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Dynamic Neural Network-based Robust Observers
for Second-order Uncertain Nonlinear Systems

H. Dinh, R. Kamalapurkar, S. Bhasin, and W. E. Dixon

Abstract— A dynamic neural network (DNN) based robust
observer for second-order uncertain nonlinear systems is de-
veloped. The observer structure consists of a DNN to estimate
the system dynamics on-line, a dynamic filter to estimate the
unmeasurable state and a sliding mode feedback term to account
for modeling errors and exogenous disturbances. The observed
states are proven to asymptotically converge to the system states
though Lyapunov-based stability analysis.

I. INTRODUCTION

Full state feedback is not always available in many prac-
tical systems. In the absence of sensors, the requirement
of full-state feedback for the controller is typically fulfilled
by using ad hoc numerical differentiation techniques. The
Euler difference algorithms are the simplest and the most
common numerical methods, however, these approaches can
aggravate the presence of noise and lead to unusable state
estimates. The differentiation schemes proposed by Diop et
al. in [1] and [2] are discrete and off-line methods. A more
rigorous direction to estimate unmeasurable states in literature
is nonlinear observer design. For instance, sliding observers
were designed for general nonlinear systems by Slotine et
al. in [3], for robot manipulators by Wit ef al. in [4], and
for mechanical systems subject to impacts by Mohamed et
al. in [5]. However, all these observers require exact model
knowledge to compensate for nonlinearities in the system.
Model-based observers are also proposed in [6], [7] which
require a high-gain to guarantee convergence of the estimation
error. The observes introduced in [8] and [9] are both applied
for Lagrangian dynamic systems to estimate the velocity,
and asymptotic convergence to the true velocity is obtained.
However, the symmetric positive-definiteness of the inertia
matrix and the skew-symmetric property of the Coriolis matrix
are required. Model knowledge is required in [8] and a partial
differential equation needs to be solved to design observers. In
[9], the system dynamics must be expressed in a non-minimal
model and only mass and inertia parameters are unknown in
the system.

Design of robust observers for uncertain nonlinear systems
is considered in [10]-[12]. In [10], a second-order sliding
mode observer for uncertain systems using super-twisting
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algorithm is proposed, where a nominal model of the system
is assumed to be available and estimated errors are proven
to converge in finite-time to a bounded set around the origin.
In [11], the proposed observer can guarantee that the state
estimates converge exponentially fast to the actual state, if
there exists a vector function satisfying a complex set of
matching conditions. In [12], the first asymptotic velocity
observer for general second-order systems is proposed, where
the estimation error is proven to asymptotically converge to
zero. However, all nonlinear uncertainties in the system are
damped out by a sliding mode term resulting in high frequency
state estimates. A neural network (NN) approach that uses the
universal approximation property is investigated for use in an
adaptive observer design in [13]. However, estimation errors in
this study are only guaranteed to be bounded due to function
reconstruction inaccuracies.

The challenge to obtain asymptotic estimation stems from
the fact that to robustly account for disturbances, feedback of
the unmeasurable error and its estimate is required. Typically,
feedback of the unmeasurable error is derived by taking
the derivative of the measurable state and manipulating the
resulting dynamics (e.g., this is the approach used in methods
such as [12] and [13]). However, such an approach provides
a linear feedback term of the unmeasurable state. Hence, a
sliding mode term could not be simply added to the NN
structure of the result in [13] to yield an asymptotic result,
because it would require the signum of the unmeasurable state,
and it does not seem clear how this nonlinear function of the
unmeasurable state can be injected in the closed-loop error
system using traditional methods. Likewise, it is not clear
how to simply add a NN-based feedforward estimation of
the nonlinearities in results such as [12] because of the need
to inject nonlinear functions of the unmeasurable state. The
novel approach used in this paper avoids this issue by using
nonlinear (sliding mode) feedback of the measurable state,
and then exploiting the recurrent nature of a dynamic neural
network (DNN) structure to inject terms that cancel cross
terms associated with the unmeasurable state. The approach
is facilitated by using the filter structure of the controller in
[12] and a novel stability analysis. The stability analysis is
based on the idea of segregating the nonlinear uncertainties
into terms which can be upper-bounded by constants and
terms which can upper-bounded by states. The terms upper-
bounded by states can be cancelled by the linear feedback
of the measurable errors, while the terms upper-bounded by
constants are partially rejected by the sign feedback (of the
measurable state) and partially eliminated by the novel DNN-
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based weight update laws.

