
 
 
 
 
 
 

Abstract—In the seesaw (or cyclic or alternating) method for 
optimization and identification, the full parameter vector is divided 
into two or more subvectors and the process proceeds by 
sequentially optimizing each of the subvectors while holding the 
remaining parameters at their most recent values. One advantage of 
the scheme is the preservation of large investments in software 
while allowing for an extension of capability to include new 
parameters for estimation. A specific case involves cross-sectional 
data represented in state-space form, where there is interest in 
estimating the mean vector and covariance matrix of the initial 
state vector as well as parameters associated with the dynamics of 
the underlying differential equations. This paper shows that under 
reasonable conditions the cyclic scheme leads to parameter 
estimates that converge to the optimal joint value for the full vector 
of unknown parameters. Convergence conditions here differ from 
others in the literature. Further, relative to standard search methods 
on the full vector, numerical results here suggest a more general 
property of faster convergence as a consequence of the more 
“aggressive” (larger) gain coefficient (step size) possible in the 
seesaw algorithm. 

Keywords—System identification; parameter estimation; 
alternating optimization; cyclic optimization; block coordinate 
optimization; recursive estimation. 

I. BACKGROUND 
In the seesaw (or cyclic, alternating, or block coordinate) 

approach to optimization and identification, the full 
parameter vector is divided into two or more subvectors and 
the process proceeds by sequentially optimizing the criterion 
of interest with respect to each of the subvectors while 
holding the other subvectors fixed. One application of such a 
method arises in system identification for state-space 
(dynamical) models, where it is sometimes the case that 
models are modified to include unknown parameters that 
may not have been present in an original implementation or 
that may have been assumed known. More generally, this 
paper provides the theoretical foundation and examples for the 
cyclic approach to such joint estimation in arbitrary 
identification and optimization problems.  

Spall (2006) discussed a “seesaw” process that partially 
separates the estimation of the original parameters (e.g., µ and 
Σ as above) from the estimation of the other parameters. This 
contrasts with traditional methods of directly optimizing for the 
full set of all relevant parameters. We present here some 
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convergence theory and numerical results that go beyond Spall 
(2006). We also demonstrate by example that seesaw 
optimization may provide a faster rate of convergence to the 
solution relative to standard optimization methods on the full 
vector. The examples suggest a more general property of 
faster convergence as a consequence of the more 
“aggressive” (larger) gain coefficient (step size) possible in 
the seesaw algorithm (this conjecture is not proven here).  

Let θ be a p-dimensional vector representing the unknown 
parameters to be estimated. According to the seesaw 
estimation, we represent θ as composed of two subvectors 
θ(1) and θ(2):   

 θ = 
(1)

(2)

 
 
  

θ

θ
 

Iteration by iteration, the subvector θ(1) is estimated 
conditioned on the most recent value of θ(2) and, likewise, θ(2) 

is estimated based on the most recent value of θ(1). In the 
typical application of interest for the author, θ(1) represents all 
parameters associated with {µ, Σ} and θ(2) represents the 
power spectral density parameters that enter the process noise 
covariance matrix (see Section III).  

Note, however, that the method cannot be blindly applied 
without considering conditions for convergence, as shown in 
simple counterexamples (e.g., Achtziger, 2007).  

The seesaw idea is a generalization of a known method 
within nonlinear programming (sometimes called the Gauss-
Seidel method), where a parameter vector is sequentially 
optimized along each linearly independent coordinate 
direction (Bazaraa et al., 1993, pp. 254−255). Seesaw works 
with groups of parameters. Others have considered 
convergence for the cyclic scheme. For example, Hathaway 
and Bezdek (2003) consider a partitioning of θ into two or 
more subvectors and show a q-linear convergence rate when 
the loss function is strictly convex and twice differentiable 
(Bazaraa et al., 1993, pp. 257−258, discusses q-linear 
convergence). Tseng (2001) considers convergence to a 
stationary, but not necessarily minimum, point for functions 
that include a non-differentiable and separable contribution 
(usually added to a non-separable differentiable 
contribution). Bertsekas (1999, Sect. 2.7) shows convergence 
to a stationary point for continuously differentiable functions 
when it is possible to fully (and uniquely) minimize the loss 
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in terms of each of the subvectors. We present global 
convergence theory different from that above.  

