞ is well defined and Lyd = LGpu∞ is satisfied.
Pre-multiply (7) by L and then subtract it from Lyd = LGpu∞
to obtain

Lek = LGp∆uk−Lvk. (22)

Using the fact that ∆uk = u∞ − uk and inserting (22), it
follows immediately from (8) that

∆uk = ∆uk−1−Lek−1

= Gu∆uk−1 +Lvk−1
(23)

and hence

E [∆uk] = GuE [∆uk−1]+LE [vk−1]
= GuE [∆uk−1]

= Gu
kE [∆u0]

(24)

which implies that limk→∞ E [∆uk] = 0 if and only if (16)
holds. Moreover, using (24) leads to

‖E [∆uk]‖2 ≤ ‖Gu‖2 ‖E [∆uk−1]‖2

≤ ‖Gu‖k
2 ‖E [∆u0]‖2 .

In view of (17), one can conclude that the expected input
error E [∆uk] converges monotonically to zero as k → ∞, in
the sense of the 2-norm.
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Now let us consider the variance of the input error.
Subtract (24) from (23) to derive

∆ûk = Gu∆ûk−1 +Lvk−1 (25)

which yields

∆ûk∆ûT
k = Gu∆ûk−1∆ûT

k−1Gu
T +Gu∆ûk−1vT

k−1LT

+Lvk−1∆ûT
k−1Gu

T +Lvk−1vT
k−1LT.

(26)

It is easy to show that E
[
∆ûkvT

k

]
= 0. Thus, it follows from

(26) that an expression of Var [∆uk] is given as

Var [∆uk] = E
[
∆ûk∆ûT

k
]

= GuE
[
∆ûk−1∆ûT

k−1
]

Gu
T +LE

[
vk−1vT

k−1
]

LT

= GuVar [∆uk−1]Gu
T +LVLT.

(27)
As a consequence of (18) and (27), the variance of the input
error satisfies

Var [∆uk]−Πu = Gu (Var [∆uk−1]−Πu)Gu
T

= Gu
k (Var [∆u0]−Πu)Gu

kT (28)

which implies that limk→∞ Var [∆uk] = Πu if and only if (17)
holds. In view of Lemma 1, using (28) also results in

‖Var [∆uk]−Πu‖F ≤ ‖Gu‖2
2 ‖Var [∆uk−1]−Πu‖F

≤ ‖Gu‖2k
2 ‖Var [∆u0]−Πu‖F .

Clearly, (17) ensures that the variance matrix of the input
error Var [∆uk] converges monotonically to Πu as k → ∞, in
the sense of the F-norm.

Again using (7), it yields

E [ek] = yd−GpE [uk] . (29)

This, together with limk→∞ E [∆uk] = 0, ensures that
limk→∞ E [ek] = e∞, where

e∞ = yd−Gpu∞ =
[
I−Gp (LGp)

−1 L
]

yd.

That is, e∞ is given by (19). Next using (7), (29) and the fact
that uk−E [uk] =−(∆uk−E [∆uk]) =−∆ûk, it results in

êk = ek−E [ek] =−Gp (uk−E [uk])−vk = Gp∆ûk−vk

and thus

êkêT
k = Gp∆ûk∆ûT

k Gp
T−Gp∆ûkvT

k −vk∆ûT
k Gp

T +vkvT
k

which leads to

Var [ek] = GpVar [∆uk]Gp
T +V. (30)

As a consequence, limk→∞ Var [ek] = Πe can be obtained,
where Πe is defined by (20). The proof is complete.

Proof: [Proof of Proposition 3]: Note that a necessary
condition for (16) or (17) is that the matrix Gp has full col-
umn rank. This implies that m≤ p holds. From Proposition
2, it follows immediately that e∞ = 0 holds for ∀yd if and
only if

Gp (LGp)
−1 L = I ∈ RpT×pT . (31)

With these facts, the proofs of necessity and sufficiency can
be given.

If e∞ = 0 holds, then (31) implies

pT = rank
[
Gp (LGp)

−1 L
]
≤ rank [LGp] = mT

and consequently, m = p is immediate. That is, the necessity
is derived. On the contrary, if m = p holds, then matrices L
and Gp are square. Consequently, the nonsingularity of LGp
implies that both L and Gp are nonsingular. Hence, (31) can
be derived which leads to e∞ = 0. The sufficiency is satisfied.
The proof is complete.

