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Abstract— Repetitive Control includes an Internal Model
with high gain and slow time response characteristics which
make it prone to the windup effect. A solution to this problem
is the inclusion of an Anti-Windup compensator. Although
there exist many general Anti-Windup synthesis methods in
literature, some problems can arise as a result of a straight-
forward application of them in Repetitive Control. This paper
presents the analysis and adaptation of the Model Recovery
Anti-Windup strategy in the Repetitive Control frame. Thus, an
optimal LQ design is proposed that looks for a deadbeat recover
behaviour after saturation and a global asymptotic stability for
the closed loop system. Through simulation it is shown that the
propounded scheme achieves better tracking performance than
other similar LQ designs.

I. INTRODUCTION

As an Internal Model Principle (IMP) [1] based control

strategy, Repetitive Control (RC) [2], [3] uses an Internal

Model (IM) that characterizes the signal to be tracked or

rejected. In this way, the IM of the RC provides infinite

or very high gain at a given frequency an its harmonics. It

is well known that, in systems with actuator saturation, a

controller with these characteristics may produce a wind-

up effect in which the states of the controller can grow

unbounded. Even if the gain is not infinite but high, the

states can overgrow significantly making harder to recover

the system to the linear ideal one. Some conditions related

to the boundedness of the state of the RC with actuator

saturation are stated in [4].

As it is known, marginally stable or unstable controllers

are prone to originate the unbounded growing of the con-

troller state. Thus, using the pole analysis, it can be noted that

the IM used in standard RC is marginally stable and those

used in High Order Repetitive Control (HORC) [5], [6] have

poles over the unit circle with multiplicity equal or greater

than two which can yield Bounded Input Bounded Output

(BIBO) unstable IM [7]. Additionally, the IM generally

imposes a slow transient response for the closed loop which

worsens the actuator saturation effect. Therefore, since the

linear design of the repetitive control does not include the

saturation in the actuator, it is convenient to include an Anti-

Windup (AW) compensator. A recent review of standard AW

techniques can be found in [8] and [9].
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garamosf@unal.edu.co
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In [9], modern AW proposals have been classified in two

groups: Direct Linear Anti-Windup (DLAW) and Model Re-

covery Anti-Windup (MRAW). The DLAW approach seeks

to find an AW compensator that assures specific performance

and stability properties for the closed loop system. The

MRAW approach selects the AW filter in such a way that it

makes invariant the compensator-plant system. However, due

to the characteristics of the RC, most of the standard AW

designs should not be applied straightforward since some

difficulties might appear during design or implementation.

As a result, it would be necessary to adapt the generic AW

strategies in order to be applied in RC.

In the DLAW scheme, some strategies are based on

solving a Linear Matrix Inequality (LMI) problem [10];

however, complications usually arise since the size of this

LMI depends mostly on the IM order which is usually large.

Thus, for the RC case, the implementation of this scheme

depends on whether the LMI is computationally solvable or

not. Although the DLAW scheme allows us to obtain an AW

compensator of order 0, the solution includes elements that

yield a large number of on-line calculations, thus increasing

the computational burden.

The MRAW scheme uses the model of the plant in its

structure. Although the order of the plant could be large, it is

usually significantly smaller than the IM order. Furthermore,

the procedure to find the feedback gains does not depend on

the controller dynamics, therefore the related LMI is always

solvable. The computational load of the MRAW scheme

implementation is the lowest one in comparison with the

other strategies.

The proposals in [11], [4] and [12], are three examples

of AW design for repetitive control. In [11], an AW law

is derived for Iterative Learning Control (ILC) and also

a extension to RC is briefly described. However, the AW

strategy is derived for a specific plant and the described

repetitive controller does not correspond to the standard

architecture since the filters for stability and robustness

are not included. In [4], the AW scheme cancels out the

dynamics of the IM during saturation and adds a structure to

shape the transients when the system saturates and gets back

from saturation. However, the IM cancellation implies that,

in addition to the repetitive controller order, it is necessary

to implement an AW filter which has at least the order of the

IM. Therefore, this scheme will be cost restrictive since it

depends on a suitable implementation platform. The work in

[12], can be categorized as a DLAW design. The strategy is

derived in continuous time domain. It is an extension to RC

of the general AW design in [10], where the case of delayed

systems is described. Also in this approach, unlike the RC
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Fig. 1. Block-diagram of the repetitive controller plug-in approach.

design that will be described here, the filters for robustness

and stability are designed together with the DLAW synthesis.

