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Abstract— Polynomial-time algorithms are proposed for com-
puting tight ellipsoidal bounds on the state trajectories of
discrete-time linear systems with time-varying or time-invariant
linear fractional parameter uncertainties and ellipsoidal uncer-
tainty in the initial state. The approach employs linear matrix
inequalities to determine an initial estimate of the ellipsoid,
which is improved by the subsequent application of the skewed
structured singular value. Tradeoffs between computational
complexity and conservatism are discussed for the three algo-
rithms. Small conservatism for the tightest bounds is observed
in numerical examples used to compare the algorithms.

I. INTRODUCTION

Identifying the potential ranges for the states in an uncer-
tain dynamical system is important in many systems engi-
neering problems such as safety analysis [1], satellite control
[2], and attitude estimation of aerospace and underwater
vehicles [3]. Motivated by various applications, many papers
have considered the state outer bounding problem for time-
varying [4], [5], [6] and time-invariant perturbations [7], [8],
[9] (see [10] for a discussion of the greater difficulty for time-
invariant perturbations). The bounding of the state vector by
ellipsoid has been deeply discussed in literature for discrete-
time linear dynamical systems with unknown-but-bounded
uncertainties (e.g., see [11], [5] and citations therein), includ-
ing for additive perturbations [4], combinations of state-space
matrix and additive perturbations [5], and linear fractional
perturbations [6]. The relative merits of ellipsoidal and ∞-
norm-bounded uncertainty descriptions within the context of
this problem have been discussed [12].

In this paper, a new approach for computating tight
ellipsoidal outer bounds is presented. The approach applies
to time-invariant, time-varying, and mixed parametric un-
certainties, with ellipsoidal initial state uncertainties. On
contrast to the vast majority of the literature that assumes
that the system dynamics depend on the perturbations in
a restrictive way (e.g., affine); this paper (1) treats linear
fractional perturbations (as in [6]), which includes other
dependencies such as polytopic, polynomial, and rational
as special cases, and (2) presents algorithms that propagate
the uncertain state for multiple time instances, which can
dramatically reduce conservatism for both time-invariant and
time-varying perturbations.

The key idea of the proposed approach is to first employ
linear matrix inequalities (LMIs) [13] to estimate the orien-
tation and ratios of axis lengths of the ellipsoid, followed
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by application of the skewed structured singular value [14]
to compute two-sided bounds on the size of the ellipsoid.
Numerical algorithms are proposed that employ various
strategies to reduce the computational cost.

Section II presents the problem statement and some
mathematical background. Section III presents a preliminary
analysis needed for Section IV that proposes the numerical
algorithms, which are applied and compared in numerical
examples in Section V. Section VI concludes the paper.

II. PROBLEM STATEMENT AND MATHEMATICAL
BACKGROUND

The problem statement is summarized below.

Problem 2.1: Let xk, ck ∈ Rn denote the state
and nominal state vectors at time instance k ∈
{0, 1, 2, · · · }, p ∈ Rm denote a vector of uncertain
real parameters, and T : Rn × Rm → Rn be a
linear fractional function of its arguments. Given an
uncertain value for the initial states x0,

(x0 − c0)TE0(x0 − c0) ≤ 1, E0 > 0, (1)

and discrete-time uncertain dynamical system

xk+1=T (p)xk, pmin≤p≤pmax, k=0, 1, 2, · · ·, (2)

determine an ellipsoidal outer bound on the state vec-
tor xk specified by Ek > 0, and ck, k = 1, 2, 3, · · · ,
such that

min log detE−1
k (3)

subject to Ek > 0 and (xk − ck)TEk(xk − ck) ≤ 1,

∀xk ∈ Sk = {xk satisfying (1) and (2)}.

The set of linear fractional functions {T} includes the sets
of polytopic, polynomial, and rational functions (e.g., [15]).
The objective (3) is to determine, for each time instance, the
ellipsoid of minimum volume that outer bounds the state vec-
tor.1 This paper proposes to approach Problem 2.1 through
a combination of LMIs and the skewed structured singular
value, applied to T written in terms of a linear fractional
transform (LFT) of a structured perturbation matrix.