Let us mention several applications of the cyclic idea. Lee 
and Park (2008) demonstrate numerical convergence and 
high efficiency, relative to the powerful Levenberg-
Marquardt algorithm, for a problem in classification and 
computer vision. There have also been applications of cyclic 
optimization idea in the context of the expectation-
maximization (EM) method for finding maximum likelihood 
parameter estimates. For example, Haaland et al. (2010), use 
the cyclic idea (with four subvectors) to carry out the “M” 
step of EM in the context of parameter estimation for 
multivariate Gaussian autoregressive hidden Markov models 
as applied to a problem in temperature control for a large 
data center. 

Before proceeding with the main results, let us introduce some 
notation and basic concepts associated with the identification 
problem of interest. A formal representation of the parameter 
estimation problem of interest here is to find the set: 

arg min ( ) : ( ) for all( ){ }L L L
∈Θ

∗ ∗ ∗Θ ≡ ≡ ∈ Θ ∈ Θ≤
θ

θ θ θ θ θ , 

where L = L(θ) is the loss function to be minimized (e.g., a 
negative log-likelihood function), Θ ⊆ p represents the 
possible values for θ (i.e., the constraint set for θ), and ∗Θ  is 
assumed to be non-empty. The elements ∗θ  ∈ ∗Θ  ⊆ Θ are 
equivalent solutions in the sense that they yield identical values 
of the loss function. In practice, it is usually sufficient to 
identify just one element of ∗Θ .  

II. CONVERGENCE ANALYSIS 

This section presents a theorem and supporting corollary 
that give sufficient conditions for convergence of ˆ

kθ  to the 
optimal θ as the number of iterations in the estimation 
process increase.  

The estimate at iteration k in the seesaw approach is 
 

 = 

(1)

(2)

ˆ
ˆ

ˆ
k

k
k

 
 
 
 

θ
θ

θ
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with (1)ˆ
kθ  a function of 1

ˆ
k−θ , and (2)ˆ

kθ  a function of (1)ˆ
kθ  

and (2)
1

ˆ
k−θ . It is assumed that the seesaw process satisfies the 

following relationship: 
 

 1
ˆ( )kL +θ  ≤ (1) (2)

1
ˆ ˆ( )k kL + ,θ θ  ≤ ˆ( )kL θ  (2.1) 

 

for all k. Further, (1)
1

ˆ
k+θ  ≠ (1)ˆ

kθ  or (2)
1

ˆ
k+θ  ≠ (2)ˆ

kθ  only if there 
is strict reduction in the loss function in stage 1 or 2, 
respectively, of the seesaw process. Thus, overall, 1

ˆ
k+θ  ≠ 

ˆ
kθ  only if 

 

 1
ˆ( )kL +θ  < ˆ( )kL θ . (2.2) 

 

Let L∗  = ( )L ∗θ  for ∗θ  ∈ ∗Θ . Consistent with the notation 
and ordering in (2.1), we let the per-iteration minima for each 
of θ(1) and θ(2) be denoted by (1)

k
∗θ  and (2)

k
∗θ , respectively. 

