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Abstract— In this paper, we propose a stochastic model to
describe how search service providers charge client companies
based on users’ queries for the keywords related to these
companies’ ads by using certain advertisement assignment
strategies. We formulate an optimization problem to maximize
the long-term average revenue for the service provider under
each client’s long-term average budget constraint, and design
an online algorithm which captures the stochastic properties
of users’ queries and click-through behaviors. We solve the
optimization problem by making connections to scheduling
problems in wireless networks, queueing theory and stochastic
networks. Unlike prior models, we do not assume that the
number of query arrivals is known. Due to the stochastic
nature of the arrival process considered here, either temporary
“free” service, i.e., service above the specified budget (which
we call “overdraft”) or under-utilization of the budget (which
we call “underdraft”) is unavoidable. We prove that our online
algorithm can achieve a revenue that is within O(ε) of the
optimal revenue while ensuring that the overdraft or underdraft
is O(1/ε), where ε can be arbitrarily small. With a view towards
practice, we also show that one can always operate strictly
under the budget.

Our algorithm also allows us to quantify the effect of errors
in click-through rate estimation on the achieved revenue. We
show that we lose at most ∆

1+∆
fraction of the revenue if ∆ is

the relative error in click-through rate estimation.

I. INTRODUCTION

Providing online advertising services has been the major
source of revenue for search service providers such as
Google, Yahoo and Microsoft. When an Internet user queries
a keyword, alongside the search results, the search engine
may also display advertisements from some companies which
provide services or goods related to this keyword. These
companies pay the search service providers for posting their
ads with a specified amount of price for each ad on a pay-
per-impression or pay-per-click basis. We call them “clients”
in the following text.

Maximizing the revenue obtained from their clients is the
key objective of search service providers. Research which
targets this objective has followed two major directions. One
is based on auction theory, in which the goal is to design
mechanisms in favour of the service provider, and much of
the research in this direction considers static bids (e.g. [8];
see [6] for a survey), while dynamic models such the one
in [15] are still emerging. The other is from the perspective
of online resource allocation without considering the impact
of the service provider’s mechanisms on the clients’ bids,
and the main focus of this kind of research is on designing
an online algorithm which posts specific ads in response to
each search query arriving online, in order to achieve a high

competitive ratio with respect to the offline optimal revenue.
Our work follows the second direction.

Our model is as follows:

Online Advertising Model:
Assume that queries for keyword q arrive to the search

engine according to a stochastic process at rate νq queries per
time slot, where we have assumed that time is discrete and a
“time slot” is our smallest discrete time unit. In response to
each query arrival, the search engine may display ads from
some clients on the webpage. There may be a number of
places (e.g., top, bottom, left, right, etc.) on a webpage where
ads could be displayed. We will call these places “webpage
slots.” When client i’s ad is displayed in webpage slot s
when keyword q is queried, there is a probability with which
the user who is viewing the page (the one who generated
the query) will click on the ad. This probability, called the
“click-through rate,” is denoted by cqis.

A client specifies the amount of money (“bid”) that it is
willing to pay to the search service provider when a user
clicks on its ad related to a specific query. We use rqi to
denote this per-click payment from client i for its ad related
to a query for keyword q. Additionally, client i also specifies
an average budget bi which is the maximum amount that it
is willing to pay per “budgeting cycle” on average, where a
budgeting cycle equals to N time slots (we have introduced
the notion of a budgeting cycle since the time-scale over
which queries arrive may be different than the time-scales
over which budgets may be settled).

The problem faced by the search service provider is then to
assign advertisements to webpage slots, in response to each
query, so that its long-term average revenue is maximized.

Based on the above model, we design an online algorithm
which achieves a long-term average revenue within O(ε) of
the offline optimal revenue, where ε can be chosen arbitrarily
small, indicating the near-optimality of our online algorithm.
Before entering into the details, in the next two subsections
we will first survey the related literature, highlight the
main contributions of our work, and discuss the differences
between our model and previous ones.

