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Abstract— We study the linear-quadratic optimal control
problem with the state equation consisting of two sequentially
acting descriptor systems. Matching conditions for trajectories
at the switch point are absent. However, the minimized
functional depends on values of a state trajectory at the left and
right sides of the switch point. State trajectories have partially
fixed left and right points and, in general, they are discontinuous
functions. We present the algorithm for solving this problem,
which avoids the use of boundary value problems. It is based
on the sequential solving of eight initial value problems for
differential-algebraic equations. The formula for the minimal
value of the performance index is also given.

I. INTRODUCTION

Mixed systems of differential and algebraic equations

arise in modeling of electrical, mechanical, chemical,

economic, and biological systems. These systems are known

as differential-algebraic equations (DAEs) or descriptor

systems. There is a vast literature devoted to theoretical and

numerical analysis of these systems (see, for instance, [1–3]

and references therein). Optimal control problems have been

considered, e.g., in [4–7]. Note that discontinuous systems

are often used in control problems (see for details [8, 9]).

It is known that control optimality conditions for a

control in a programme form result in boundary value

problems. However, it is possible to avoid the use of

boundary value problems in classic linear–quadratic optimal

control problems by applying a feedback control (see, for

instance, [10]). Analogous results for descriptor systems

and for DAEs with properly formulated leading term were

obtained in [11] and [7], respectively. In the case of

continuous state trajectories, optimal feedback controls for

two linear–quadratic problems with intermediate points in

the performance index are presented in [12, 13].

This paper deals with the problem of minimizing the

functional

J(u, x) =
1

2

{〈
C1E1x1(t1) − C2E2x2(t1),

F (C1E1x1(t1) − C2E2x2(t1))
〉

+
2∑

j=1

∫ tj

tj−1

(〈
xj(t),Wj(t)xj(t)

〉
+

〈
uj(t), Rj(t)uj(t)

〉)
dt

}

(1)

with respect to the trajectories of the following system

(Ejxj)
′(t) = Aj(t)xj(t) +Bj(t)uj(t), (2)
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tj−1 ≤ t ≤ tj , j = 1, 2,

E1x1(0) = a, E2x2(T ) = b. (3)

Here the prime denotes the differentiation with respect to

t; 0 = t0 < t1 < t2 = T ; a ∈ ImE1, b ∈ ImE2 and tj are

fixed; xj(t) ∈ Xj , uj(t) ∈ Uj ; Ej , Aj(t),Wj(t) ∈ L(Xj),
Bj(t) ∈ L(Uj ,Xj), Rj(t) ∈ L(Uj) for all t ∈ [tj−1, tj ];
Cj ∈ L(Xj , Y ), F ∈ L(Y ); KerEj 6= Xj ; Xj , Uj , and

Y are real finite-dimensional Euclidean spaces. As usually,

L(X,Z) means a set of linear bounded operators acting

from X into Z, L(X) := L(X,X). Further, the operators

F , Wj(t), and Rj(t) are symmetric, F and Wj(t) are

non-negative definite, Rj(t) is positive definite for all t ∈
[tj−1, tj ]; the operators F,Cj , and Ej are independent of t,
however, the other operators depend continuously on t in the

corresponding segments [tj−1, tj ], j = 1, 2; 〈·, ·〉 denotes an

inner product in an appropriate space.

Admissible controls are piecewise continuous functions

formed from continuous functions u1(·) and u2(·) defined on

the segments [0, t1] and [t1, T ] respectively. Corresponding

trajectories are also piecewise continuous functions formed

from continuous functions x1(·) and x2(·) defined on the

segments [0, t1] and [t1, T ] respectively.

If E1 and E2 are identity operators, the problem (1)–(3)

is a particular case of the problem considered in the paper

[14]. For this case of the problem (1)–(3), necessary and

sufficient control optimality conditions as well as the unique

solvability are established in [14].

It should be noted that control optimality conditions for a

control in a programme form for various nonlinear control

problems for discontinuous systems have been given, for

instance, in [8, 15]. In order to use these control optimality

conditions it is necessary to solve boundary value problems.