Remark 6: To achieve e∞ = 0, the above proof only shows
the case where m≤ p due to the requirement of (16) and (17).
While for the case where m ≥ p, e∞ = 0 is immediate only
if (14) or (15) holds, as shown in [22], [23].

Proof: [Proof of Proposition 4]: Using the fact that
GpGu = GeGp, it immediately follows from (18) that

GpΠuGp
T = GpGuΠuGu

TGp
T +GpLV(GpL)T

= GeGpΠuGp
TGe

T +GpLV(GpL)T

which, in view of (20), becomes

GpΠuGp
T = GeΠeGe

T−GeVGe
T +GpLV(GpL)T .

(32)
By using the fact that Ge = I−GpL, it leads to

GeVGe
T = V−GpLV−V(GpL)T +GpLV(GpL)T .

Inserting this into the previous equation (32) yields

GpΠuGp
T = GeΠeGe

T +GpLV+V(GpL)T−V.

Hence, it is clear from (20) that Πe = GpΠuGp
T +V satisfies

(21). Furthermore, if m = p holds, ρ (Ge) = ρ (Gu) < 1
can be obtained under the condition (16) or (17). As a
consequence, Πe = Π holds and is the unique solution to
(12) (see also Remark 4). The proof is complete.

Proof: [Proof of Proposition 5]: It is clear that yd =
Gpud. Subtract (7) from this to obtain

ek = Gpδuk−vk. (33)

With (33) and the fact that δuk = ud−uk, it follows imme-
diately from (8) that

δuk = δuk−1−Lek−1

= Guδuk−1 +Lvk−1
(34)

which yields

E [δuk] = GuE [δuk−1]+LE [vk−1]
= GuE [δuk−1]

= Gu
kE [δu0] .

(35)

Consequently, the result of the first item a) can be proved
by using (35).

Notice that δ ûk = −(uk−E [uk]) = ∆ûk and, hence,
Var [δuk] = Var [∆uk]. Subtract (35) from (34) to derive

δ ûk = Guδ ûk−1 +Lvk−1

which is equivalent to (25). Then an immediate consequence
is that (28) follows (see the proof of Proposition 2), based
on which the result of the second item b) can be derived.
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Again using (33), it yields

E [ek] = GpE [δuk] . (36)

Since limk→∞ E [δuk] = 0 is shown, limk→∞ E [ek] = 0 can be
ensured. Subtracting (36) from (33), it results in

êk = Gpδ ûk−vk

= Gp∆ûk−vk.

Consequently, (30) follows and then limk→∞ Var [ek] = Πe is
immediate (see the proof of Proposition 2). That is, the result
of the third item c) holds. The proof is complete.

Proof: [Proof of Proposition 6]: Assume that Assump-
tion A3) also works for m 6= p and it will see that the
hypothesis is not true. It is clear from Proposition 5 that if
Assumption A3) is assumed, then limk→∞ E [ek] = 0 holds
under the condition (16) or (17). Using Proposition 3, it
follows that this zero convergence of the expected tracking
error happens if and only if m = p holds. This contradicts
the hypothesis. Hence, the result claimed in this proposition
holds. The proof is complete.

REFERENCES

[1] R. W. Longman, “Iterative learning control and repetitive control for
engineering practice,” International Journal of Control, vol. 73, no.
10, pp. 930-954, Jul. 2000.

[2] D. H. Owens and J. Hatonen, “Iterative learning control–An optimiza-
tion paradigm,” Annual Reviews in Control, vol. 29, pp. 57-70, 2005.

[3] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of itera-
tive learning control: A learning-based method for high-performance
tracking control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96-114, Jun. 2006.

[4] H.-S. Ahn, Y. Chen, and K. L. Moore, “Iterative learning control:
Brief survey and categorization,” IEEE Transactions on Systems, Man,
and Cybernetics-Part C: Applications and Reviews, vol. 37, no. 6, pp.
1099-1121, Nov. 2007.

[5] H.-S. Lee and Z. Bien, “Study on robustness of iterative learning
control with non-zero initial error,” International Journal of Control,
vol. 64, no. 3, pp. 345-359, Jun. 1996.