That is, (1) (2)
1

ˆ( )k kL ∗
−,θ θ  ≤ (1) (2)

1
ˆ( )kL −,θ θ  for all θ(1) and 

(1) (2)ˆ( )k kL ∗
,θ θ  ≤ (1) (2)ˆ( )kL ,θ θ  for all θ(2). So, (1)

k
∗θ  is a 

function of (2)
1

ˆ
k−θ  while (2)

k
∗θ  is a function of (1)ˆ

kθ . 
Corollary 1 to follow pertains to loss functions that are 

pseudoconvex (e.g., Bazaraa et al., 1993, pp. 113−115). 
Pseudoconvexity is a significant generalization of convexity 
to include differentiable functions that do not have the 
classical “bowl shape.” However, as with convexity, 
pseudoconvex functions have the property that if the gradient 
g(θ) = 0 at some point θ, then this θ corresponds to a global 
minimum ∗θ . The loss function is pseudoconvex if for each 
θ , θ  ∈ Θ 

 

 implies( ) ( ) ( ) ( )TL L< − < 0θ θ θ θ θg , (2.3) 
 

where Θ is a convex set. Note that pseudoconvexity does not 
guarantee uniqueness of the global minimum. However, 
under stronger conditions of strict pseudoconvexity, ∗θ  is 
unique (L is strictly pseudoconvex when for each distinct θ , 
θ  ∈ Θ, ( )L θ  ≤ ( )L θ  implies ( ) ( )T − θ θ θg  < 0; see, e.g., 
Bazaraa et al., 1993, pp. 112 and 116). 
 

Theorem 1 (Spall, 2006). Suppose that Θ is a compact, 
convex set and that L(θ) is continuous on Θ. Suppose that at 
any θ ∈ Θ with θ ∉ ∗Θ , it is possible to change one of θ(1) 
or θ(2) to yield a reduction in L. Let 0 < γ ≤ 1. Suppose that 
the two-stage algorithm with properties (2.1) and (2.2) reduces 
L with respect to θ(1) or θ(2) in the sense that at least one of 
(2.4a) or (2.4b) holds for each k = 0, 1, 2,...:  

 

(1) (2)
1

(1) (2)
1

ˆ ˆ ˆ

ˆ ˆ
( ) ( )

( ) ( )
k k k

k k k

L L

L L
+
∗

+

≥ γ
−

−

,

,

θ θ θ

θ θ θ
 if θ(1) is changed or (2.4a) 

 

(1) (2) (1) (2)
1 1 1

(1) (2) (1) (2)
1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ
( ) ( )

( ) ( )
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k k k k

L L

L L
+ + +

∗
+ + +

≥γ
−

−

, ,

, ,

θ θ θ θ

θ θ θ θ
 if θ(2) is changed. (2.4b) 

 

Then, 
 

 ˆ( )L kθ  → L∗  as k → ∞.  (2.5) 
 

Further, if ∗θ  is unique (i.e., ∗Θ  is the singleton ∗θ ), then 
 

 ˆ
kθ  → ∗θ  as k → ∞. (2.6) 

 

Remark on Conditions (2.4a, b). For example, if γ = 0.1, 
then it is known that the search will always yield an 
improvement of at least 10 percent of the maximum possible 
improvement in at least one of the two subvectors. If γ = 1, 
then the search is such that L is minimized in at least one of 
θ(1) or θ(2) at each iteration, corresponding to one of the 
conditions in the above-mentioned convergence result in 
Bertsekas (1999, Sect. 2.7).  
 

The corollary below shows that pseudoconvexity is 
sufficient to satisfy the key condition in Theorems 1 
requiring that it be possible to change one of θ(1) or θ(2) to 
yield a reduction in L at any θ ∉ ∗Θ . Let g(m)( ⋅ ) = 
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( )mL∂ ∂θ , m = 1 or 2. For some conditions relative to the 
behavior on the boundary of Θ, we will need to refer to 
subvectors of θ(1) or θ(2) (sub-subvectors of θ). In particular, 
it is assumed that there exists a partitioning of each of θ(m) 
into distinct sub-subvectors θ(m;j), j = 1, 2, …, n(m), such that 
θ(m) = ( ;1) ( ; ( )),...,[ ]m T m n m T Tθ θ  for m = 1 or 2. Two important 
special cases are when the sub-subvectors are the p 
coordinates of θ  and when the sub-subvectors are the full 
subvectors themselves . We let ( ; )m j′θ  and ( ; )m j∗θ  denote 
the corresponding sub-subvectors of an arbitrary θ′ ∈ Θ and 
of an arbitrary ∗θ ∈ ∗Θ . 