In this paper, we present the algorithm for the solving of

the problem (1)–(3) which avoids the solving of boundary

value problems. The formula for the minimal value of the

performance index is also obtained. We emphasize that the

state equation in the considered problem (1)–(3) consists

of two sequentially acting systems. Matching conditions

for trajectories at the switch point are absent, however,

the minimized functional depends on values of the state

trajectory at the left and right sides of the switch point. State

trajectories have partially fixed left and right points and, in

general, they are discontinuous functions. Note that we do

not need any assumptions on the index of the system (2).

The paper is organized as follows. In section II we give

the decomposition of DAE, which follows from a control

optimality condition, to independent DAEs. At first, we
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present an optimal control using a state variable. Then the

solvability of the appearing problems is discussed and the

formula for the minimal value of the performance index is

derived. In the end of this section the decomposition of the

systems for finding an optimal control is described. In section

III we present the main result (Theorem 3.1) on reducing the

problem (1)–(3) to eight initial value problems for DAEs.

This result is based on a decomposition of boundary values.

An illustrative example is presented in the next section.

Section V contains concluding remarks.

II. DECOMPOSITION OF

DIFFERENTIAL-ALGEBRAIC EQUATION

FOLLOWING FROM CONTROL OPTIMALITY

CONDITION

A. Presentation for Optimal Control Using a State Variable

Further the superscript ∗ with an operator notation denotes

the adjoint operator. For brevity, the argument will be

sometimes omitted.

Lemma 2.1. Let x1∗(·) and x2∗(·) be components of a

trajectory for the system (2), (3) corresponding to the control

u(·) = u∗(·) composed of the functions u1∗(·) and u2∗(·),
where

uj∗(t) = Rj(t)
−1Bj(t)

∗ψj(t), tj−1 ≤ t ≤ tj , j = 1, 2,
(4)

and ψj(·) solve the following problem

(E∗

jψj)
′(t) = Wj(t)xj∗(t) −Aj(t)

∗ψj(t), tj−1 ≤ t ≤ tj ,
(5)

E∗

jψj(t1) = −C̃∗

j F
(
C̃1x1∗(t1) − C̃2x2∗(t1)

)
, (6)

C̃j := CjEj , j = 1, 2.

Then u∗(·) is the optimal control for the problem (1)–(3).

Note that, in general, the optimal control u∗(·) is

discontinuous.

The proof of this lemma is analogous to the proof of

Theorem 4.1. in [14] for problems with a state equation

resolved with respect to the derivative.

Thus, to find a solution of the problem (1)–(3) we have

to solve the boundary value problem with respect to xj and

ψj , j = 1, 2.

Lemma 2.2. Let the operator–function Kj(·) be a

solution of the independent initial value problem

(E∗

jKj)
′(t) = −Kj(t)

∗Aj(t) −Aj(t)
∗Kj(t)

+Kj(t)
∗Sj(t)Kj(t) −Wj(t), (7)

Sj(t) := Bj(t)Rj(t)
−1Bj(t)

∗, tj−1 ≤ t ≤ tj ,

E∗

jKj(t1) = 0, (8)

j = 1, 2.

Let also the functions xj∗(·) and ϕj(·) solve the following

boundary value problem

(Ejxj)
′(t) = (Aj(t)−Sj(t)Kj(t))xj(t)−Sj(t)ϕj(t), (9)

(E∗

jϕj)
′(t) = −(Aj(t) − Sj(t)Kj(t))

∗ϕj(t), (10)

tj−1 ≤ t ≤ tj ,

E1x1(0) = a, E2x2(T ) = b, (11)

E∗

jϕj(t1) = C̃∗

j F
(
C̃1x1(t1) − C̃2x2(t1)

)
, (12)

j = 1, 2.

Then the functions

ψ1 = −K1x1∗ − ϕ1, ψ2 = −K2x2∗ − ϕ2 (13)

solve the system (5), (6) and the components of the optimal

control are given by

uj∗(t) = −Rj(t)
−1Bj(t)

∗
(
Kj(t)xj∗(t)+ϕj(t)

)
, j = 1, 2.