The contribution of this paper over previous results is that
the observer is designed for uncertain nonlinear systems,
and the on-line approximation of the unmeasurable uncertain
nonlinearities via the DNN structure should heuristically im-
prove the performance of methods that only use high-gain
feedback. Asymptotic convergence of the estimated states to
the real states is proven using a Lyapunov-based analysis. This
observer can be used separately from the controller even if
the relative degree between the control input and the output
is arbitrary.

II. ROBUST OBSERVER USING DYNAMIC NEURAL
NETWORKS

Consider a second order control affine nonlinear system
given by

j:l = X2,
o = f(z)+G(x)u+d, )
y = T,

where y(t) € R™ is the measurable output with a finite
initial condition y(0) = yg, u(t) € R™ is the control
input, z(t) = [z:(t)T 22(¢)T]T € R?" is the state of the
system, f(z) : R — R, G(z) : R — R™™ are
unknown continuous functions, and d(t) € R™ is an external
disturbance. The following assumptions about the system in
(1) will be utilized in the observer development.

Assumption 1: The state x(t) is bounded, i.e, z1(t),z2(t) €
Lo, and is partially measurable, i.e, zo(t) is unmeasurable.

Assumption 2: The unknown functions f(z), G(z) and the
control input u(t) are C1, and u(t),u(t) € Loo-

Assumption 3: The disturbance d(t) is differentiable, and
d(t),d(t) € Loo.

Assumption 4: Given a continuous function F' : S — R",
where S is a simply connected compact set, there exist ideal
weights @ = 6%, such that the output of the NN, F'(-,0)
approximates F'(-) to an arbitrary accuracy [14].

Based on the universal approximation property of the
multilayer NNs (MLNN) [15], [16], using Assumption 4,
the unknown functions f(x), G(z) in (1) can be replaced by
multi-layer NNs (MLNN) as

fl@) = WfTaf(VEasl + fozg) +ey(x),

gix) = Waog(Vy, a1 + Vi, xa) + egi (),
where Wy € RNsTIxn v Ve e R™N7 are unknown
ideal weight matrices of the MLNN having Ny hidden
layer neurons, g;() is the i*" column of the matrix G(z),
Wy € RNaitxn 7. Vo, € R™Nai are also unknown
ideal weight matrices of the MLNN having N,; hidden layer
neurons, i = 1A..m, os(t) = or(Via(t) + Viza(t)) €
RNf'H, Ugi(t) = agi(VgTilacl(t) =+ Vg€2$2(t)) (S RNgi‘i‘l are
the activation functions (sigmoid, hyperbolic tangent etc.),
ef(x),e4i (x) € R", 4 = 1...m, are the function reconstruction

errors. Hence, the system in (1) can be represented as

T = Tg,
iy = Wios+es(z)+d
+ Z [W;;O'gi + €gi (x)} Ug, (2)
i=1

where u;(t) € R is the i*" element of the control input vector
u(t). The following assumptions will be used in the observer
development and stability analysis.

Assumption 5: The ideal NN weights are bounded by known
positive constants [17], i.e. |[Wy|| < Wy, Vil < Vi,
Vil < Vi [IWgill < Wei, [Vgir | < Vgiy» and [[Vgs, || <
Vgis» © = 1..m, where ||| denotes Frobenius norm for a
matrix and Euclidean norm for a vector.

Assumption 6: The activation functions o¢(-),04:(-) and
their derivatives with respect to its arguments, o’;(-), o, (-),
0's(-),04;(-), i = 1...m, are bounded.

Assumption 7: The function reconstruction errors
€f(-),€q4i (-), and its first derivatives with respect to
their arguments are bounded, with ¢ = 1...m [17].

Remark 1: Assumptions 5-7 are standard assumptions in
NN control literature (For details, see [17]). The idea weights
are unknown and may not even unique, however, their exis-
tence is only required. The upper bounds of the ideal weights
are assumed to be known to exploit in the projection algorithm
to ensure that the DNN weight estimates are always bounded.
Activation functions chosen as sigmoid, hyperbolic tangent
functions satisfy Assumption 6.

