
   

 

Abstract— A feedback controller design which guarantees 
both finite-time boundedness and H∞ attenuation for a class of 
nonlinear systems with conic type nonlinearities and additive 
disturbances is presented. Conditions which guarantee the 
existence of a robust state-feedback controller for maintaining 
a bound on the transient response and satisfying an H∞ bound 
in the steady state for this class of systems are derived. A 
solution for the controller gain is obtained through the 
application of linear matrix inequality techniques. The 
controller developed is robust for all nonlinearities satisfying 
the conic inequality and all admissible disturbances. We 
conclude the paper with a numerical example illustrating the 
applicability of the controller design.  

I. INTRODUCTION 
YAPUNOV Asymptotic Stability, LAS, allows for the 
analysis of the behavior of a dynamical system over an 

infinite time interval. However, there are several 
applications where it is desired to maintain the state of a 
system within a prescribed region in its space over a fixed 
finite-time interval. Moreover, for example in vehicle 
maneuvering applications, the sole interest is in the behavior 
of the given system over a specified finite-time interval. 
Therefore, the concept of Finite-Time Stability was 
introduced [1], [2]. 

 A system is said to be Finite-Time Stable, FTS, if, for 
any initial condition lying within a prescribed bounded 
region in the state space, the state of the system does not 
exceed a specified threshold over a finite-time interval. It is 
necessary to note that LAS and FTS are two independent 
concepts. A system which is LAS may not be FTS and vice 
versa. Another concept which is an extension to that of FTS 
is Finite-Time Boundedness, FTB. A system with additive 
disturbances is said to be Finite-Time Bounded, FTB, if, 
given the dynamics of the disturbances and an initial bound 
on their state, the system remains FTS for all the admissible 
disturbances [3].  

Various finite-time controller design results can be found 
in the literature related to this field. Nevertheless, most of 
these results apply to linear systems. For instance, in [3], the 
authors present the design of a robust finite-time controller 
of continuous linear systems with polytopic uncertainties. 
Furthermore, in [3] and [5]-[7], several variations of the 
problem of FTS and finite-time control of linear systems are 
considered. However, to the best of our knowledge, the 
study of FTS and stabilization of nonlinear systems is rarely 
addressed in the literature. The authors in [8] consider 
nonlinear systems that are hybrid and stochastic. Other 
works have studied the FTS and stabilization of nonlinear 

quadratic systems [9].  Furthermore, in [10], the stabilization 
of a class of uncertain nonlinear systems with time-delay is 
presented.  

In this paper, a finite-time state-feedback controller design 
for a class of discrete-time nonlinear systems with conic type 
nonlinearities and additive disturbances is considered. In 
fact, the work presented here is applicable to all nonlinear 
systems which are locally Lipschitz [11]. Moreover, the 
controller developed is designed to also satisfy the H∞ 
performance criterion. Thus, with such a controller, we are 
able to guarantee a bounded response with a prescribed 
bound during the transient time and also guarantee that the 
energy of the system of the performance output remains 
below a given value in the steady state, despite the presence 
of disturbances, due to the H∞ property of the controller. 
Conditions under which the closed loop system satisfies both 
FTB and H∞ performance criterion are derived. The 
controller gain is solved for via Linear Matrix Inequality, 
LMI, techniques.  

The paper is divided into 5 sections.  Next, we introduce 
the system model and control problem. In section 3, we 
recall the basic definitions of FTB and H∞. In section 4, we 
present the main results of the mixed finite-time and H∞  
criteria control and derive the LMI conditions. In section 5, a 
numerical example is presented to illustrate the applicability 
of the results obtained.  

The notation used in this paper is shown in Table I.  
 