 

Corollary 1 Suppose that Θ is a compact, convex set and 
that L(θ) is a pseudoconvex function with continuous 
gradient g(θ) on Θ. Further, suppose that at any θ on the 
boundary of Θ, there exists a partitioning of each of θ(m), m = 
1 or 2, into distinct sub-subvectors θ(m;j) (see above) such that 
it is possible to make a non-zero change in each sub-
subvector along the line segment connecting ( ; )m j′θ  and 

( ; )m j∗θ , with other components of θ held fixed, such that the 
new point θ lies in Θ. Then, at any θ ∈ Θ with θ ∉ ∗Θ , there 
exists a change in at least one of θ(1) or θ(2) that yields a 
reduction in L.  

 

Proof. It is sufficient to show that at an arbitrary θ′ ∈ Θ with 
θ′ ∉ ∗Θ , a change to at least one of θ′(1) or θ′(2) yields a 
reduction in L. Because L(θ′) > L∗ , it is known by the 
fundamental property of pseudoconvexity, (2.3), that 

( ) ( )T ∗′ ′−  θ θ θg  < 0 for any ∗θ  ∈ ∗Θ . For an arbitrary 
∗θ ∈ ∗Θ , this implies ) ( )( )( ( ) ( )T mmm ∗′ ′−θ θ θg  < 0 for at 

least one of m = 1 or 2, where ( )m∗θ  denotes the mth 
subvector of ∗θ . Let us examine the effect on L of changes 
in the mth subvector of θ.  

If int(Θ) (the interior of Θ) is non-empty and if θ′ ∈ 
int(Θ), then both r′ ± δθ e  ∈ Θ for all sufficiently small δ > 
0, where er is a vector with a one in the rth component and 
zeroes elsewhere. Because ( ) ( )T ∗′ ′−  θ θ θg  < 0 for any ∗θ  
∈ ∗Θ , it is known that *( )( )r r rg tt′ ′− θ  < 0 for at least one r 
∈ {1, 2,…, p}, where gr( ⋅ ) is the rth component of g( ⋅ ) and 

*
rt  and  rt′  are the rth elements of ∗θ  and θ′, respectively. 

For θ′ ∈ int(Θ), it is known by the continuity of g( ⋅ ) and 
convexity of Θ that *( )( )r rr rg t t′ ′± λδ − θ e  < 0 for all and 
sufficiently small δ > 0 all 0 ≤ λ ≤ 1. Hence, because *

rt  ≠ rt′  
at this r, the mean-value theorem implies that there exist δ(±) 
> 0 and 0 ≤ λ(±) ≤ 1 such that  
 

( ) ( ) ( ) ( ) *

( ) ( ) ( ) ( ) * .

0 if 

0 if 

( ) ( ) ( )
( ) ( ) ( )

r r r

r r r

r r

r r

L L g t t

L L g t t

+ + + +

− − − −

′ ′ ′ ′+ δ = − + λ δ δ >  

′ ′ ′ ′− δ = − λ δ δ >  

−

−

>
<

θ θ θ

θ θ θ

e e
e e

     

                 

For θ′ on the boundary of Θ, it is known that there exists a 
partition of each subvector, θ′(1) and θ′(2), such that a change 
in each sub-subvector in the direction of the corresponding 
sub-subvector of ∗θ , with other components of θ′ remaining 

fixed, produces a new value of θ that lies in Θ (in contrast to 
θ′ ∈ int(Θ), it is possible that no r′ ± δθ e  lie in Θ). Because 