Definition 2.2 (Mixed Structured Perturbation [15]):
A mixed structured perturbation ∆ is a matrix with the

1Alternative objectives, such as minimizing the trace as in [6], can be
addressed by the algorithms in this paper by slightly modifying the first
step of the LMI formulation.
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specified structure:

∆ = diag{δr1Ik1
, · · · , δrmr

Ikmr
, δc1Ikmr+1

, · · · , δcmc
Ikmr+mc

,

∆C
mr+mc+1, · · · ,∆C

mr+mc+mC
},

with real scalars δri , complex scalars δcj , and full complex
blocks ∆C

q ∈ Ckmr+mc+q×kmr+mc+q . The integers mr, mc,
mC , and ki define the structure of the perturbation. A real
scalar δri (or complex scalar δci ) is said to be repeated if the
integer ki > 1.

Definition 2.3 (Linear Fractional Transformation [15]):
A mapping Fu : Cq1×p1 → Cp2×q2 of the form

Fu(N,∆p) = N22 +N21∆p(I −N11∆p)−1N12,

with

N=

[
N11 N12

N21 N22

]
∈ C(p1+p2)×(q1+q2), ∆p ∈ Cq1×p1 ,

such that (I−N11∆p)−1 exists, is a (upper) linear fractional
transformation (LFT) (see Fig. 1a).

A noninvertable I −N11∆p occurs for some perturbation
∆p of interest if and only if the LFT is ill-posed. The
existence of the inverse of I −N11∆p for the perturbations
∆p under consideration can be evaluated using the structured
singular value [15]. To simplify the presentation, this paper
assumes that this verification is carried out before applying
the algorithms.

N

∆p

1 Fu(N, ∆p)
N

∆p

∆c

(a) Block diagram for an LFT

N

∆p

1 Fu(N, ∆p)
N

∆p

∆c

(b) Augmented block di-
agram for ν-analysis

Fig. 1: LFTs and Main Loop Theorem
To express an uncertain parameter vector p defined by box

constraints in terms of an LFT, define

p = pc +Wpδp̄, |δp̄j | ≤ 1,

pc =
1

2
(pmax + pmin), Wp =

1

2
diag{pmax − pmin},

then, the uncertain system (2) can be written as

xk+1 = T (pc +Wpδp̄)xk+1 (4)
= Fu(N,∆p)xk (5)

where

N =

[
N11 N12

N21 N22

]
, ∆p = diag{δp̄1Ik1

, · · · , δp̄mIkp
},

where the values of ki depend on the order and structure of
the map T .

The transformation from (4) to (5) is always possible for
any well-posed linear fractional function by using block-

diagram algebra [15], and for any well-posed polynomial or
rational function by application of multidimensional realiza-
tion algorithms [16]. The LFT for any particular function is
not unique, and LFTs are desired in which the dimension of
∆p is minimal, so as to minimize the computational cost of
the proposed algorithms. Multidimensional model reduction
algorithms (e.g., see [17] and references cited therein) can be
applied to an LFT to reduce its dimensions before applying
the proposed algorithms.

The outer bounding algorithms employ the skewed struc-
tured singular value.

Definition 2.4 (Skewed Structured Singular Value [14]):
The skewed structured singular value of N with respect to
∆ = diag{∆1,∆2}, where ∆1 and ∆2 are two structured
perturbations, is defined by

ν∆(N)=


(min{k|∃∆ = diag{∆1, k∆2} with ‖∆i‖ ≤ 1

and det(I −N∆) = 0})−1

0, if no k or ∆ exist such that det(I −N∆) = 0

where ‖ · ‖ is the induced matrix 2-norm.
Upper and lower bounds on ν can be computed in poly-

nomial time, with no more effort than non-skewed structured
singular value calculations [18], [19], by a variety of methods
including power iterations and linear matrix inequalities. The
next result relates the LFT (5) for the uncertain system (2)
to the skewed structured singular value ν.