TABLE I 
NOTATION 

Notation Definition 
nx R∈  An n-dimensional real vector 

( )1/2Tx x x=  Euclidean norm 

( ). T  Matrix transpose 

m nA R ×∈  An m n× real matrix 
1A−   Inverse of matrix A 

0( 0)A A> <   A is a positive (negative) definite matrix 

I Identity matrix of appropriate dimensions 

( ) ( )min max( )A Aλ λ  Minimum (Maximum) eigenvalue of the 
symmetric matrix A  

0   Set of nonnegative integers 

2kw L∈  kw is a finite energy disturbance  

where 
0

T
k k

k

w w
∞

=

< ∞∑  
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II. SYSTEM MODEL AND CONTROL 
Consider the following discrete-time nonlinear system: 
                               ( )1 , ,k k k k kx f x u w f+ = =  (1) 

where n
k nx W R∈ ⊂ is the system state vector, m

k mu W R∈ ⊂

is the input vector, r
k rw W R∈ ⊂ is the disturbance input, 

n nA R ×∈ , n mB R ×∈ , and n rF R ×∈ such that the domains nW , 

mW , and rW are open and connected sets. In regard to the 
disturbance kw , the dynamical model of the disturbance is 
assumed to be known. But since the H∞ condition, or finite 
energy condition, needs to be satisfied simultaneously, 
asymptotically stable dynamics for the disturbance are 
assumed.  

Moreover, kf is assumed to be an unknown nonlinearity 
whose dynamics have the following conic sector description: 
                         

( )k k k k f k f k f kf Ax Bu Fw C x D u F w− + + ≤ + +              (2) 

for all time 0k∈ , k nx W∈ , k mu W∈ , and, k rw W∈ . 
Even though the nonlinearity f is assumed to be 

unknown, we assume that it is possible for the matrices A ,  
B , F , fC , fD , and fF to be known.  The inequality 
shown in (2) implies that the unknown nonlinearity lies in an 
n-dimensional hypersphere whose center is the linear system 

k k kAx Bu Fw+ + and whose radius is bounded by the right 
hand side term of (2). So, all nonlinearities which are locally 
continuously differentiable satisfy (2)  

Also, given system (1), a linear state-feedback controller  

                                          k ku Kx=  (3) 
is considered where m nK R ×∈ is the controller gain. In the 
following section, we recall the basic definition of 
performance indices to be used.  

III. DEFINITIONS 
Generally, a system is said to be FTB, if the states of the 

system do not exceed a given bound over a fixed time 
interval and for all admissible disturbances. In this work, the 
definitions stated in [3] are adopted here and are generalized 
to include nonlinear systems.  

 
Definition 1: (Finite-Time Boundedness)                                    

 System (1) is said to be finite-time bounded with respect to 
( ), , , ,x w R Nα α β where 0R > , 0wα ≥ , x0 α β≤ ≤ ,and 

0N ∈ if  
2

0 0 2
2

0 0

  1,...,   
T

x T
k kT

w

x Rx
x Rx k N

w w

α
β

α

⎧ ≤⎪ ⇒ ≤ ∀ =⎨
≤⎪⎩  
Definition 2: (H∞ Property) 

Consider system (1) with 2kw L∈  and assume a 
performance output kz such that  

                                  k z k z kz C x D w= +  (4) 
where 1 n

zC R ×∈ and 1 r
zD R ×∈   

The system is said to have H∞ property with degree α if 

                                       

2

0

2

0

k
k

k
k

z

w
α

∞

=
∞

=

<
∑

∑
 (5) 

where α is called the H∞ bound.  
Now, we proceed to present the main results of this paper.   

IV. MAIN RESULTS 
The objective of this work is to find a robust state feedback 
controller that will guarantee the FTB during the transient 
period of the closed-loop system obtained from (1) and (3) 
as long as the nonlinearity is within the hypersphere defined 
by (2). Furthermore, it is desired that the obtained controller 
satisfies the H∞ criterion. Therefore, first, the set of 
conditions corresponding to the FTB property of the closed-
loop system are derived and, then, we proceed to derive 
those relevant to the H∞ criterion.  