) ( )( )( ( ) ( )m T mm∗′ ′−θ θ θg  < 0 for at least one of m = 1 or 2, it 
is known that ( ; ) ( ; ) ( ; )( ) ( )m j T m j m j∗′ ′−θ θ θg  < 0 for at least 
one sub-subvector, where g(m;j) = ( ; )m jL∂ ∂θ . Suppose a 
change is made to such a sub-subvector along the line 
segment connecting ( ; )m j′θ  and ( ; )m j∗θ  with all other 
components of θ held at their values in θ′. That is, a change 
to θ′ is made that is proportional to ∆(m;j)  ≡  

( ; ) ( ; )0,0,...,0, ,0,...,0[ ]m j m j T∗ ′−θ θ . The mean-value 
theorem and continuity of g(m;j) imply that there exist a 
sufficiently small δ > 0 and 0 ≤ λ ≤ 1 such that  
 

( ; )

( ; ) ( ; ) ( ; ) ( ; ) 0,

( ) ( )
( ) ( )

m j

m j m j T m j m j

L L
∗

′ ′ + δ

′ ′= −δ + λδ − >

−θ θ ∆

θ ∆ θ θg
 

 

where the convexity of Θ ensures that both ( ; )m j′ + δθ ∆  and 
( ; )m j′ + λδθ ∆  lie in Θ. Hence, it is possible to change at least 

one of θ(1) or θ(2) to yield a reduction in L at any point 
outside of ∗Θ . Q.E.D. 

 

The above ideas apply directly when the two-stage seesaw 
process is generalized to an M-stage process, M ≥ 3. In 
particular, suppose that there are vectors θ(1), θ(2) ,…, θ(M), 
each processed sequentially in the manner of the two-stage 
algorithm. That is, the vectors are processed sequentially 
such that  

 

1
ˆ( )kL +θ  ≤ … ≤ , ....,

(1) (2) ( )
1 1

ˆ ˆ ˆ( )M
k k kL + +,θ θ θ  ≤ 

, ....,
(1) (2) ( )

1
ˆ ˆ ˆ( )M

k k kL + ,θ θ θ  ≤ ˆ( )kL θ  
 

subject to 1
ˆ

k+θ  ≠ ˆ
kθ  only if 1

ˆ( )kL +θ  < ˆ( )kL θ . Then, the 

obvious modifications to the statements of Theorem 1 and 
Corollary 1 apply. 

III. EXAMPLE IN STATE-SPACE MODEL IDENTIFICATION 
As mentioned in Section I, a motivating application for the 

seesaw approach is a problem in the identification of 
parameters in state-space models. It is assumed that the 
process is modeled according to the traditional linear state-
space model composed of a state equation and a 
measurement equation. We observe N independent 
realizations of the process (i.e., N independent tests). Such 
cross-sectional identification problems for state-space models 
have been considered in a number of references, including 
Goodrich and Caines (1979), Shumway et al. (1981), and 
Levy (1995). Each realization is associated with its own 
state-space model, but θ is, in general, common across the N 
models.  

For the identification of the defense system of interest to 
the author, the original focus and software development was 
aimed at the common mean vector and covariance matrix, µ 
and Σ, for the initial states in the state-space model. Later, the 
interest extended to include power spectral density 
parameters entering the state-noise covariance matrix. We 
summarize below the essential aspects of the identification. 
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Greater detail on this state-space implementation is provided 
in Spall (2006), which considers the special case where θ 
represents the parameters that enter initial state mean and 
covariance matrix and the state-noise covariance matrices.  
 A different state-space identification application involving 
a natural decoupling into two groups of parameters is 
described in Spall and Garner (1990) in the context of 
primary parameters and nuisance parameters. The analysis is 
based on N = 1 (i.e., a single realization). The seesaw idea 
could be used in the nuisance parameter context if the aim 
was to estimate both primary and nuisance parameters from a 
given set of data. (The Spall and Garner paper considers only 
the estimation of the primary parameters, taking the nuisance 
parameters as “given” based on prior information.) 