In view of the analysis above, the MRAW appears as a

good strategy when taken into account the computational

solvability and load in the design and implementation of RC.

Thus, in this work a MRAW scheme is presented in which the

recovery of the system is achieved using the approximation

to a deadbeat transition (see [13] for the deadbeat concept).

The advantage of selecting a deadbeat over other designs is

shown as well as the design method.

The paper is organized as follows, Section II presents the

basics of the repetitive control including some design issues

and the stability conditions. Section III describes the general

MRAW scheme. Section IV analyses the stability of the

system and propounds an optimal design. In Section V the

experimental results are shown and finally the conclusions

are presented in Section VI.

II. DIGITAL REPETITIVE CONTROL

Digital repetitive control uses an IM which introduces

infinite/high gain at a selected fundamental frequency and its

harmonics [5]. This IM has the following transfer function:

Gr(z) =
W (z)H(z)

1−W (z)H(z)
, (1)

where W (z) = z−N and H(z) is a null-phase FIR low-pass

filter in charge of provide robustness at high frequencies.

With H(z) = 1, IM (1) provides infinite gain at frequencies

ω = (2k − 1)2π/N , with k = 1, 2, . . . , (N/2) + 1, where

N =
Tp

Ts
is the discrete period of the signal, Tp being the

period of the signal to be tracked/rejected and Ts being the

sampling period.

Also, in order to provide robustness against frequency

uncertainty/variation a HORC technique has been devel-

oped. This version of RC uses the IM (1) with W (z) =
∑M

k=1 wkz
−kN and

∑M

k=1 wk = 1 [6].

Besides the IM, which assures steady state performance,

repetitive controllers include a stabilizing filter, Gx (z),
which assures closed-loop stability. Traditionally, repetitive

controllers are implemented in a “plug-in” fashion, i.e. the

repetitive compensator is used to augment an existing nomi-

nal controller, Gc (z) (Figure 1). This nominal compensator

is designed to stabilize the plant, Gp (z), and provides

disturbance attenuation across a broad frequency spectrum.

The closed-loop system of Figure 1, using (1) as the IM,

is stable if the following conditions are fulfilled ([14]):

1) The closed loop system without the repetitive con-

troller is stable, i.e. Go (z) =
Gc(z)Gp(z)

1+Gc(z)Gp(z)
is stable.

It is advisable to design the controller Gc(z) with a

high enough robustness margin.

2) ‖ W (z)H (z) (1− To (z)Gx (z)) ‖∞< 1, where

H(z) and Gx(z) must be selected to meet this

condition. A trivial structure1 which is often used

for minimum phase systems is ([15]): Gx (z) =
kr. (Go (z))

−1
. As argued in [16], kr must be designed

looking for a trade-off between robustness and tran-

sient response.

The transfer function of the complete controller (see

Figure 1) results:

Grc(z) =
U(z)

E(z)
= (1 +Gr(z)Gx(z))Gc(z) (2)

Additionally, the transient or convergence time is domi-

nated by the IM dynamics, which is in general much slower

than the closed loop only with the controller Gc(z) [17],

[18].

III. THE GENERAL MRAW SCHEME

Figure 2 shows the MRAW structure, where Gp(z) is the

plant, Grc(z) is the controller (2), sat(·) is the saturation

function and Caw(z) is the AW compensator. In the MRAW

strategy, the mismatch between the saturated control action

and the non-saturated one is fed back to the controller by

means of the AW compensator, which is designed to be the

model of the plant, σ1,k being the output that is used with

this purpose. Additionally, another feedback signal, σ2,k,

is added with the aim of improving the behaviour of the

system when it gets out from saturation. Thus, the design

of this feedback involves different approaches. The Internal

Model Control (IMC) AW strategy [19], turns out to be the

particular case where σ2,k = 0. This causes that when getting

out of saturation the system recovery relies on the plant poles,

which can yield a non appropriated performance. A strategy

based on Predictive Control which seeks an l2 performance

criterion can be found in [20], an optimization procedure

using the Linear Quadratic (LQ) approach is proposed in

[21] and a fully nonlinear strategy is described in [22].