Consider the closed-loop system resulting from applying 
controller (3) to system (1) and let 

( )ℑ = − + −k k kf A BK x Fw :              

                        ( )1k k k kx A BK x Fw+ = + + +ℑ  (6) 
where the disturbance input is described by   

                         1k kw w+ = Φ  (7)   
where ( ) 1iλ Φ < for 2kw L∈ .     
                                    
Theorem 1: System (6)-(7)  is FTB with respect to 
( ), , , ,x w R Nα α β  and satisfies the H∞ property if there exist 

positive-definite matrices 1
n nQ R ×∈ and 2

r rQ R ×∈ , a matrix 
m nY R ×∈ , and positive scalars 1γ ≥ , 1b , α ,and δ such that  

 

    

1 1 1

2 2 2 2

1 1

1

2

0 0
*

0* * 0 0
* * * 0
* * * *

T T T T T T
f f

T T T
f

Q Q A Y B Q C Y D
Q Q F Q F Q

Q b I
b I

Q

γ
γ

⎡ ⎤+ +
⎢ ⎥Φ⎢ ⎥
⎢ ⎥ >−
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (8)   

                             
1

1

2

0
0

0
Q R

Q I
δ −⎡ ⎤−

>⎢ ⎥−⎣ ⎦
 (9) 

                                
2

1
12 2 0

N

x w

R Qβ γδ
α α

−
− − >

+
 (10) 

          

1 1 1 1

1 1

1

0
*

0* * 0 0
* * * 0
* * * *

T T T T T T T
f f z

T T T
f z

Q Q A Y B Q C Y D Q C
I F F D

Q b I
b I

I

α
⎡ ⎤+ +
⎢ ⎥
⎢ ⎥
⎢ ⎥ >−
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (11) 
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where * denotes the elements of the matrix that need to be 
added to make the matrix symmetric. The controller gain is 
given by 1

1K YQ−= . 
 
Proof of Theorem 1: 
 

We start the proof with that of the conditions under which 
the system is FTB.  
Assume that 2

0 0
T

xx Rx α≤ , 2
0 0
T

ww w α≤ , and that 2T
k kx Rx β≤

1,...,k N∀ = .Consider the energy function,  
                            1 2

T T
k k k k kV x Px w P w= +  (12) 

such that  
                                          1k kV Vγ+ <  (13) 
where 1 0P > , 2 0P > and 1γ ≥  
Moreover, consider the inequality shown in (2) which can be 
rewritten as follows: 

                ( ) ( )TT
k k f k f k f k f kA x F w A x F wℑ ℑ ≤ + +  (14) 

where f f fA C D K= + . 

Substituting (12) into (13), then replacing 1kx + and 1kw + with 
the equations of system (6)-(7),   and applying Schur’s 
complement [12] , the following matrix inequality is 
obtained. 

                        11 12 1

12 22 1

0
0

T
k

T
k

h h P
h h P

⎡ ⎤−ℑ⎡ ⎤
> ⎢ ⎥⎢ ⎥ − ℑ⎣ ⎦ ⎣ ⎦

 (15) 

where  

( )
( )

11 1 2 2 22 1

12 1

,  ,

and ( )

T T T T
k k k k k k

T
k k

h x P x w P w w P w h P

h A BK x Fw P

γ= + − Φ Φ =

= + +
 

For any 1 0b > , it is true that  

                      
1/ 2

1/ 2 1/ 21
1 1 11/ 2

1 1

0
T
k

k
b

b b P
b P

−
−⎡ ⎤ℑ

⎡ ⎤ℑ ≥⎢ ⎥ ⎣ ⎦
⎣ ⎦

 (16) 

which can be rewritten as follows: 

                 
1

11
2

11 1

00
00

TT
kk k

k

Pb
Pb P

− ⎡ ⎤⎡ ⎤ −ℑℑ ℑ
≥ ⎢ ⎥⎢ ⎥ − ℑ⎣ ⎦ ⎣ ⎦

 (17) 

Using (17), the following is a sufficient condition for (15): 

                      
1

11 12 1
2

12 22 1 1

0
0

T
k k

T

h h b
h h b P

−⎡ ⎤ℑ ℑ⎡ ⎤
> ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (18) 

Moreover, based on (14), (18) will still be satisfied if the 
following inequality holds. 