IV.  NUMERICAL ANALYSIS 
4.1 Overview 

In this section, we present a numerical analysis of the 
seesaw method for three test functions. Although seesaw is 
not tied to any specific numerical algorithm, we use the 
steepest (gradient) descent method in the studies here: 
 

1
ˆ ˆ ˆ( )k k k ka+ −=θ θ θg ,  k = 0, 1, 2,…,           (4.1) 

 

where ak is a non-negative (scalar) gain number satisfying 
certain conditions. As needed, the generic representation of 
the elements of θ is according to θ ≡ [t1, t2,…, tp]T. We use 
constant gains ak = a for all k here. 

Although the steepest descent method is not likely to be 
the best algorithm for minimizing any of the functions below, 
we use it in these studies because it is a foundational method 
having broad applicability and reasonable performance in a 
range of problems. Further, steepest descent represents a 
special case of stochastic gradient methods (a.k.a. 
Robbins−Monro stochastic approximation [SA]) (e.g. Spall, 
2003, Chaps. 4−5). Hence, the performance improvement 
observed here might point to possible improvements in a 
stochastic environment, as well. Second-order-type 
algorithms (such as quasi-Newton, conjugate gradient, or 
adaptive SPSA) are also based on (4.1), with ak being 
replaced by a matrix typically representing some 
approximation to the inverse Hessian matrix, built up 
adaptively as the algorithm proceeds across iterations 
(Bazaraa et al., 1993, Sect. 8.8; Spall, 2003, Sect. 7.8; or 
Spall, 2009). 
 

4.2 Simple Quartic Loss Function 
The first test case in this study is the simple quartic loss 

function in Spall (2003, Example 1.8), L(θ) = 
4 2 2
1 1 1 2 2t t t t t+ + +  with Θ = 2. It is easily seen that the global 

minimum ∗θ  = [0, 0]T is the only critical point. We compare 
the steepest descent method with the seesaw method under a 
common fixed gain coefficient (step size). The subvectors 
θ(1) and θ(2) here correspond to the two scalar components of 
θ. We use both a standard steepest descent (4.1) and a 
modified steepest descent that exploits a known closed-form 
solution. In particular, the modified form uses standard 

steepest descent for the update of t1 while the closed-form 
solution t2 = 1 2t− , found by solving the equation g(θ) = 0 
for θ, is used when updating t2 (i.e., in the non-seesaw 
approach, t2 is updated from the value of t1 in the previous 
iteration; in seesaw, t2 is updated using the value of t1 in the 
most recent sub-iteration) 

The performance of each method is enhanced by the 
application of the closed-form solution. Further, we 
maximize the level of gain a applied to the search algorithm 
in each method in an attempt to achieve the best possible 
results. This trial-and-error process involves increasing the 
constant gain coefficient until it reaches a level where taking 
it any higher will cause ˆ( )kL θ  to diverge. Under this 
approach, both methods attain their highest accuracy when a 
= 0.29, establishing this value as the maximum gain level in 
each trial for the simple quartic loss function. 

Table 4.1 compares the performance of steepest descent 
and seesaw in terms of the error in θ for two gain values. 
Each entry in the table is based on k ≤ 50 iterations using the 
initial condition 0θ̂  = [1, 1]T. The table gives results for two 
gain values, a = 0.15 and a = 0.29. Basic steepest descent 
(eqn. (4.1)) is used with the gain a = 0.15. The modified 
steepest descent (using closed form) applies with the more 
aggressive (larger) gain, a = 0.29. The larger gain provides 
for faster convergence, but it is close to causing unstable 
behavior in the algorithm (a ≥ 0.30 leads to divergence).  