In this work, the signal σ2,k is designed to be a linear

feedback of the AW compensator state. This is aimed at

finding a simple linear solution to the AW problem in case

of RC, also avoiding the algebraic loop that can be created

using the feedback of the control action mismatch, as in [21].

Furthermore, we analyse the benefits of designing a deadbeat

behaviour in the AW filter in case of repetitive control. Also,

as previously mentioned, the advantage of using the MRAW

scheme for the repetitive control case is that the design

does not depend on the IM order. Additionally, as will be

described later on, the error and control signals are the ideal

ones (as if the system had no saturation in the actuator),

which isolates the controller from the saturation effects.

1There is no problem with the improperness of Gx(z) because the IM
provides the repetitive controller with a high positive relative degree.
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Fig. 2. The MRAW scheme in RC.

A. Selected MRAW scheme

Consider the MRAW scheme depicted in Figure 2. Let the

discrete-time and asymptotically stable linear plant Gp(z) be

xk+1 = Axk +Bsat(ūk)
yk = Cxk

(3)

where

sat(ūk) =







umin ūk < umin

ūk umin ≤ ūk ≤ umax

umax ūk > umax

(4)

with umin < 0 and umax > 0.

The state-space representation of the repetitive controller

Grc(z) is:

x̄k+1 = Arcx̄k +Brcek
uk = Crcx̄k +Drcek

(5)

The AW filter Caw(z) is defined from the plant model (3)

as:

χk+1 = Aχk +B(uk − sat(uk + σ2,k))
σ1,k = Cχk

(6)

and

σ2,k = Kχk (7)

where K is the design parameter of the AW filter.

It can be noticed that while the input in system (3) is

the saturated control action, the input in system (6) is the

difference between the saturated and non-saturated control

action. This fact, together with

ηk = yk + σ1,k, (8)

helps to determine the system invariance. Thus, defining

ξk = xk + χk, noticing that ūk = uk + σ2,k and adding

equations (3) with (6) we have:

ξk+1 = Aξk +Buk

ηk = Cξk
(9)

In this way, from the input uk to the output ηk, the system

in Figure 3 can be seen as a Linear Time Invariant (LTI) one

with the dynamics of the plant.

This means that ηk is the ideal plant output in the sense

that it would be the plant output in a system without actuator

saturation. Furthermore, in the closed loop of Figure 2, the

control action action uk is the ideal control action, i.e. uk

is the same control signal as the one in a system without

actuator saturation. This fact isolates the controller from the

saturation effects, allowing us to reduce the analysis to the
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Fig. 3. The invariant part of the MRAW scheme.

behaviour of the invariant part shown in Figure 3, including

its internal stability.

Remark 1: In this scheme the deviation from the ideal

performance can be measured trough σ1,k, since σ1,k is the

difference between the ideal behaviour and the plant output

σ1,k = ηk − yk.

Proposal 1: Given a RC design, the smallest possible σ1,k

corresponds to the best possible performance in case of

saturation (the smallest deviation from the ideal behaviour).

Therefore, the problem formulation is to find the design

parameter K such that σ1,k is small enough to obtain a good

tracking performance.

It is important that the AW design aims at achieving

good tracking performance since RC is a technique which

is intended to obtain null steady-state tracking error. Also

due to this RC feature, we are interested in the saturation

effect produced in steady state even though it also can occur

in transient state.

IV. MRAW PROPOSAL FOR RC: DESIGN AND STABILITY

The proposal is based on the idea of having a deadbeat

recover once the system gets back from saturation. The goal

is to obtain a Caw(z) AW filter such that during saturation

takes the form of the plant model, and additionally, when

the control action gets back from saturation, the outputs of

Caw(z) vanish in a finite number of samples.