A. Related Work
We will only survey the online resource allocation models

here, and not the auction models.
Mehta et al. [14] modeled the online ads problem as a

generalization of an online matching problem [11] on a
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bipartite graph of queries and clients. Later in [2], Buch-
binder et al. showed that matching clients to webpage slots
(whether it is a single slot or multiple slots) can be solved
as a maximum-weighted matching problem. Following [2],
a number of other online algorithms using the maximum-
weighted bipartite matching idea have been proposed in [13],
[5], [3] and [4] (although earlier than [2], essentially [10] and
[14] were also using this maximum-weight matching idea).

The algorithms in [2], [5], [10] and [14] are 1 − 1/e
competitive. By modifying the algorithm in [14], Mahdian
et al. [13] designed a class of algorithms which achieve a
considerably better competitive ratio with accurate estimates
of the number of query arrivals for each keyword, while
still guarantee a reasonably good competitive ratio with
inaccurate estimates. Two learning-based algorithms in [3]
and [4] achieve a near-optimal competitive ratio of 1−O(ε)
based on a random-order arrival model (rather than the
adversarial model in most of the earlier work), assuming
small bids and knowledge of the total number of queries.

All of the algorithms in [2], [5], [3] and [4] use a primal-
dual framework to compute a maximum-weighted matching
at each iteration, in which the dual variables (corresponding
to each client) are used to determine the weights. Their
difference is that the algorithms in [2] and [5] dynamically
update the dual variables, while those in [3] and [4] take the
first ε fraction of queries to learn the optimal dual variables
(with respect to this training set) and kept static for use in
following queries.

A detailed survey can be found in our technical report
[16].

B. Our Contributions and Comparison to Prior Work
As in prior work (especially [2] and [5]), our solution

relies on a primal-dual framework to solve a maximum-
weighted matching problem on a bipartite graph of clients
and webpage slots, with dynamically updated dual variables
which contribute to the weights on the edges of the bipartite
graph. However, unlike prior work, we are able to obtain a
revenue which is O(ε) close to the optimal revenue using a
purely adaptive algorithm without the need for the knowledge
of the number of query arrivals over a time period or the
average arrival rates.

Our solution is related to scheduling problems in wireless
networks. In particular, we use the optimization decomposi-
tion ideas in [7], [9] and the stochastic performance bounds
in [12]. Borrowing from that literature, we introduce the
concept of an “overdraft” queue. The overdraft queue mea-
sures the amount by which the provided service temporarily
exceeds the budget specified by a client.

Our online algorithm exhibits a trade-off between the
revenue obtained by the service provider and the level of
overdrafts. Specifically, our algorithm can achieve a revenue
that is within O(ε) of the optimal revenue while ensuring
that the overdraft is O(1/ε), where ε can be arbitrarily small.
We can further modify our online algorithm so that clients
can always operate strictly under their budgets. Finally, our
algorithm and analysis naturally allow us to assess the impact
of click-through rate estimation on the service providers
revenue.

There are two points of departure in our algorithm com-
pared to existing models: the first one is that we assume
a purely stochastic model in which the query arrival rates
are unknown. Thus, there is no need to know the number
of arrivals in a time period as in prior models. The other is
that we assume an average budget rather a fixed budget over
a time horizon. This allows us to better model permanent
clients (e.g., big companies who do not stop advertising)
and who do not provide a fixed time-horizon budget. Clients
who advertise for a limited amount of time are not explicitly
modeled here. But we believe that our model will also handle
such clients well since the algorithm is naturally adaptive.
For such clients, one can divide their total budget by the time
horizon over which they contract with the service provider
to approximately model them in our framework.

A minor difference with respect to prior models is that
our model assumes that time is slotted. This can be easily
modified to assume that query arrivals can occur at any
time according to some continuous-time stochastic process.
The only difference is that our analysis would then involve
continuous-time Lyapunov drift instead of the discrete-time
drift used in this paper. From a theoretical point of view, our
analysis is different from prior work which uses competitive
ratios: our model and solution is similar in spirit to stochastic
approximation [1] where gradients (here the gradient of the
dual objective) are known only with stochastic perturbations.
This point of view is essential to model stochastic traffic with
unknown statistics.