Theorem 2.5 (Scaled Main Loop Theorem [14], [18]):
For any well-posed LFT in the uncertain dynamical system
xk+1 = Fu(N,∆p)xk,

max
‖∆p‖≤1

‖Fu(N,∆p)‖ = ν∆(N),

where ∆ =

[
∆p 0
0 ∆C

]
, ‖∆C‖ ≤ 1,

and ∆C is a complex full-block perturbation.
By defining N appropriately, this result can also be applied

to compute bounds on the minimum diameter of an ellipsoid
that overbounds the state vector when the ellipsoid’s axis
orientations and relative lengths are pre-specified. The next
section gives some preliminary analysis used in the subse-
quent derivation of LMI-based algorithms for determining
the ellipsoid’s axis orientations and relative lengths.

III. PRELIMINARY ANALYSIS: UNCERTAINTY ONLY IN
THE INITIAL STATE

For a known nonsingular linear system, (2) simplifies to

xk+1 = Txk.

Given a state xk with uncertainty that can take any value
within the ellipsoid,

(xk − ck)TEk(xk − ck) ≤ 1, Ek > 0,

an outer bounding ellipsoid parameterized by Ek+1 > 0 and
ck+1 satisfies

(xk+1 − ck+1)TEk+1(xk+1 − ck+1) ≤ 1
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for all xk+1 ∈ Sk+1. By application of the S-procedure [20],
the state is outer bounded by this ellipsoid if and only if there
exists λ ≥ 0 that satisfies the linear matrix inequality TTEk+1T −TT ĉk+1 0

−ĉTk+1T −1 −ĉTk+1T
0 −TT ĉk+1 −TTEk+1T


−λ

 Ek −Ekck 0
−cTkET

k cTkEkck − 1 0
0 0 0

 ≤ 0,

where ĉk+1 = Ek+1ck+1 (detailed derivation not given
here due to space constraints).2 A solution to this LMI for
invertible T that gives an ellipsoid of minimum volume is
(see Section 4.3 of [21])

Ek+1 = T−TEkT
−1, ck+1 = Tck,

which occurs for λ = 1. From the Loewner-Behrend Theo-
rem [22], [23], this minimum-volume ellipsoid is unique.

Repeating the above procedure from the uncertain initial
condition implies that the minimum-volume ellipsoids for all
time instances k are given by

Ek = (T−T )kE0(T−1)k, ck = T kc0. (6)

These ellipsoidal covers on the states are exact, which can
be observed checking the map between the boundary of the
ellipsoid at time instance k to the boundary of the ellipsoid
of time instance k + 1.

Remark 3.1: The above analysis can be generalized to
singular T . If T is singular, then there exist nonzero x1 ∈ Sk

that map to the origin and x1 and all subsequent xk lie in a
lower dimensional space. This lower dimensional space and
its covering ellipsoid are of dimension n − m, where n is
the dimension of the matrix T and m is the number of zero
eigenvalues of T .

The next section addresses uncertain state matrices.

IV. PROPOSED ALGORITHM: UNCERTAIN SYSTEMS

Due to space limitations, this section describes the case
of ck = 0 for all k (the analysis is similar for ck 6= 0).
Application of the S-procedure implies that Ek+1 specifies
an outer bounding ellipsoid for xk+1 for fixed T if

TTEk+1T ≤ Ek,

with the Ek specifying the minimum-volume ellipsoid when
the inequality is an equality (6). The following algorithms
employ this LMI to address uncertainties in the state matrix.

A. Algorithm I: One Step Ahead

This algorithm applies to time-varying perturbations. Re-
call that the uncertain system (2) is written as

xk+1 = Fu(N,∆p)xk, ‖∆p‖2 ≤ 1,

where xTkEkxk ≤ 1, Ek > 0,

2This derivation is simpler than an equivalent LMI derived elsewhere [6].

is given. The minimum-volume ellipsoid is described by

min log detE−1
k+1 (7)

subject to
Ek+1 > 0, (8)

Fu(N,∆p)TEk+1Fu(N,∆p)− Ek ≤ 0. (9)

For general LFTs, it is straightforward to apply the proof
technique in [24] to show that this nonconvex optimization
is NP-hard. An approximate solution Y for Ek+1 can be
obtained by replacing (9) by the
• nominal system: Fu(N, 0)TY Fu(N, 0)− Ek ≤ 0, or
• average: F̄u(N,∆p)TY F̄u(N,∆p) − Ek ≤ 0, where
F̄ (N,∆p) is an elementwise averaged matrix over mul-
tiple sampled ∆p within the uncertainty set, or

• extreme uncertainties: Fu(N,∆p,i)
TY Fu(N,∆p,i) −

Ek ≤ 0, i = 1, · · · , 2m, where m is the dimension
of parameter p.