(14)

Proof: Taking into account (7) and (8) we obtain that the

operators E∗

jKj(t) are symmetric, i.e.,

E∗

jKj(t) = Kj(t)
∗Ej , tj−1 ≤ t ≤ tj , j = 1, 2. (15)

Combining (15) with (13), we get

(E∗

jψj)
′ = −(E∗

jKj)
′xj −K∗

j (Ejxj)
′ − (E∗

jϕj)
′.

Using this relation and making immediate substitutions, we

prove the lemma.

In this lemma, we do not avoid the solving of a boundary

value problem, however, equation (10) for ϕj does not

depend on xj , i.e. it is simpler than the equation (5) for

ψj .

B. Solvability of Auxiliary Problems from Lemma 2.2

Equation (7) is a differential-algebraic operator Riccati

equation. The solvability of this equation with given

condition (8) has been considered in [16]. The Riccati DAE

of a more general form has been studied in [7].

Let us denote by Pj and Qj the projectors of the space

Xj onto KerEj and KerE∗

j corresponding to the orthogonal

decompositions Xj = KerEj

⊕
ImE∗

j = KerE∗

j

⊕
ImEj ,

respectively. Let us also denote by Ej
+ the inverse operator

for the operator (I − Qj)Ej(I − Pj) : ImE∗

j −→ ImEj .
Here and further I is an identity operator.

Relations (15) imply

(I −Qj)Kj(t)Pj = 0, tj−1 ≤ t ≤ tj , j = 1, 2. (16)

As it is established in [16], QjKj(t)Pj satisfies an algebraic

operator Riccati equation. Let us assume that the operators

PjWj(t)Pj : KerEj −→ KerEj are positive definite and

the pairs (QjAj(t)Pj , QjBj(t)) are controllable for all t ∈
[tj−1, tj ], j = 1, 2. Then the equation for QjKj(t)Pj has a

unique symmetric positive definite solution and the operators

Qj

(
Aj(t) − Sj(t)Kj(t)

)
Pj , tj−1 ≤ t ≤ tj , j = 1, 2,

(17)
are stable (see, e.g., [10]). It is proved in [16] that under

these conditions the problem (7), (8) is solvable.

Lemma 2.3. The boundary value problem (9)–(12)
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has a unique solution.

Proof: It suffices to prove that the system (9)–(12)

with trivial conditions

a = 0, b = 0 (18)

has only the trivial solution.

Let us multiply scalarly equations (9) and (10) by ϕj(t)
and xj(t), respectively. Summing up the obtained relations,

we get

〈Ejxj , ϕj〉
′

(t) = −
〈
Sj(t)ϕj(t), ϕj(t)

〉
, j = 1, 2.

Further, we integrate these equalities over the corresponding

segment [tj−1, tj ]. Summing up the obtained equalities with

j = 1 and j = 2 and taking into account (11), (12), and

(18), we obtain
〈
C̃1x1(t1) − C̃2x2(t1), F (C̃1x1(t1) − C̃2x2(t1))

〉

+

2∑

j=1

∫ tj

tj−1

〈Sj(t)ϕj(t), ϕj(t)〉 dt = 0.

Since the operators F , S1(t), and S2(t) are positive semi-

definite, it follows from the last equality that

F (C̃1x1(t1) − C̃2x2(t1)) = 0,

Sj(t)ϕj(t) = 0, j = 1, 2.

Combining the last equalities with (9)–(12) and (15) and

noting that the operators (17) are invertible, we prove the

claim.

C. Minimal Value of Performance Index

Lemma 2.4. The minimal value of the performance index

(1) is calculated by the formula

J(u∗, x∗) =
1

2

( 〈
a,K1(0)E+

1 a+ ϕ1(0)
〉

−
〈
b,K2(T )E+

2 b+ ϕ2(T )
〉 )
. (19)

Proof: Substituting into (1) the relations for

Wj(t)xj∗(t) and Rj(t)uj∗(t) obtained from (5) and

(4), respectively, we get

J(u∗, x∗) =
1

2

{〈
C̃1x1∗(t1) − C̃2x2∗(t1),

F (C̃1x1∗(t1) − C̃2x2∗(t1))
〉

+
2∑

j=1

∫ tj

tj−1

(〈
xj∗(t), (E

∗

jψj)
′(t) +Aj(t)

∗ψj(t)
〉

+
〈
uj∗(t), Bj(t)

∗ψj(t)
〉)
dt

}
=

=
1

2

{〈
C̃1x1∗(t1) − C̃2x2∗(t1),

F (C̃1x1∗(t1) − C̃2x2∗(t1))
〉

+

2∑

j=1

∫ tj

tj−1

(〈
xj∗(t), (E

∗

jψj)
′(t)

〉

+
〈
ψj(t), Aj(t)xj∗(t) +Bj(t)uj∗(t)

〉)
dt

}
.