To obtain a deadbeat behaviour during recovery it is

needed that the feedback loop created by σk,2 relocates all

the poles of Caw(z) to z = 0, which can be done using the

pole placement procedure, thus obtaining the gains vector K .

However, the internal stability of the system must be verified.

A. Stability

Remark 2: The closed loop stability of the system in Fig-

ure 2 is established by the design of the RC and additionally

by the internal stability of the system in Figure 3.

Moreover, from the facts that: 1) we are assuming an

asymptotically stable plant and 2) from input uk to output

ηk the system in Figure 3 can be seen as a LTI one with the

dynamics of the plant, we have that the internal stability of

this system can be established analysing only the stability of

the interconnection between the saturation block and Caw(z).
As a result, in order to check the internal stability of the

system in Figure 3 the following condition should be verified

for the system in equations (6) and (7):

V (χk+1)− V (χk) + Ψ < 0, (10)
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V (χk) = χT
k Pχk being the candidate Lyapunov function

and Ψ = 2(uk − sat(uk))W (sat(uk)) the sector condition2

(see [23]), P > 0 and W > 0 being symmetric matrices to be

found. Since Ψ ≥ 0, following the S-procedure we can find

that verifying condition (10) implies V (χk+1)− V (χk) < 0
and as a consequence the internal stability is established.

B. Optimal design

In order to obtain a design as close as possible to the

deadbeat behaviour explained previously and also assuring

global asymptotic stability, condition (10) can be put together

with an optimal LQ design in a LMI form.

Remark 3: In this case the LQ design is used to find the

deadbeat gain K which is shown to be an optimal when the

weight matrix Qp = T TT , T being the linear transformation

of the system (6) into the controllable canonical form (see

[24]).

Other results related with the deadbeat design as an

optimal LQ solution can be found in [25]. Thus, the problem

formulation is to find K such that the stability of the

interconnection between Caw, equations (6) and (7), and

the saturation block is preserved and additionally, solve the

constrained LQ problem:

minK
∑

∞

k=0 χ
T
k Qpχk

subject to
χk+1 = Aχk +Bσ1,k

σ1,k = Kχk.

The complete problem can be formulated as an LMI

minimization problem:
min γ
s.t.




−Q AQ BU
⋆ −Q XT

1

⋆ ⋆ −2U



 < 0

[

γI I
I −Q

]

> 0





−Q ⋆ ⋆
AQ +BX1 0 ⋆

QpQ 0 −Qp



 < 0

where Q = QT > 0, U = UT > 0, γ > 0 and X1 = KQ.

Is it worth to say that there exists some conservativeness

in the sector condition Ψ which is applied to non-linearities

belonging to the sector [0, 1]. In general, this fact yields a

gain K that is an approximation to the deadbeat solution.

V. SIMULATIONS RESULTS

This section shows the results found by simulation using

the AW design presented previously and a comparison with

other optimal LQ design together with the IMC AW strategy.

2In this case the memoryless function sat() is said to belong to the
sector [0, 1] since sat(t, u) [u− sat(t, u)] ≥ 0, which is called the sector
condition.

A. Simulation setup

With the purpose of comparing the AW strategies de-

scribed in this work, a linear repetitive controller design will

be given. Thus, consider the following discrete-time linear

stable plant:

Gp(z) =
2.146z + 0.7585

z2 − 0.9945z + 0.03498
(11)

The controller is constructed from model (11), for N =
100 and sampling period of Ts = 5 ms. According to Section

II, the following design issues have been taken into account:

• Gc(z) = 0.5 provides a very robust inner loop.

• The first order linear-phase FIR filter

H(z) = 0.02z + 0.96 + 0.02z−1

provides sufficient robustness in the present case.

• The fact that Gp(z) is minimum-phase allows Gx(z) =
krG

−1
0 (z), with kr = 0.75.