An improved solution to (7) can be obtained by combining
one of the approximations for (9) with the application of ν
to determine an optimal scaling of the ellipsoid. Remember
that the approximate solution was used to fix the shape of
the ellipsoid, and does not mean approximate covering of
the states. For specificity, the steps are described for the case
when extreme uncertainties are used, with similar steps for
the other cases.
Step 1: Solve

min log detY −1
k

subject to
Yk > 0,

Fu(N,∆p,i)
TYkFu(N,∆p,i)− Ek ≤ 0, i = 1, · · · , 2m,

where each ∆p,i has ±1 as its diagonal elements.
Step 2: Set
Mk+1,11 = N11, Mk+1,12 = N12,

Mk+1,21 = Y
1/2
k N21E

−1/2
k , Mk+1,22 = Y

1/2
k N22E

−1/2
k ,

and compute upper and lower bounds on ν∆(Mk+1).
Step 3: The ellipsoidal bound on the state

1

ν2
∆(Mk+1)

xTk+1Ykxk+1 ≤ 1,

xTk+1Ek+1xk+1 ≤ 1, Ek+1 =
1

ν2
∆(Mk+1)

Yk,
(10)

is the ellipsoid of minimum volume with rotation and relative
magnitude of axes defined by Yk. Replacing ν with its
upper bound in (10) results in an ellipsoid that is guaranteed
to cover the state xk+1 for all perturbations within the
uncertainty description.

Instead of propagating the state, this algorithm propagates
the ellipsoidal bound on the state at each time instance k
(i.e., E0 is used to compute E1, E1 is used to compute
E2, etc.), with approximately constant computational cost
per time instance.

B. Algorithm II: Compound
This algorithm can treat each real parametric uncertainty

as being time-invariant or time-varying and propagates the
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state instead of the state bounds between time instances,
which requires the use of a new N and ∆p for each time
instance. The only uncertainty at each time instance is in the
initial state x0 and the uncertain parameters. The structure
of ∆p in the ν computations depend on the time dependency
of each uncertain parameter. At each time instance k, with
the given initial uncertainty E0, Ek is computed using the
same expressions for Algorithm I but with different N and
∆p constructed using standard methods [15]. For the special
case of all parameters being time-invariant, these N and ∆p

are constructed from Fu(N,∆p)k. Analytical expressions for
these LFTs are available [15].

C. Algorithm III: Receding Horizon

This algorithm combines the update strategies in Algo-
rithms I and II, so as to be more computationally efficient
than Algorithm II, but with the introduction of potential
conservatism. The algorithm employs a moving horizon s:
at each time instance k ≤ s, this algorithm coincides with
Algorithm II. As each time instance k > s, Ek is computed
from Ek−s by using Fu(N,∆p)s for time-invariant param-
eters.

TABLE I: Comparison of Algorithms∗
At kth step I II III

Comp. Cost Ratio 1 k min{k, s}
Bounds possibly loose tight moderate

Dependency xk−1 x0 xk−1−s to xk−1
∗ Same for both time-invariant and time-varying.

V. NUMERICAL EXAMPLES

The proposed algorithms are compared in three numerical
examples with upper and lower bounds on each uncertain
parameter. The upper and lower bounds on ν were computed
by using YALMIP [25] and the Skew Mu Toolbox (SMT)
[26]. To simplify the discussion, bounds on each uncertain
parameter are assumed to be time-invariant regardless of
whether the uncertainty is time-invariant or time-varying.
A. Coordinate Transformation

This simple example is a discrete-time variation of a
continuous-time problem used to evaluate the accuracy of
state-bounding algorithms in handling rotations in the state
vector [27]. These examples are useful model problems
because many state-bounding algorithms applied to such
systems can produce conservatism approaching∞ as k →∞
[27].