[6] M. Sun and D. Wang, “Initial shift issues on discrete-time iterative
learning control with system relative degree,” IEEE Transactions on
Automatic Control, vol. 48, no. 1, pp. 144-148, Jan. 2003.

[7] J.-X. Xu and R. Yan, “On initial conditions in iterative learning
control,” IEEE Transactions on Automatic Control, vol. 50, no. 9, pp.
1349-1354, Sept. 2005.

[8] D. Meng, Y. Jia, J. Du, and S. Yuan, “Robust discrete-time iterative
learning control for nonlinear systems with varying initial state shifts,”
IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2626-
2631, Nov. 2009.

[9] J.-H. Moon, T.-Y. Doh, and M. J. Chung, “A robust approach to
iterative learning control design for uncertain systems,” Automatica,
vol. 34, no. 8, pp. 1001-1004, Aug. 1998.

[10] Q. Hu, J.-X. Xu, and T. H. Lee, “Iterative learning control design
for Smith predictor,” Systems and Control Letters, vol. 44, no. 3, pp.
201-210, Oct. 2001.

[11] A. Tayebi and M. B. Zaremba, “Robust iterative learning control de-
sign is straightforward for uncertain LTI systems satisfying the robust
performance condition,” IEEE Transactions on Automatic Control, vol.
48, no. 1, pp. 101-106, Jan. 2003.

[12] K. L. Moore, H.-S. Ahn, and Y. Chen, “Iteration domain H∞-optimal
iterative learning controller design,” International Journal of Robust
and Nonlinear Control, vol. 18, no. 10, pp. 1001-1017, Jul. 2008.

[13] M. Norrlof, “Disturbance rejection using an ILC algorithm with
iteration varying filters,” Asian Journal of Control, vol. 6, no. 3, pp.
432-438, Sept. 2004.

[14] R. Merry, R. van de Molengraft, and M. Steinbuch, “Removing
non-repetitive disturbances in iterative learning control by wavelet
filtering,” in Proceedings of the American Control Conference, Min-
neapolis, Minnesota, USA, pp. 226-231, Jun. 14-16, 2006.

[15] H.-F. Chen and H.-T. Fang, “Output tracking for nonlinear stochas-
tic systems by iterative learning,” IEEE Transactions on Automatic
Control, vol. 49, no. 4, pp. 583-588, Apr. 2004.

[16] S. S. Saab, “Selection of the learning gain matrix of an iterative
learning control algorithm in presence of measurement noise,” IEEE
Transactions on Automatic Control, vol. 50, no. 11, pp. 1761-1774,
Nov. 2005.

[17] S. S. Saab, “Optimal selection of the forgetting matrix into an iterative
learning control algorithm,” IEEE Transactions on Automatic Control,
vol. 50, no. 12, pp. 2039-2043, Dec. 2005.

[18] S. S. Saab, “Optimality of first-order ILC among higher order ILC,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1332-
1336, Aug. 2006.

[19] S. Gunnarsson and M. Norrlof, “On the disturbance properties of high
order iterative learning control algorithms,” Autumotica, vol. 42, no.
11, pp. 2031-2034, Nov. 2006.

[20] M. Butcher, A. Karimi, and R. Longchamp, “A statistical analysis of
certain iterative learning control algorithms,” International Journal of
Control, vol. 81, no. 1, pp. 156-166, Jan. 2008.

[21] D. Meng, Y. Jia, J. Du, and F. Yu, “H∞-based design approach to
discrete-time learning control systems with iteration-varying distur-
bances,” in Proceedings of the 48th IEEE Conference on Decision
and Control, Shanghai, China, pp. 4882-4887, Dec. 16-18, 2009.

[22] D. Meng and Y. Jia, “Effects of initial input on stochastic discrete-
time iterative learning control systems,” in Proceedings of the Chinese
Control Conference, Beijing, China, pp. 2193-2200, Jul. 29-31, 2010.

[23] D. Meng, Y. Jia, J. Du, and F. Yu, “Robust learning controller design
for MIMO stochastic discrete-time systems: An H∞-based approach,”
International Journal of Adaptive Control and Signal Processing, vol.
25, no. 7, pp. 653-670, Jul. 2011.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cam-
bridge University Press, 1985.

[25] U. Kotta, Inversion Method in the Discrete-time Nonlinear Control
Systems Synthesis Problems. London: Springer-Verlag, 1995.

4040