( ) ( )1
11 1 12

2
12 22 1 1

0
T

f k f k f k f k

T

h b A x F w A x F w h

h h b P

−⎡ ⎤− + +
⎢ ⎥ >
⎢ ⎥−⎣ ⎦

 (19) 

Now, apply Schur’s complement to (19) to obtain  

         
( ) ( )

( )

1
11 1

12
12 22 1 1 12                                   0

T

f k f k f k f k

T

h b A x F w A x F w

h h b P h

−

−

− + +

− − >
 (20) 

 
 
 

and  
                                        2

22 1 1 0− >h b P  (21) 
Substitute the expressions of 11h , 12h , and 22h  in (20) and 
then rearrange the obtained expression in a quadratic  format 
as shown in (22). 

                         11 12

12 22

0
⎡ ⎤⎡ ⎤

⎡ ⎤ >⎢ ⎥⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

kT T
k k T

k

xd d
x w

wd d
 (22) 

where ( ) 11 2
11 1 1 1 1 1 1 1

T T
f f c cd P b A A A P P b P P Aγ

−−= − − − ,  

( ) 12 1
12 1 1 1 1 1 1

T T
c f fd A P P b P P F b A F

− −= − − − , and  

( ) 11 2
22 2 2 1 1 1 1 1 1

T T T
f fd P P b F F F P P b P P Fγ

−−= − Φ Φ − − −  

Inequality (22) implies that matrix 11 12

12 22

0T

d d
d d
⎡ ⎤

>⎢ ⎥
⎣ ⎦

, which 

can be rewritten as  

( ) [ ]

1 1
1 1 1

1 1
1 2 2 1

121
1 1 1 1 1

1

                   0

T T
f f f f

T T T
f f f f

T
c

cT

P b A A b A F
b F A P P b F F

A P
P b P P A PF

F P

γ
γ

− −

− −

−

⎡ ⎤− −
⎢ ⎥− −Φ Φ −⎢ ⎥⎣ ⎦

⎡ ⎤
− − >⎢ ⎥
⎣ ⎦

 (23) 

By applying Schur’s complement to (23), we obtain 
1 1

1 1 1 1
1 1

1 2 2 1 1
2

1 1 1 1 1

0

T T T
f f f f c

T T T T
f f f f

c

P b A A b A F A P
b F A P P b F F F P

P A PF P b P

γ
γ

− −

− −

⎡ ⎤− −
⎢ ⎥− −Φ Φ − >⎢ ⎥
⎢ ⎥−⎣ ⎦

 (24) 

where cA A BK= + . 
Note that if inequality (24) is satisfied, condition (21) 
implicitly holds too since it appears as one of the diagonal 
elements of (24). Therefore, it is redundant to include it as 
one of the conditions for the existence of the controller 
designed.  
Now, pre and post multiply (24) by  

                               

1
1

1
2

1
1

0 0
0 0
0 0

P
P

P

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (25) 

and, again, apply Schur’s complement to the resulting matrix 
after rearranging it in an appropriate form. We, then, obtain 
the following inequality: 

    

1 1 1
1 1 1

1 1 1 1 1
2 2 2 2 2 2

1 1 1
1 2 1 1

1 1
1 2 1

0
0

0
0

0

T T
c f

T T T
f

c

f f

P P A P A
P P P P P F P F

A P FP P b I
A P F P b I

γ
γ

− − −

− − − − −

− − −

− −

⎡ ⎤
⎢ ⎥− Φ Φ⎢ ⎥ >⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

(26) 

Apply similar manipulations as before to (26) , let 1
1 1Q P−=

and 1
2 2Q P−= , substitute the expressions of fA and cA , let

1Y KQ= ,and condition (8) is obtained.  
Now, we proceed to show the derivation of conditions (9) 
and (10).    