Instead of the 1−O(ε) competitive ratio in prior work, we
show that our algorithm achieves a revenue which is within
O(ε) of the optimal revenue. The O(ε) penalty arises due
to the stochastic nature of our model. However, we do not
require assumptions such as knowledge of the total number
of queries in a given period [13], [3], [4], or information of
keyword frequencies [13].1

C. Organization of the Paper

The rest of the paper is organized as follows: In Section II,
we formulate an optimization problem involving long-term
averages. In Section III, we start considering the stochastic
version of our model and propose an online algorithm, which
also introduces the concept of “overdraft queue.” Perfor-
mance analysis of this online algorithm, which includes the
near-optimality of the long-term revenue and an upper bound
on the overdraft level, will also be done in Section III.
Section IV gives two extensions, namely the “underdraft”
mechanism and the decisions based on estimated click-
through rates. Section V concludes the whole paper.

II. AN OPTIMIZATION PROBLEM INVOLVING
LONG-TERM AVERAGES

Based on the model described in Section I, we first
pose the revenue maximization problem as an optimization
problem involving long-term averages. For this purpose, we

1It should be mentioned that another common assumption “small bids”
(or “large budgets”, “large offline optimal value”) used in [10], [14], [13],
[5], [3] and [4] is not essentially different from our “long-term” assumption.
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define an assignment of clients to webpage slots as a matrix
M of which the (i, s)th element is defined as follows:

Mis =

{
1, if client i is assigned to webpage slot s
0, else.

The matrix M has to satisfy some practical constraints.
First, a webpage slot can be assigned to only one client
and vise versa. Furthermore, the assignment of clients to
certain webpage slots may be prohibited for certain queries.
For example, it may not make sense to advertise chocolates
when someone is searching for information about treatments
for diabetes. These constraints can be abstracted as follows:
For the queried keyword q, the set of assignment matrices
have to belong to some set Mq. We also let p

qM
be the

probability of choosing matrix M when the queried keyword
is q.

The optimization problem is then given by

max
p

∑
q

νq
∑

M∈Mq

p
qM

∑
i,s

Miscqisrqi (1)

subject to

N
∑
q

νq
∑

M∈Mq

p
qM

∑
s

Miscqisrqi ≤ bi, ∀i; (2)

0 ≤ p
qM
≤ 1, ∀q, M ∈Mq; (3)∑
M∈Mq

p
qM
≤ 1, ∀q. (4)

In the above formulation, the objective (1) is the average
revenue per time slot and constraint (2) expresses the fact
that the average payment over a budgeting cycle should
not exceed the average budget. The optimization is a linear
program and if all the problem parameters are known, in
principle, it can be solved offline, returning probabilities
{p

qM
} which can be used by a service provider to maximize

its revenue. However, such an offline solution is not desirable
for at least two reasons:

• Being a static approach, it does not use any feedback
about the current state of the system. For example, the
fact that the empirical average payment of a client has
severely exceeded its average budget would have no
impact on the subsequent assignment strategy. Since
the formulation and hence, the solution, only cares
about long-term budget constraint satisfaction, severe
overdraft or underdraft of the budget can occur over
long periods of time.

• The offline solution is a function of the query arrival
rates {νq}. Thus, a change in the arrival rates would
require a recomputation of the solution.

In view of these limitations of the offline solution, we
propose an online solution which adaptively assigns client
advertisements to webpage slots to maximize the revenue.
As we will see, the online solution does use feedback about
the overdraft (or underdraft) level in future decisions, and
does not require knowledge of {νq}.

III. ONLINE ALGORITHM AND PERFORMANCE ANALYSIS

A. A Dual Gradient Descent Solution
To get some insight into a possible adaptive solution to

the problem, we first perform a dual decomposition which
suggests a gradient solution. However, a direct gradient
solution will not take into the account the stochastic nature
of the problem and will also require knowledge of the
query arrival rates {νq}. We will address these issues in the
following subsections, using techniques that, to the best of
our knowledge, have not been used in prior literature on the
online advertising problem.