The numerical example is a coordinate transformation that
rotates and scales the state vector:[

x1,k+1

x2,k+1

]
= α

[
1 p
−p 1

] [
x1,k

x2,k

]
,

where x1,k and x2,k are the states at time instance k, p
is a parameter, and α is a scaling constant. The choice
α = 1/

√
1 + p2 describes state vectors that rotate in 2

dimensions. Bounds on each state are computed from LFTs
derived for each state at each time instance k.

The associated LFTs are summarized below, to clearly
delineate the differences between the three algorithms. The

systems can be written in terms of LFTs as[
x1,k+1

x2,k+1

]
= Fu(N,∆p)

[
x1,k

x2,k

]
, (Alg. I)

= Fu(Nk,∆p,k)

[
x1,0

x2,0

]
, (Alg. II)

= Fu(Ns,∆p,s)

[
x1,s−k
x2,s−k

]
, (Alg. III)

where N =

 02 I2

α

[
0 wp

−wp 0

]
α

[
1 pc
−pc 1

]  ,
∆p = δp̄I2,

(11)

and Nk, Ns, ∆p,k and ∆p,s are given by the expressions
for multiplication of LFTs [15]. The time dependency of the
parameters appears in the structures of ∆p,k and ∆p,s.

The ellipsoidal outer bounds for Algorithms I-III for
uncertain parameter p are indistinguishable from the exact
outer bounding ellipsoid for p ∈ [0.9, 1.1] and α = 1/

√
2

(see Fig. 3). The outer bounding ellipsoids produced by
Algorithms I-III are different for p ∈ [−0.3, 0.3] and α = 1,
with Algorithm II with time-invariant p having the smallest
conservatism and Algorithm I with time-varying p having
the largest, as expected from the theoretical derivations in
Section V (see Fig. 4). None of the algorithms have the
large conservatism reported by some other methods [27]. Al-
gorithm I, which treats the parameter as being time-varying,
ranged from producing the same tight outer ellipsoids as Al-
gorithms II-III to producing larger ellipsoids(compare Figs.
3 and 4).

B. Quasi-Coordinate Transformation

Consider the system[
x1,k+1

x2,k+1

]
= α

[
1 p+ q

p− q 1

] [
x1,k

x2,k

]
,

where p is an uncertain parameter of unknown sign and
q is a known parameter. For q2 − p2 > 0 this system
is obtained by discretization of a continuous-time system
with uniform circular motion at constant speed with angular
velocity ω =

√
q2 − p2 and unit mass and radius, x1 is

the x-coordinate for a point on a unit circle, and x2 is
an intermediate state that relates the x-coordinate to the
acceleration and position of the point (d2x1/dt

2 = −ω2x1).
For q = 0, this system is a positive gradient system (negative
spring constant) where the potential function is proportional
to its position x1 with proportionality constant p2, and x2

is an intermediate state. Mechanisms with negative spring
constants appear in mechanical design [28] and in the context
of post-buckled structures and objects [29], [30].

By defining

q = pc, p = wpδp,

N =

 02 I2

α

[
0 wp

wp 0

]
α

[
1 pc
−pc 1

]  ,∆p = δp̄I2.

(12)
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The only difference between (11) and (12) is the sign of
an element in N21. LFTs for Algorithm II and III can be
constructed in a similar manner as in Example A.

This system has much more interesting dynamic propaga-
tion of the uncertain state (see Figs. 5-7), especially for q = 0
and a large range for p where the set of possible states is
highly nonconvex with four spokes (see Fig. 7). Algorithm II
produced very tight outer bounds on the state trajectories for
both time-invariant and time-varying uncertainty (see Figs.
5) and 6).