Applying (13) iteratively and knowing that 1γ ≥ , we 
obtain the following: 
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                                    0
N

kV Vγ<  (27) 
Replace kV and 0V with their corresponding expressions 

based on (12) and since 1 1 2
T T T
k k k k k kx Px x Px w P w< + , then 

                       ( )1 0 1 0 0 2 0
T N T T
k kx P x x P x w P wγ< +   (28) 

After introducing 1/ 2 1/ 2R R − to the left and right hand side of 
1P and expressing the right hand side of the inequality in a 

quadratic form,  (28) can be rewritten as 
1/2 1/2 1/2 1/2

1

1/ 21/2 1/2
1/2 01

0 0
02

0
               

0

T
k k

N T T

x R R PR R x

R xR PR
x R w

wP
γ

− −

− −

<

⎛ ⎞⎡ ⎤⎡ ⎤
⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠  

(29) 

Recall Rayleigh’s inequality which states that given Q 0>

then ( ) ( )min maxQ Q < QT T T
k k k k k kx x x x x xλ λ< is true. Now, 

applying Rayleigh’s inequality and the bounds on the initial 
state of the system and the disturbance input to (29),  we 
obtain the following inequality: 

( )

( )

1/2 1/2
min 1

1/2 1/2
2 21

max
2

0
             

0

T
k k

N
x w

R PR x Rx

R PR
P

λ

γ λ α α

− −

− −

<

⎛ ⎞⎡ ⎤
+⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

 (30) 

In order for 2T
k kx Qx β< to be satisfied then 

( ) ( )
1/2 1/2 2

1/2 1/21
max min 12 2

2

0
0

N

x w

R PR
R PR

P
β γλ λ
α α

− − −
− −

⎛ ⎞⎡ ⎤
<⎜ ⎟⎢ ⎥⎜ ⎟ +⎣ ⎦⎝ ⎠

(31) 

must hold. 
Let 1 0δ − > such that 

1/2 1/2
11

max
2

0
0

R PR
P

λ δ
− −

−
⎛ ⎞⎡ ⎤

<⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
 (32) 

and  

( ) ( )
2

1 1/ 2 1/ 2
min 12 2

N

x w

R P Rβ γδ λ
α α

−
− − −<

+
 (33) 

Then, conditions (9) and (10) can be derived from (32) and 
(33) respectively through basic algebraic manipulations.  
 
Now, we go on to prove the condition under which the state-
feedback linear controller satisfies the H∞ criterion. 

Consider the closed loop system (6)-(7). Moreover, 
consider the performance index: 

                  1 0T T
k k k k k kV V z z w wα+′ ′− + − <  (34) 

where 
                                    1

T
k k kV x P x′ =   (35) 

where 1 0P > and kz is given by (4).  
Substituting (35) in (34), then replacing 1kx + with the 
equation of system (6), and applying Schur’s complement,  
we obtain the following inequality. 

                     11 12 1

12 22 1

0
0

T
k

T
k

g g P
g g P

⎡ ⎤−ℑ⎡ ⎤
> ⎢ ⎥⎢ ⎥ − ℑ⎣ ⎦ ⎣ ⎦

 (36) 

where  

( )
11 1 22 1

12 1

,   ,  andT T T
k k k k k k

T
c k k

g x Px w w z z g P

g A x Fw P

α= + − =

= +
 

Using (17) and (14), the following is a sufficient condition 
for (36).

( ) ( )1
11 1 12

2
12 22 1 1

0
T

f k f k f k f k

T

g b A x F w A x F w g

g g b P

−⎡ ⎤− + +
⎢ ⎥ >
⎢ ⎥−⎣ ⎦

 (37) 

 
Applying Schur’s complement to (37), the following  two 
conditions are obtained : 

( ) ( )
( )

1
11 1

12
12 22 1 1 12                                  0

T

f k f k f k f k

T

g b A x F w A x F w

g g b P g

−

−

− + +

− − >
 (38) 

and 
                                         2

22 1 1 0g b P− >  (39) 
Substitute the expressions of 11g , 12g , and 22g  and the 
expression of kz shown in (4) in (38), and then rearrange the 
obtained expression into a quadratic form as shown in (40) 