Also, a second order HORC has been designed for com-

parison purposes. Thus, M = 2, w1 = 2 and w2 = −1 have

been selected.

Given the state space discrete-time system: (A,B,C,D),
and its reachability matrix WA =

[

B AB · · · An−1B
]

,

then the matrix T =
[

vTn vTnA · · · vTnA
n−1

]

with vTn
the last row of W−1

A . Thus, for this example:

A =

[

0.0244 −0.1251
0.0903 0.9701

]

, B =

[

0.0903
0.0216

]

,

C =
[

0 99.5450
]

, D = 0,

T =

[

−8.1858 34.2736
2.8936 34.2736

]

.

Using the optimal MRAW approach described in Section

IV-B, the parameters that have been found to be a feasible

solution are: Kdb =
[

3.1823 24.8267
]

, using Qp = T TT
for a deadbeat approximation and Kst =

[

1.0747 8.1270
]

,

using Qp = 105I as the LQ design used for comparison

purposes. The idea behind the last LQ design is to find a

solution that keeps small the state of the AW compensator.

B. Simulation results

This section analyses the saturation in steady state. The

saturation limits have been chosen to be umin = −5 and

umax = 2. The reference signal rk is depicted in Figure 4

together with the system plant output yk and control signal

uk when the settings for HORC have been applied without

actuator saturation. As can be seen, in this case, the repetitive

controller successfully tracks the reference signal.

Figure 5 shows the control action uk, i.e. the control

action provided by the repetitive controller. The system with

actuator saturation but without AW mechanism is called SAT

and the system without saturation is called Ideal. For the

SAT scheme two options are depicted, SAT RC and SAT

HORC, for standard and HORC respectively. As can be

seen, both SAT RC and SAT HORC control signals present

an undesirable wind-up effect, the SAT HORC being the
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worse case. This phenomena is due to the pole multiplicity

in the IM for HORC which also makes it slower than the

RC one. As has been pointed out, when the MRAW scheme

is included, the control signal uk corresponds with the ideal

one. The rest of the examples will be carried out using only

the second order HORC.
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Fig. 4. Steady state reference rk , output yk and control signal uk without
saturation.
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Fig. 5. Control action uk for RC and HORC with actuator saturation and
without AW filter.

Figure 6 depicts the plant output yk and saturated control

signal ûk using the proposed AW design. Thus, the optimal

design proposed here denoted by Kdb are compared with

Kst and K = 0 which corresponds to the response using a

standard LQ design and K = 0 (IMC AW) respectively, as

described in the previous section. It is shown that for K = 0
the system recover is too much slow; in fact, in this example,

the ideal output is hardly reached again before getting into

saturation again. On the other hand, the saturated control

action approximates very well the ideal one, except when

uk > umax, but as can be seen, this is not the desirable

behaviour. For Kst, the plant output is closer to the ideal

one and also it is seen that its corresponding control action

remains saturated longer than in the previous case. Finally,

using Kdb to approximate a deadbeat behaviour, it can be

noticed that the plant output gets closer to the ideal output

and its control action remains saturated longer.

Figure 7, shows the output of the AW compensator σ1,k,

which, as mentioned before, can be seen as the deviation

from the ideal response. It is shown that during the time

the three systems are in saturation the deviation is similar;

however the response is quite different once the systems get

out of saturation, the response for Kdb being the smallest

one. It is worth to notice that, since for this example the RC

and the HORC design have the same tracking performance,

σ1,k in Figure 7 is the same in both cases.
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Fig. 6. Steady state saturation behaviour.
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VI. CONCLUSIONS

In this paper, the Model Recovery Anti-Windup scheme

is studied and adapted to the Repetitive Control case. An

optimal LQ design has been proposed aimed at finding a

deadbeat recover behaviour and assuring the global asymp-

totic stability of the closed loop system. Through simulation

results it is shown that the proposed AW scheme gets better
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performance in the deviation from the ideal plant output

compared with other similar LQ designs. The future research

includes the inclusion of less-restrictive sector conditions for

the nonlinear saturation function in order to better approxi-

mate the deadbeat design.
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