We append the constraint (2) to the objective (1) using
Lagrange multipliers δi ≥ 0 to obtain a partial Lagrangian
function

L(p, δ) =
∑
q

νq
∑

M∈Mq

p
qM

∑
i,s

Miscqisrqi −
∑
i

δi ·∑
q

νq
∑

M∈Mq

p
qM

∑
s

Miscqisri −
bi
N


=
∑
q

νq
∑

M∈Mq

p
qM

∑
i,s

Miscqisrqi(1− δi) +
∑
i

δibi
N

,

subject to constraints (3) and (4). The dual function is

D(δ) = max
p

∑
q

νq
∑

M∈Mq

p
qM

∑
i,s

Miscqisrqi(1−δi)+
∑
i

δibi
N

,

subject to constraints (3) and (4). Note that the maximization
part in the dual function can be decomposed into independent
maximization problems with regard to each queried keyword
q, i.e., for all q,

max
{p

qM
, M∈Mq}

∑
M∈Mq

p
qM

∑
i,s

Miscqisrqi(1− δi)

= max
M∈Mq

∑
i,s

Miscqisrqi(1− δi),

where it is easy to see that each maximization is solved by
a deterministic solution. This suggests the following primal-
dual algorithm to iteratively solve the original optimization
problem (1): at step k,

∀q, M̂∗(q, k) ∈ arg max
M∈Mq

∑
i,s

Miscqisrqi(1− δi(k));

∀i, δi(k + 1) =

[
δi(k) + ε

(
N
∑
q

νq
∑
s

[M̂∗(q, k)]is ·

cqisrqi − bi
)]+

,

where ε > 0 is a fixed step-size parameter, and [x]+ =
x if x ≥ 0 or [x]+ = 0 otherwise. Furthermore, defining
Q̂i(k) , δi(k)/ε, the above iterative algorithm becomes

∀q, M̂∗(q, k) ∈ arg max
M∈Mq

∑
i,s

Miscqisrqi

(
1

ε
− Q̂i(k)

)
;

∀i, Q̂i(k + 1) =
[
Q̂i(k) + λ̂i(k)− bi

]+
,
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where

λ̂i(k) , N
∑
q

νq
∑
s

[M̂∗(q, k)]iscqisrqi. (5)

Note that Q̂i(k) can be interpreted as a queue which has
λ̂i(k) arrivals and bi departures at step k. Although this
algorithm already uses the feedback provided by {Q̂(k)}
(or {δ(k)}) about the state of the system, it is still using
a priori information about the arrival rates of queries in
{λ̂(k)}, hence not really “online.” However, it motivates us
to incorporate a queueing system with stochastic arrivals into
the real online algorithm, which will be described in the next
subsection.

B. Stochastic Model, Online Algorithm, and “Overdraft
Queue”

In practice, a search service provider may not have a priori
information about the query arrival rates {νq}, and generally,
query arrivals during each time slot are stochastic rather than
constant. Let time slots be indexed by t ∈ Z+ ∪ {0}. We
specify our detailed statistical assumptions as follows:
• Query arrivals: Assume that a time slot is short enough

so that query arrivals in each time slot can be modeled
as a Bernoulli random variable with occurrence prob-
ability ν. The probability that an arrived query is for
keyword q is assumed to be ϑq and

∑
q ϑq = 1. Let

q̃(t) represent the index of the keyword queried in time
slot t, such that q̃(t) = q w.p. νq = νϑq for all q
(indexed by positive integers) and q̃(t) = 0 w.p. 1− ν,
which accounts for the case that no query arrives.