Table 4.1 indicates that the seesaw method outperforms 
the standard method with both the conservative and large 
gain values. Further, these results indicate that the accuracy 
improves with the larger gain in both the standard and 
seesaw implementations. 
 

Table 4.1. Norm values *ˆ
k −θ θ  generated at a sample of  

iteration counts k while using the standard and seesaw methods. 
The steepest descent algorithm is implemented for both 
parameters in trials listed with the gain coefficient a = 0.15; the 
modified steepest descent (including closed-form solution for t2) 
is applied for the trials that use the larger gain, a = 0.29. 

 a = 0.15 a = 0.29 
k Standard Seesaw Standard Seesaw 
0 1.4142 1.4142 1.4142 1.4142 

5 0.2215 0.2860 0.2311 0.0048 

10 0.0954 0.1152 0.0066 0.00028 

50 0.00014 0.000094 1.59×10−10 3.35×10−14 
 

Using a = 0.29, we also implement the closed-form 
solution for the second component of g(θ) in order to further 
separate the performances of each method. The loss function 
values are plotted in Figure 4.1, and accuracy data from the 
trials using the closed-form solution is included with Table 
4.1. These results indicate that maximizing the gain has a 
significant impact on the seesaw method’s ability to improve 
the performance of the steepest descent algorithm. Therefore, 
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we examine below test functions of greater complexity in 
order to further explore the improvement possible. 

 

 
Figure 4.1. Comparison of relative loss function values (on 
logarithmic scale) generated by the search methods while 
minimizing the simple quartic loss function. The curves with 
“using c.f.” refer to those runs conducted using the closed-form 
solution for 2t  in terms of 1t that exists in this problem. The 
constant gain coefficient used in each trial is a = 0.29. 
 

4.3 Rosenbrock Function 
The well-known Rosenbrock function has the form, L(θ) = 

2 2 2
2 1 1100( ) (1 )t t t− + −  (Rosenbrock, 1960). It is easily seen 

that the global minimum over Θ = 2 is ∗θ  =  [1, 1]T. We 
follow the pattern of Subsection 4.2 in comparing the 
steepest descent method with the seesaw method under a 
common fixed gain coefficient and in sometimes using a 
modified steepest descent method that exploits the closed-
form solution, t2 = 2

1t . We use the standard initial condition 
0θ̂  = [−1.2,  1]T (Rosenbrock, 1960) in all runs. The 

topological challenge is the curved valley that lies between 
the initial condition and the solution.  

We first chose the constant gain coefficient a = 0.0012, 
which is the largest value that allows the four 
implementations—steepest descent and modified steepest 
descent, each with or without seesaw—to remain stable 
enough to achieve convergence towards the solution. For this 
gain, seesaw produced loss values less than a factor of 10−1 
and 10−8 times that of non-seesaw for steepest descent and 
modified steepest descent, respectively, at 10,000 iterations. 
The values of the loss function are displayed in Figure 4.2. 

We also conducted a follow-up study where the gain a was 
tuned separately for each of the four implementations, with a 
= 0.0012 or 0.0020 in the standard (non-seesaw) 
implementations and a = 0.0060 or 0.020 in the seesaw 
implementations. Seesaw produced loss values less than a 
factor of 10−10 times that of non-seesaw for both the steepest 
descent and modified steepest descent implementations at 
10,000 iterations. Part of the reason for the relatively greater 
performance enhancement with seesaw, relative to the 

common a case, was the fact that it was possible to have a 
larger (“aggressive”) a in seesaw while preserving algorithm 
stability. The larger a increased the convergence rate. 

   

 
Figure 4.2. Comparison of relative loss function values (on 
logarithmic scale) generated by the search methods while 
minimizing the Rosenbrock function. The data representing the 
trials where we are “using c.f.” refer to those which are conducted 
using the closed-form solution for 2t  in terms of 1t that exists in 
this problem. The constant gain coefficient is a = 0.0012. 
 