Using (2), we derive

J(u∗, x∗) =
1

2
{
〈
C̃1x1∗(t1) − C̃2x2∗(t1),

F (C̃1x1∗(t1) − C̃2x2∗(t1))
〉

+

2∑

j=1

〈Ejxj∗(t), ψj(t)〉|
tj

tj−1
}.

Combining this with (3), (5), and (13), we arrive at (19).

D. System Decomposition

In this subsection we give the transformation such that

the solving of the system (9), (10) for xj , ϕj results in the

solving of six independent DAEs.

Let

Mj(t) := Aj(t) − Sj(t)Kj(t), j = 1, 2.

Then (9), (10) take the form

(Ejxj)
′(t) = Mj(t)xj(t) − Sj(t)ϕj(t), (20)

(E∗

jϕj)
′(t) = −Mj(t)

∗ϕj(t). (21)

Lemma 2.5. Let Vj(·) be a solution of the operator

equation

(EjVj)
′(t) = Mj(t)Vj(t) + Vj(t)

∗Mj(t)
∗ + Sj(t),

tj−1 ≤ t ≤ tj , j = 1, 2,
(22)

such that EjVj is pointwise symmetric. Let also ϕj(·) and

xj(·) be solutions of equations (10) and (9), respectively.

Then zj(·) given by

zj(t) = xj(t) + Vj(t)ϕj(t), (23)

is a solution of the equation

(Ejzj)
′(t) = Mj(t)zj(t), j = 1, 2. (24)

Proof: Immediately differentiating Ejzj where zj is

defined by (23), using (20)–(22), the symmetry of EjVj(t)
and the equality

xj(t) = zj(t) − Vj(t)ϕj(t), (25)

we obtain (24).

III. ALGORITHM FOR SOLVING PROBLEM (1)-(3)

Now we are going to show that the solving of the boundary

value problem (9)–(12) can be reduced to the solving of six

successively solved independent initial value problems for

DAEs.
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A. Some Properties of Solutions of Equations (22)

Consider solutions of equations (22) satisfying the

following conditions

E1V1(0) = 0, E2V2(T ) = 0. (26)

Then, due to (23) and (3), we get

E1z1(0) = a, E2z2(T ) = b. (27)

Hence we obtained the independent initial value problems

(24), (27) for z1 and z2.

Lemma 3.1. If the operators E1 and E2 are invertible, then

the operators V1(t)(E
∗

1 )−1, 0 ≤ t ≤ t1, are non-negative

definite and the operators V2(t)(E
∗

2 )−1, t1 ≤ t ≤ T, are

non-positive definite.

Proof: Since the operator Sj(t) is symmetric, it follows

from (22) and (26) that the operator EjVj(t) and hence the

operator Vj(t)(E
∗

j )−1 is symmetric too. Next we use the

formula from [17, p.151] for solutions of the equations

(Vj(E
∗

j )−1)′(t) = (Ej)
−1Mj(t)Vj(t)(E

∗

j )−1

+Vj(t)(E
∗

j )−1((Ej)
−1Mj(t))

∗ + (Ej)
−1Sj(t)(E

∗

j )−1,

tj−1 ≤ t ≤ tj , j = 1, 2,

with the conditions

V1(0)(E∗

1 )−1 = 0, V2(T )(E∗

2 )−1 = 0.

Namely, the solutions of the last two problems have the form

V1(t)(E
∗

1 )−1 =
∫ t

0

U(E1)−1M1
(t, τ)S̃1(τ)U−((E1)−1M1)∗(τ, t)dτ, (28)

0 ≤ t ≤ t1,

V2(t)(E
∗

2 )−1 =
∫ t

T

U(E2)−1M2
(t, τ)S̃2(τ)U−((E2)−1M2)∗(τ, t)dτ, (29)

t1 ≤ t ≤ T.