• Budget spending: We limit the values of budget spent
in each budgeting cycle to be integers. To match the
average budget bi (when it is not an integer), the budget
of client i in budgeting cycle k is assumed to be a
random variable b̃(k) which equals dbie w.p. %i and bbic
otherwise, such that E[b̃(k)] = %idbie+ (1− %i)bbic =

bi, i.e., %i = bi−bbic
dbie−bbic = bi − bbic. For the trivial case

that bi is already an integer, we let %i = 1.
• Click-through behaviors: In time slot t, after a query

for keyword q arrives, if the ad of client i is posted on
webpage slot s in response to this query, then whether
this ad will be clicked is modeled as a Bernoulli random
variable c̃qis(t) with occurrence probability cqis.

We now want to implement the above iterative algorithm
online based on this stochastic model. According to defini-
tion (5), λ̂i includes average query arrivals and click-through
choices within N time slots (i.e., one budgeting cycle). Thus,
each iteration step in the online algorithm should correspond
to a budgeting cycle. For convenience, we define

u(k) , {q̃(t), c̃(t) for kN ≤ t ≤ kN +N − 1}

as a collection of random variables describing user behav-
iors (including stochastic query arrivals and click-through
choices) in budgeting cycle k. The online algorithm is then
described as follows:

Online Algorithm: (starting from k = 0)

In each time slot t ∈ [kN, kN + N − 1], if q̃(t) > 0,
choose the assignment matrix

M̃∗(t, q̃(t),Q(k))

∈ arg max
M∈Mq̃(t)

∑
i,s

Miscq̃(t)isrq̃(t)i

(
1

ε
−Qi(k)

)
.(6)

At the end of each budgeting cycle k, for each client i, update

Qi(k + 1) =
[
Qi(k) +Ai(k,Q(k),u(k))− b̃i(k)

]+
, (7)

where

Ai(k,Q(k),u(k))

,
kN+N−1∑

t=kN

∑
s

[M̃∗(t, q̃(t),Q(k))]is · c̃q̃(t)is(t) · rq̃(t)i. (8)

Here, Ai(k,Q(k),u(k)) represents the revenue obtained by
the service provider from client i during budgeting cycle
k, and recall that b̃i(k) is a random variable which takes
integer values whose mean is equal to the average budget
per budgeting cycle.

In this algorithm, client i is associated with a virtual
queue Qi (maintained at the search service provider). During
budgeting cycle k, the amount of money client i is charged by
the search service provider Ai(k,Q(k),u(k)) is the arrival
to this queue, and the average budget per budgeting cycle
bi is the departure from this queue. Note that if this queue
is positive, it means that the total value of the real service
already provided to the client has temporarily exceeded
the client’s budget, i.e., “free” service has been provided
temporarily. Hence, we call this queue the “overdraft queue.”

There are two different time scales here. The faster one is
a time slot, the smallest time unit used to capture user be-
haviors (including stochastic query arrivals and click-through
choices) and execute ad-posting strategies. The slower one
is a budgeting cycle (equal to N time slots), at the end of
which the overdraft queues are updated based on the revenue
obtained over the whole budgeting cycle.

We make the following assumptions on the above stochas-
tic model: {q̃(t)} are i.i.d. across time slots t; {c̃qis(t)} are
independent across q, i, s, and t; each variable in {q̃(t)}
and each variable in {c̃qis(t)} are mutually independent. In
fact, the model can be generalized to allow for query arrivals
correlated over time and across keywords, and other similar
correlations inside the click-through choices or between these
two stochastic processes. Such models would only make the
stochastic analysis more cumbersome, but the main results
will continue to hold under these more general models.

In order to guarantee that the Markov chain which we
will define later is both irreducible and aperiodic, we further
assume that the probability of whether there is an arrival in
a time slot ν ∈ (0, 1). We also assume that rqi for all q and
i can only take integer values. Together with the fact that
b̃(k) takes integer values, {Q(k)} becomes a discrete-time
integer-valued queue. Note that assuming integer values is
only for ease of analysis, but not necessary.