4.4 Skewed-Quartic Loss Function 
The final test case in this study involves the skewed-

quartic loss function from Spall (2003, p. 168): 
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where (⋅)i represents the ith component of the argument 
vector Bθ, and B is such that pB is an upper triangular matrix 
of 1’s. We consider the unconstrained case with p = 10 and 
θ(1) and θ(2) corresponding to the first five and second five 
components of θ, respectively. The minimum occurs at ∗θ  = 
0 with ( )L ∗θ  = 0; all runs are initialized at 0θ̂  = 
[1, 1,…, 1]T (so 0

ˆ( )L θ  = 4.178). We consider only the 
standard steepest descent method (4.1) (not the modified 
method used in Sections 4.2 and 4.3).  

Table 4.2 compares the performance of standard steepest 
descent and seesaw in terms of the error in θ for a nominal 
(conservative) gain a = 1 and for two gain values, a = 2.21 
and a = 5.45, tuned to provide approximately optimal 
performance for the standard and seesaw method, 
respectively. Figure 4.3 shows the relative performance of 
standard and seesaw for the tuned gains. For the nominal 
gain, we see that the standard method produces a slightly 
lower error than seesaw over the k ≤ 1000 iterations that were 
considered. On the other hand, for the tuned gains, seesaw 
produces a significantly lower error than the standard method 
over the full range of iterations, with an improvement of 
several orders of magnitude at the higher end of the range of 
iterations. The numerical results indicate that the “more 
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aggressive” gains provide a much faster rate of convergence, 
both in terms of θ accuracy and the loss value.  

 
Table 4.2. Norm values *ˆ

k −θ θ  for standard steepest descent 
and seesaw methods for the skewed-quartic loss. The 
implementation with larger gains (right-hand columns) reflects a 
tuning process for approximately optimal algorithm performance 
over k ≤ 1000. 

 a = 1 Standard: a = 2.21 
Seesaw: a = 5.45  

k Standard Seesaw Standard Seesaw 
0 3.1623 3.1623 3.1623 3.1623 

50 0.2835 0.3229 0.7129 0.5362 

500 0.0081 0.0109 0.00023 4.85×10−7 

1000 0.00041 0.00056 5.24×10−7 2.54×10−13 
 

 
Figure 4.3. Comparison of relative loss function values (on 
logarithmic scale) generated by each search method while 
minimizing the skewed-quartic function. Different gain 
coefficients are used in each trial represented in the figure: a = 
2.21 in the trial using the standard method, and a = 5.45 in the trial 
where seesaw is used. 
 

The results above are consistent with the results for the 
previous test functions regarding the stabilizing effect that 
the seesaw method appears to have on search algorithms. 
These results indicate this technique also increases the 
efficiency of the overall search process. 
 

V.  CONCLUDING REMARKS 

This paper has provided a description of a seesaw 
optimization process together with associated convergence 
theory having conditions that differ from existing 
convergence results. One advantage of seesaw is the 
preservation of potentially large investments in software 
while allowing for an extension to include parameters not 
covered by the original software. For such a use, the seesaw 
scheme requires a module directed at the new parameters and 

a master program to control the oscillation between original 
software and the module devoted to the new parameters.  

In addition, numerical studies have revealed the desirable 
property of a faster rate of convergence for seesaw 
optimization in the three test functions considered as a 
consequence of the more “aggressive” (larger) gain 
coefficient possible in the seesaw algorithm. It would also be 
of interest to evaluate whether the seesaw idea could lead to 
improved convergence rates in stochastic approximation 
algorithms such as stochastic gradient methods (a.k.a. 
Robbins−Monro stochastic approximation [SA]), finite-
difference SA, and simultaneous perturbation SA (e.g. Spall, 
2003, Chaps. 5−7). Even without the stochastic extension, 
however, seesaw provides advantages in implementation and 
convergence for optimization problems encountered in 
practice.    
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