Here S̃j(t) = E−1
j Sj(t)(E

∗

j )−1, j = 1, 2, and UA(t, τ)
denotes the transition operator of the equation Y ′ = A(t)Y .

Using the formula for the fundamental matrix of

the adjoint equation [18, p.62], we get U−A∗(τ, t) =
(UA(t, τ))∗. Noting that the operators S̃1 and S̃2 are non-

negative definite, the claim clearly follows from (28) and

(29).

Now let us consider the case when the operators E1 and E2

may be singular.

Let us represent the operators Vj(t) in the following form

Vj(t) = Vj1(t) + Vj2(t) + Vj3(t) + Vj4(t), (30)

where

Vj1(t) := (I − Pj)Vj(t)(I −Qj),

Vj2(t) := (I − Pj)Vj(t)Qj ,

Vj3(t) := PjVj(t)(I −Qj), Vj4(t) := PjVj(t)Qj .

Since EjVj(t) is symmetric, we get

Vj2(t) = 0. (31)

Combining (30), (31) with (22), (26), we obtain the

following system

(I −Qj)Ej(I −Pj)Vj1
′(t) = (I −Qj)Mj(t)(I −Pj)Vj1(t)

+(I−Qj)Mj(t)PjVj3(t)+Vj1(t)
∗((I−Qj)Mj(t)(I−Pj))

∗

+Vj3(t)
∗((I−Qj)Mj(t)Pj)

∗+(I−Qj)Sj(t)(I−Qj), (32)

0 = (I −Qj)Mj(t)PjVj4(t) + Vj1(t)
∗(QjMj(t)(I − Pj))

∗

+Vj3(t)
∗(QjMj(t)Pj)

∗ + (I −Qj)Sj(t)Qj , (33)

0 = QjMj(t)PjVj4(t)+Vj4(t)
∗(QjMj(t)Pj)

∗+QjSj(t)Qj ,
(34)

(I −Q1)E1(I − P1)V11(0) = 0,
(I −Q2)E2(I − P2)V21(T ) = 0.

(35)

Lemma 3.2. The operators V11(t)E
∗+
1 , 0 ≤ t ≤ t1, are

non-negative definite and the operators V21(t)E
∗+
2 , t1 ≤

t ≤ T, are non-positive definite.

Proof: Taking into account the stability of the operators (17)

we can find from (34) the pointwise symmetric operator

Vj4(t) (see, e.g., [10, p. 215]) and resolve equation (33)

with respect to Vj3(t)
∗. Substituting the obtained expression

for Vj3(t)
∗ into (32), we get for the operator Vj1(t) the

following equation

(I −Qj)Ej(I − Pj)V
′

j1(t) = Dj(t)Vj1(t)
+Vj1(t)

∗Dj(t)
∗ + Fj(t),

tj−1 ≤ t ≤ tj , j = 1, 2,
(36)

where

Dj(t) :=

(I −Qj)(I −Mj(t)Pj(QjMj(t)Pj)
−1Qj)Mj(t)(I − Pj),

Fj(t) := (I −Qj)(Sj(t) −Mj(t)Pj(QjMj(t)Pj)
−1·

(Vj4(t)PjMj(t)
∗ +QjSj(t)) − (Mj(t)Pj(QjMj(t)Pj)

−1·

(Vj4(t)PjMj(t)
∗ +QjSj(t)))

∗)(I −Qj).

Now let us prove that the pointwise symmetric operator Fj(t)
is pointwise non-negative definite. Using (34), we obtain

−(I −Qj)MjPj(QjMjPj)
−1Vj4PjM

∗

j (I −Qj)

−(I −Qj)MjPjVj4((QjMjPj)
∗)−1((I −Qj)MjPj)

∗

= −(I −Qj)MjPj(QjMjPj)
−1(Vj4(QjMjPj)

∗

+QjMjPjVj4)((QjMjPj)
∗)−1((I −Qj)MjPj)

∗

= (I −Qj)MjPj(QjMjPj)
−1QjSjQj ·

((QjMjPj)
∗)−1((I −Qj)MjPj)

∗.
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In view of the last equality we derive the relation

Fj = (I −Qj)(Sj −GjSj − SjG
∗

j +GjSjG
∗

j )(I −Qj),

where

Gj = MjPj(QjMjPj)
−1Qj .