                    11 12

12 22

0
T

T T k
k k T T

k

s s x
x w

s s w
⎡ ⎤⎡ ⎤

⎡ ⎤ >⎢ ⎥⎢ ⎥⎣ ⎦
⎣ ⎦ ⎣ ⎦

 (40) 

where ( )1 2
11 1 1 1 1 1 1 1

T T T
z z f f c cs P C C b A A A P P b P P A−= − − − − ,  

( )1 2
12 1 1 1 1 1 1

T T T
z z f f cs C D b A A A P P b P P F−= − − − − , and 

( )1 2
22 1 1 1 1 1 1

T T T
z z f fs D D b F F F P P b P P F Iα−= − − − − +  

Inequality (40) implies that the matrix 11 12

12 22

0T

s s
s s
⎡ ⎤

>⎢ ⎥
⎣ ⎦

which 

can be rewritten as follows 

( ) [ ]

1 1
1 1 1

1 1
1 1

121
1 1 1 1 1

1

                   0

T T T T
z z f f z z f f

T T T T
z z f f z z f f

T
c

cT

P C C b A A C D b A F
D C b F A D D b F F I

A P
P b P P A PF

F P

α

− −

− −

−

⎡ ⎤− − − −
⎢ ⎥− − − − +⎢ ⎥⎣ ⎦

⎡ ⎤
− − >⎢ ⎥
⎣ ⎦

 (41) 

Apply Schur’s complement to (41) and pre and post multiply 
the obtained matrix by 

1
1

1
1

0 0
0 0
0 0

P
I

P

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

to obtain the following condition. 

( )

1 1 1 1 1
1 1 1 1 1

1
1

1 1
1 1 1

1
1

1 1
1 1                                   - 0 0

0

T T T
z z z z c

T T T
z z z z

c

T
f

T
f f f

P P C C P P C D P A
D C P D D I F
A P F P b I

P A
F b I A P F

α

− − − − −

−

− −

−

− −

⎡ ⎤− −
⎢ ⎥− − +⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤ >⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

(42) 

Note that condition (39) is implicitly satisfied when (42) 
holds. Therefore, it would be redundant to add (39) to the set 
of conditions under which the controller exists.  
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Again, apply Schur’s complement to (42) and rearrange the 
result obtained so that it would have the following form: 

( )

1 1 1
1 1 1

1 1
1 1 1

1
1

1
1

1
1

0
0

0
0

              0 0 0
0
0

α

− − −

− −

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤− >⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T T
c f

T T
f

c

f f

T
z

T
z

z z

P P A P A
I F F

A P F P b I
A P F I

P C
D

I C P D

   (43) 

After applying Schur’s complement to (43) and substituting 
for fA and cA with their corresponding expressions, let

1
1 1Q P−= and 1Y KQ= in order to obtain condition (11). 

Thus, the proof of theorem 1 is concluded.  
Given ( , , , , )x w R Nα α β and a nonlinear system satisfying 

a conic inequality as in (2), conditions (8) through (11) 
represent a set of  LMIs when the value of γ is fixed. Thus, 
the problem is transformed into a feasibility problem which 
can be used to solve for the unknowns 1Q , 2Q , Y , 1b , δ , 
and α . The controller gain is 1

1K YQ−= . A numerical 
example is presented in the following section to demonstrate 
the applicability of the design criterion developed.  

V. NUMERICAL EXAMPLE 
Consider the following open loop discretized state-space 
model corresponding to Chua’s circuit [13]: 

( )
1 1 2

1

1 1

2 1 2 3
1

3 2 3
1

1 (1 )

0.5 ( ) 1 1

(1 )

(1 )

k C k C k

c k k

k k k k

k C k k

x T b x T x

T a b x x

x Tx T x Tx

x T x T x

α α

α

β μ

+

+

+

⎧ = − + +
⎪
⎪ + − + − −⎪
⎨
⎪ = + − +
⎪
⎪ = − + −⎩

  (44) 

where i
kx is the thi  state variable,  9.1Cα = , 16.5811Cβ = , 

0.138083μ = , 1.3659a = − , 0.7408b = − .  
System (44) can be rewritten in a matrix form resembling 
that of the class of nonlinear systems considered in the 
design criteria with an added control and disturbance inputs.  
 