4507



C. An Upper Bound on the Overdraft

According to the ad assignment step (6), if at the beginning
of budgeting cycle k, Qi(k) > 1/ε, then for this budgeting
cycle, the ith row of M̃∗(t, q,Q(k)) is always a zero vector,
i.e., the service provider will not post the ads of client i
until Qi(k) falls below 1/ε. Since by assumption the number
of query arrivals per time slot is upper bounded, for any
budgeting cycle k, one can bound the transient length of
each overdraft queue as below:

Qi(k) ≤ 1

ε
+N · arg max

q,s
{rqicqis} − bbic, ∀i.

Therefore, Qi(k) ∼ O(1/ε) for all i, and stability is not an
issue for these “upper bounded” queues. It further implies
that this online algorithm satisfies the budget constraints in
the long run, i.e.,

lim
K→∞

E

[
1

K

K−1∑
k=0

Ai(k,Q(k),u(k))

]
≤ bi, ∀i. (9)

D. Near-Optimality of the Online Algorithm

We now show that, in the long run, the proposed online
algorithm achieves a revenue that is close to the optimal rev-
enue. For convenience, we use R̄(p) to denote the objective
in (1), i.e.,

R̄(p) ,
∑
q

νq
∑

M∈Mq

p
qM

∑
i,s

Miscqisrqi, (10)

and we will use p∗ and R̄(p∗) in the following text to
respectively represent the offline optimal solution and the
offline optimal objective value for the optimization problem
(1). At the same time, we define the revenue obtained during
budgeting cycle k as

R(k) ,
∑
i

Ai(k,Q(k),u(k)).

To prove the convergence of the long-term average revenue
to R̄(p∗), we start with the following lemma:

Lemma 1: Consider the Lyapunov function V (Q) =
1
2

∑
iQ

2
i . For any ε > 0, and each time period k,

E[V (Q(k + 1))|Q(k) = Q]− V (Q)

≤ −N
ε

(
R̄(p∗)− R̄(p̃∗(k,Q))

)
+B1 −B2

∑
i

Qi,

where

B1 ,
1

2

∑
i

(
(N · arg max

q,s
{cqisrqi})2 + dbie2(bi − bbic)

+bbic2(1− bi + bbic)
)
, (11)

B2 , min
i
{bi−N

∑
q

νq
∑

M∈Mq

p∗
qM

∑
s

Miscqisrqi}, (12)

and p̃∗(k,Q) , {p̃∗
qM

(k,Q), ∀q,M ∈ Mq} where
p̃∗

qM
(k,Q) equals 1 if M = M̃∗(t, q,Q) for kN ≤ t ≤

kN+N−1 (i.e., the optimal matrix in the maximization step

(6)) and 0 otherwise. and p∗ is the offline optimal solution
to optimization problem (1). �

The proof is given in our technical report [16].
Now we are ready to present one of the major theorems

in this paper, indicating that the long-term average revenue
achieved by our online algorithm is within O(ε) of the
maximum revenue obtained by the offline optimal solution.
The proof is also given in our technical report [16].

Theorem 1: For any ε > 0,

0 ≤ lim
K→∞

E

[
R̄(p∗)− 1

KN

K−1∑
k=0

R(k)

]
≤ B1ε

N
,

for some constant B1 > 0 (defined in (11) in Lemma 1). �

IV. EXTENSIONS

A. Underdraft: Staying under the Budget

In the previous section, we allowed the provision of
temporary free service to clients, which we call overdraft.
If this is not desirable for some reason, the algorithm
can be modified to have non-positive overdraft under the
reasonable assumption that the number of arrivals in each
time slot is bounded. We do this by allowing the queue
lengths to become negative, but not positive. The practical
meaning of negative queue lengths is to allow each client to
accumulate a certain volume of “credits” if the current budget
is under-utilized and use these credits to offset future possible
overdrafts. We call this negative queue length “underdraft.”
Corresponding to this mechanism, we modify our online
algorithm as follows: in response to each query for keyword
q, which arrives in time slot t ∈ [kN, kN +N − 1], choose
the assignment matrix

M̃∗(t, q̃(t),Q(k))

∈ arg max
M∈Mq̃(t)