The non-negative definiteness of the operator Fj follows

from the same property of the operator Sj since
〈(
Sj −GjSj − SjG

∗

j +GjSjG
∗

j

)
x, x

〉

=
〈
(I −G∗

j )x, Sj(I −G∗

j )x
〉
, x ∈ Xj .

Therefore, for the operators V11(t), V21(t) we obtained the

problems (36), (35) of the form (22), (26) with the invertible

operators at the derivative. Hence, Lemma 6.1 completes the

proof.

B. Decomposition of Boundary Values

The functions ϕj(·) must satisfy (12). Using (25), the

symmetry of EjVj , and introduced notations, we derive from

(12) the following system

(I + C̃∗

1FC̃1Ṽ11(t1))E
∗

1ϕ1(t1) − C̃∗

1FC̃2Ṽ21(t1)E
∗

2ϕ2(t1)

= C̃∗

1F (C̃1z1(t1) − C̃2z2(t1)),

C̃∗

2FC̃1Ṽ11(t1)E
∗

1ϕ1(t1) + (I − C̃∗

2FC̃2Ṽ21(t1))E
∗

2ϕ2(t1)

= C̃∗

2F (C̃1z1(t1) − C̃2z2(t1)), (37)

where

Ṽj1(t1) := Vj1(t1)E
∗+
1 , j = 1, 2.

Assume that the functions z1 and z2 are found by solving

two independent initial value problems from (24), (27).

If the operator
(
I + C̃∗

1FC̃1Ṽ11(t1) −C̃∗

1FC̃2Ṽ21(t1)

C̃∗

2FC̃1Ṽ11(t1) I − C̃∗

2FC̃2Ṽ21(t1)

)
, (38)

acting in ImE∗

1

⊕
ImE∗

2 , is invertible, then we can uniquely

determine the values E∗

1ϕ1(t1) and E∗

2ϕ2(t1) from (37).

Let us rewrite the operator (38) in the form

I + F̃ V,

where

F̃ :=

(
C̃∗

1FC̃1 C̃∗

1FC̃2

C̃∗

2FC̃1 C̃∗

2FC̃2

)
,

V :=

(
Ṽ11(t1) 0

0 −Ṽ21(t1).

)
.

It is easy to check that the non-negative term outside

the integral in the performance index (1) admits the

representation
〈
F̃

(
(I − P1)x1(t1)
−(I − P2)x2(t1)

)
,

(
(I − P1)x1(t1)
−(I − P2)x2(t1)

)〉
.

Therefore, the operator F̃ is non-negative definite.

Further, suppose that the operator F̃ acting in

ImE∗

1

⊕
ImE∗

2 is invertible. Hence, this operator is

positive definite.

Lemma 3.3 The operator (38) is invertible.

Proof: Assume that there is x ∈ ImE∗

1

⊕
ImE∗

2 such

that x 6= 0 and

(I + F̃ V )x = 0.

Since F̃ is invertible, the last equality is equivalent to

(F̃−1 + V )x = 0.

By Lemma 3.2, the operator V is non-negative definite. Since

the operator F̃−1 is positive definite, we get x = 0. This

contradiction proves the lemma.

So, we can find the values E∗

1ϕ1(t1) and E∗

2ϕ2(t1) from

the system (37) and we have two independent initial value

problems for DAEs for finding ϕ1 and ϕ2.

C. Main Result

Combining Lemmas 2.2, 2.4, 2.5, and 3.3, we arrive at

the following statement.

Theorem 3.1. The solving of the problems of the form

(1)–(3) is equivalent to the successive solving of eight initial

value problems for DAEs for finding Kj , Vj , zj , and ϕj ,

j = 1, 2: (7), (8); (22), (26); (24), (27); and (10), (37),

respectively.

In addition, the optimal trajectory, the optimal control,

and the minimal value of the performance index are given

by the formulas (25), (14), and (19), respectively.