                       1k k k k kx Ax Bu Fw+ = + + + ℑ  (45) 
where  

1 (1 ) 0
1

0 1

C C

C

T b T
A T T T

T T

α α

β μ

− +⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 
2
5
4

B T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  

1

2

3

k

k k

k

x

x x

x

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1
1
1

F T
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

( )1 10.5 ( ) 1 1

0
0

c k k

k

T a b x xα⎡ ⎤− + − −
⎢ ⎥
⎢ ⎥ℑ =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The disturbance input is of finite energy and with known 
dynamics described by (7) where 0.9Φ = . 
 
Since 1 1 11 1 2k k kx x x+ − − ≤ , then  

                          ( )21( )αℑ ℑ ≤ −T
k k c kT a b x  (46) 

Inequality (46) can be rewritten in the following form: 

( ) ( )TT
k k f k f k f k f k f k f kC x D u F w C x D u F wℑ ℑ ≤ + + + +

 
 

where 
( ) 0 0
0 0 0
0 0 0

α −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

c

f

T a b
C , 

0
0
0

fD
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, and 
0
0
0

fF
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Moreover, the weights in the performance output kz

shown in (4) are assigned as [ ]0.01 0.01 0.01zC = and

0.01zD = . Assume that 1.1xα = , 0.1wα = , 25N = , 

0.05T = , R I= , 0 0.09w = , and [ ]0 0 1.099 0 Tx = −  
Starting with a large value of β , we check for the 

feasibility of the LMIs while varying the value of 1γ − over 

the range ](0,1 . If the LMIs are infeasible for all values of 

γ , we increase the value of β and check again; otherwise 
the value of β is decreased. For the given system and the set 
of parameters considered, a solution for the controller gain is 
found for 1.0101γ =  and 8.72β =  where 

[ ]-3.7078 -4.3354 -0.0003K = . Moreover, the H∞ bound 
is found to be 45.404α = . 

In order to examine the FTB property of the closed-loop 
system, the controller is applied for a time interval of length 
N and then removed afterwards. On the other hand, the H∞ 
property of the close-loop system is examined by constantly 
applying the controller over time until the steady state is 
reached. Fig. 1 shows the states of the system for the open 
loop system, the system with finite-time control, and the 
system with H∞ control. For a better grasp of the 
performance of the controller designed, the norm of the state 
vector is shown in Fig. 2 for the three different cases.  
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Fig. 1 State variables of the system for three different cases. Finite-time 
controller (          ). H∞ and FT controller (          ). Open Loop (           ) 

 
Fig. 2 Progression of kx over time for the three different cases 
considered. 

 
As seen in Fig.1 and Fig.2, when the controller is applied for 
a finite-time and then removed, the state of the system is 
maintained within the imposed bound during the transient 
response and reverses to the open-loop case. That is, when 
the controller is removed, the state of the system is defined 
by the open loop system model as expected. On the other 
hand, when the same controller is not removed after N=25 
steps, the controller drives the state of the system to zero as 
should be expected from an H∞ and FTB controller 
satisfying the bound on the performance output norm.  

VI. CONCLUSION 
A finite-time state-feedback control design with an H∞ 
property for a class of nonlinear systems with conic type 
nonlinearities and additive disturbances is presented. 
Conditions under which the controller exists are derived. A 
solution for the controller gain is obtained by transforming 

the conditions into LMIs. The controller obtained is robust 
for all nonlinearities satisfying the conic inequality and for 
all admissible disturbances. A numerical example based on 
Chua’s circuit is used to illustrate the applicability and 
effectiveness of the control design proposed.  
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