C. Mass/Spring System

The system of two linear springs and a unit mass in Fig.
2 has an overall spring constant of

k =
1

1
k1

+ 1
k2

=
k1k2

k1 + k2
. (13)

k1 k2
m

x1,x2

Fig. 2: Mass/Spring System

Let x1 be the position of the mass from its rest position,
x2 be the velocity of the mass, and h be the time step. The
equation of motion of the system is[

x1,k+1

x2,k+1

]
=

([
1 0
0 1

]
+ h

[
0 1
−k 0

])[
x1,k

x2,k

]
= Fu(N,∆p)

[
x1,k

x2,k

]
, (Alg. I)

where

N =

[
N11 N12

N21 N22

]
, ∆p = diag{δk̄1I2, δk̄2I2},

N11 =


− w1

k1,c + k2,c
w1 − w2

k1,c + k2,c
w2k1,c

0 0 0 w2

− w1

k1,c + k2,c
w1 − w2

k1,c + k2,c
w2k1,c

0 0 0 0

 ,

N12 =


k1,ck2,c 0
k2,c 0

k1,ck2,c 0
1 0

, N21 =


0 hw1/(k1,c + k2,c)

2

0 −hw1/(k1,c + k2,c)
0 hw2/(k1,c + k2,c)

2

0−hk1,cw2/(k1,c + k2,c)


T

,

N22 =

 1 h

− k1,ck2,ch

k1,c + k2,c
1

 .
LFTs for Algorithm II and III can be constructed in a similar
manner as in Example A. All three algorithms produced tight
outer ellipsoids on the state for time-invariant uncertainty in
the two spring constants, with the ellipsoids from Algorithm
II being especially tight (see Fig. 8).
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(b) k = 4

Fig. 3: Outer ellipsoids for Ex. A with uncertain parameter
p ∈ [0.9, 1.1] and α = 1/

√
2. The ellipsoids for time-

invariant and time-varying p are indistinguishable for this
example. In all figures in this paper: the curves are the
boundaries of the ellipsoids, Alg. I is red (ν upper bound) and
orange (ν lower), Alg. II is purple (ν upper) and magenda
(ν lower), Alg. III is green (ν upper) and blue (ν lower), and
gridded fixed values for p within the uncertainty set are cyan.
All examples used ellipsoidal uncertain initial state centered
at (0, 0) with E0 = [2 0; 0 1], s = 3, and Step 1 with extreme
points in the solution of the LMI optimization.
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Fig. 4: Outer ellipsoids for Ex. A with time-invariant p ∈
[−0.3, 0.3] and α = 1.
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Fig. 5: Outer ellipsoids for Ex. B with p ∈ [−0.1, 0.1], q = 1,
and α = 1/

√
2 for Alg. I and time-invariant p in Alg. II and

III and the sample state trajectories.
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Fig. 6: Outer ellipsoids for Ex. B with p ∈ [−0.1, 0.1], q = 1,
and α = 1/

√
2, with time-varying p in all algorithms and

sample state trajectories.
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Fig. 7: Outer ellipsoids for Ex. B with p ∈ [−0.3, 0.3], q = 0
and α = 1 for Alg. I and time-invariant p in Alg. II and III
and the sample state trajectories.
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Fig. 8: Outer ellipsoids for Ex. C with k1 ∈ [8, 12] and
k2 ∈ [8, 12] and h = 0.2 for Alg. I and time-invariant p in
Alg. II and III and the sample state trajectories.

VI. CONCLUSIONS

Algorithms are presented for computing ellipsoidal bounds
on the state trajectories of discrete-time linear systems with
ellipsoidal uncertainty on the initial state and time-varying
or time-invariant real parametric uncertainties. Upper and
lower bounds on the minimum size of the ellipsoid were
determined by using the skewed µ, with rotation and ratios
of the axis lengths determined by solving quasi-convex
LMI-based optimizations. The algorithms apply to systems
with linear fractional dependence on the model parameters,
which includes the polynomial and rational dependencies that
commonly occur in applications.

Alg. I has the lowest computational cost, but can be
conservative if applied to a system with time-invariant un-
certainties, or if the actual reachable sets of states are not
ellipsoids. Alg. II produced tight bounds for polynomial
systems with either time-varying or time-invariant param-
eter uncertainties but is computationally expensive. Alg.
III employs a moving horizon to reduce the computational
cost of Alg. II, while increasing conservatism. The moving
horizon can be specified in Alg. III to trade off computational
cost with tightness of the bounds, and this algorihm is the
most practical for computing outer ellipsoids for large k for
systems with time-invariant uncertainties.
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