The similar theorem is presented in [19] for problems

with a state equation resolved with respect to the derivative.

Note that we have established the solvability of the

problems (7), (8) and (22), (26) for the operator DAEs. In

view of the stability of the operators (17) linear DAEs (24)

and (10) have index one. Therefore the problems (24), (27)

and (10), (37) have unique solutions.

Now we are formulating the obtained result as the

algorithm for solving problem (1)–(3). 1) To solve problems

(7), (8) for Kj , j = 1, 2. 2) To solve problems (22), (26) for

Vj , j = 1, 2. 3) To solve problems (24), (27) for zj , j = 1, 2.
4) To solve problem (37) for finding E∗

jϕj(t1), j = 1, 2.
5) To solve problems (10) for ϕj , j = 1, 2, by using the

values E∗

jϕj(t1) obtained in the previous point. 6) To find

the optimal trajectory by using (25). 7) To find the optimal

control by using (14). 8) To calculate the minimal value of

performance index (1) by using (19).

IV. EXAMPLE

Let us consider a very simple but illustrative example

in order to obtain the solutions of auxiliary problems in

an explicit analytical form. Namely, consider the following

problem of minimizing the functional

J(u, x) =
1

2

((
x11(1) + x21(1)

)2
+
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+

∫ 1

0

(
x2

11+2x11x12+3x2
12+u

2
1

)
dt+

∫ 2

1

(
x2

21+8x2
22+u

2
2

)
dt

)

with respect to the trajectories of the system

x′11 = x11, 0 = x12 + u1, x11(0) = −1, t ∈ [0, 1],

x′21 = 0, 0 = x22 − u2, x21(2) = 1, t ∈ [1, 2].

Clearly, the solution of this problem is u1∗ = −et/4, u2∗ =

0, x1∗ =

(
−et

et/4

)
, x2∗ =

(
1
0

)
, and J(u∗, x∗) =

(11e2 − 16e + 13)/16. Let us illustrate the solving of this

problem by reducing it to the initial value problems for eight

DAEs.

In this case, the problems (7), (8) for finding Kj(·) =(
Kj1 Kj2

Kj3 Kj4

)
, j = 1, 2, have the form

K12 = 0, K11
′ = −2K11 +K2

13 − 1,

0 = −K13 +K13K14 − 1, 0 = −2K14 +K2
14 − 3,

t ∈ [0, 1], K11(1) = 0;

K22 = 0, K21
′ = K2

23 − 1, 0 = −K23 +K23K24,

0 = −2K24 +K2
24 − 8, t ∈ [1, 2], K21(1) = 0.

The solutions of these problems are

K1(t) =

(
3(e2(1−t) − 1)/8 0

1/2 3

)
,

K2(t) =

(
1 − t 0

0 4

)
.

The problems (22), (26) for finding Vj(·) =(
Vj1 Vj2

Vj3 Vj4

)
, j = 1, 2, have the form

V12 = 0, V11
′ = 2V11, 0 = −V11/2−2V13, 0 = −4V14+1,

t ∈ [0, 1], V11(0) = 0;

V22 = 0, V21
′ = 0, 0 = −3V23, 0 = −6V24 + 1,

t ∈ [1, 2], V21(2) = 0.

The solutions of these problems are

V1(t) =

(
0 0
0 1/4

)
, V2(t) =

(
0 0
0 1/6

)
.

The solutions of problems (24), (27) are

z1(t) =

(
−et

et/4

)
, z2(t) =

(
1
0

)
.

The solutions of problems (10), (37) are

ϕ1(t) =

(
(1 − e)e1−t

0

)
, ϕ2(t) =

(
e− 1

0

)
.

Using (25), (14), and (19), we find the optimal

trajectory, the optimal control, and the minimal value of the

performance index, respectively.

V. CONCLUSIONS

We presented the algorithm for the solving of linear-

quadratic optimal control problems for two-steps descriptor

systems. The algorithm is based on the sequential solving

of eight independent initial value problems for DAEs. The

latter enables us to apply numerical methods for solving

initial value problems for DAEs (see, for instance, [1-3])

for the solving of considered optimal control problems. The

formula for the minimal value of the performance index is

also obtained.
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