∑
i,s

Miscq̃(t)isrq̃(t)i (Γi −Qi(k)) ,

and at the end of budgeting cycle k, for each client i, update

Qi(k+1) = max{Qi(k)+Ai(k,Q(k),u(k))− b̃i(k),−Ci},

where Γi denotes a customized “throttling threshold” (not
necessarily 1/ε) and Ci denotes the maximum allowable
credit volume for client i. Setting

Γi :=

[
bbic −N · arg max

q,s
{rqicqis}

]−
(13)

and Ci := 1/ε − Γi for all i, we can always eliminate
overdrafts (i.e., Qi(k) ≤ 0 for all k). We can show the
same near-optimal revenue by simply shifting Qi(k) to be
nonnegative, i.e., Q̃i(k) := Qi(k)+Ci for all i. Detailed dis-
cussions about the underdraft mechanism, including possible
unfairness problems, can be found in our technical report
[16].
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B. Impact of Click-Through Rate Estimation
In our online algorithm, the decision of picking an optimal

ad assignment matrix in (6) in response to each query is
based on the true click-through rates c. In reality, an estimate
ĉ based on historical click-through behaviors is used, i.e., in
response to each query for keyword q, which arrives in time
slot t ∈ [kN, kN+N−1], we choose the assignment matrix

M̃∗(t, q̃(t),Q(k))

∈ arg max
M∈Mq̃(t)

∑
i,s

Misĉq̃(t)isrq̃(t)i

(
1

ε
−Qi(k)

)
.

We then have the following corollary in addition to
Theorem 1 in Subsection III-D:

Corollary 1: Assume that the estimated click-through
rates ĉ ∈ [c(1 − ∆), c(1 + ∆)] with some ∆ ∈ (0, 1).
Under our online algorithm with estimated click-through
rates, Q(k) is still positive recurrent. For any ε > 0,

lim
K→∞

E

[
1

KN

K−1∑
k=0

R(k)

]
≥
(

1−∆

1 + ∆

)
· R̄(p∗)− B1ε

N
,

for some constant B1 > 0 (defined in equation (11) in
Lemma 1). �

The proof is given in our technical report [16].

Remark 1: Corollary 1 tells us that for small ε, the long-
term average revenue achieved by our online algorithm with
estimated click-through rates will be at least

(
1−∆
1+∆

)
of the

offline optimal revenue. �
It is easy to see that the upper bound on the overdraft level

still holds in this case.

V. CONCLUSIONS

In this paper, we propose a stochastic model to de-
scribe how search service providers charge client companies
based on users’ queries for the keywords related to these
companies’ ads by using certain advertisement assignment
strategies. We formulate an optimization problem to maxi-
mize the long-term average revenue for the service provider
under each client’s long-term average budget constraint, and
design an online algorithm which captures the stochastic
properties of users’ queries and click-through behaviors. We
solve the optimization problem by making connections to
scheduling problems in wireless networks, queueing theory
and stochastic networks.

With a small customizable parameter ε which is the step
size used in each iteration of the online algorithm, we have
shown that our online algorithm achieves a long-term average
revenue which is within O(ε) of the optimal revenue and the
overdraft level of this algorithm is upper bounded by O(1/ε).
By allowing negative values for the length of overdraft
queues, we can eliminate overdraft.

When estimated click-through rates instead of true ones
are used in our online algorithm, we show that the achievable
fraction of the offline optimal revenue is lower bounded by
1−∆
1+∆ , where ∆ is the relative error in click-through rate
estimation.

In the work following this paper (see [16]), we further
prove that in the long run, an expected overdraft level
of Ω(log(1/ε)) is unavoidable (a universal lower bound)
under any stationary ad assignment algorithm which achieves
a long-term average revenue within O(ε) of the offline
optimum, and also show the tightness of this lower bound.
Additionally, in [16] we extend our results to a click-through
rate maximization model, and show how our algorithm can
be modified to handle non-stationary query arrival processes
and clients with short-term contracts.
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