The following multi-layer dynamic neural network
(MLDNN) architecture is proposed to observe the system in

(1

€2,

8
%
I

m
By = Wiep+) Wihégiu +uv, 3)
i=1
where 2(t)=[21(t)T 22¢)T]T € R?™ is the state of
the DNN observer, Wy(t) € RNs+1xn Vo (1) Vi () €
R’anf7ng(t) c RNgiJFlXTL, Vgil(t), Vgiz (t) S Rangi’ i =
1...m, are the weight estimates, &7 (t) = o7 (Vy, ()" &1(t) +
Vi (0)72a(t) € RN 65() £ 0yi(Vys, (67 a(2) +
Vyin (1) Td2(t)) € RNoi*t1 and v(t) € R™ is a function to be
determined to provide robustness to account for the function
reconstruction errors and external disturbances.

The objective in this paper is to prove that the estimated
state Z(¢) converges to the system state x(t). To facilitate the
subsequent analysis, the estimation error Z(t) € R™ is defined
as

T2 a3 “)

To compensate for the lack of direct measurements of (%),
a filtered estimation error is defined as

r2 4 ai +1, )
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where o € R is a positive constant control gain, and n(t) €
R™ is an output of the dynamic filter [12]

p = —(k+2a)p—ir+((k+a)?+1)z, (6)
iy = p-oadp—(k+a)i, %)

p(0) = (k + a)z(0), #7(0) =0,
n = p—(k+a)z, (8)

where Z;(t) € R™ is another output of the filter, p(t) € R" is
used as internal filter variable, and & € R is a positive constant
gain. The filtered estimation error r(t) is not measurable, since
the expression in (5) depend on (t).

Remark 2: The second order dynamic filter to estimate the
system velocity was first proposed for the output feedback
control in [12]. The filter in (6)-(8) admits the estimation error
Z(t) as its input and produces two signal outputs Z¢(t) and
n(t). The auxiliary signal p(t) is utilized to only generate the
signal 7)(t) without involving the derivative of the estimation

error Z(t) which is unmeasurable. Hence, the filter can be
physically implemented. A difficulty to obtain asymptotic
estimation is that the filtered estimation error r(¢) is not
available for feedback. The relation between two filter outputs

isn = Z;U‘f + aZy, and this relationship is utilized to generate
the feedback of r(t). Since taking time derivative of r(t), the
term I (t) appears implicitly inside 7(t), and consequently,

the unmeasurable term i(t) which can be replaced by r(¢) is
introduced.

Taking the derivative of (8) and using the definitions (5)-(8)
yields

=—(k+a)r—an+z—y. 9)

The closed-loop dynamics of the derivative of the filtered
estimation error in (5) is calculated by using (2)-(5), and (9)
as

m
Wior—Wies+ Y [Whog — Wi gilu:
=1

+€f+ngiui+d—v+a(r—a5:—n)
i=1

—(k+a)r—an+z — y. (10)

The robustifing term v(t) is designed based on the subsequent
analysis as

v =

—[y(k4 @) +2a)n + (v — ®)z

+P1sgn(T + Zp), (11)

where v, 8, € R are posiAtive constant control gains.AAdding
and subtracting Wf Uf(vflﬂfl + Vy,x2) + Wf af(Vflxl +
Vf2$2)+21 1[ ng(‘/;]q;1$1+vg€2$2)+w O'gZ(V;]ZthJr
quzxg)]ul and substltutmg v(t) from (11), the expression in
(10) can be rewritten as

o= ]\7+N—kr—ﬁlsgn(iJr:if)wL’y(k‘Jra)n*’Yf’ (12)

where the auxiliary function

N(xl,m% :E1,.’E2,£Ef, va an Vfw ngv VthvVlﬂz’ ) eR" is

defined as
N 2 W?[af(vgxl + Vgxg) —0fl+ T -3y

m

W

and N (z1, 22, Wi, Vi, Vi, Wiy Vairs Vgins t) € R™ is segre-
gated into two parts as

0gi Vg“:m + ngxg)

Ggilui, (13)

N 2 Ny + Ns. (14)

In (14)a R N1£x17:§27I;[{fuvf}7vf27wglu‘/gllu‘/gmu )7
NQ(xla:BQ,Wf,VfUVf27ng,thi1,thi2a ) S R™ are
defined as

Ny & W T+ Viaal 4 WOy + Va?
m

ZWT wil Voo o1 + Vi wolus

gt ql g gi2

ZWTO VT xr1 + VT .IQ) U

g1 g2

+ef+ Z Egilli + d,
i=1

NQ £ W}Uf(VfTZL'l + Vf:g.’ltg) —+ W?J}[Vf?xl + Vng]
Z 10 gi (Vo w1 + Vi )u,
ZWJJ ol VE @ + VL wslus, (15)
where W (t) £ Wy — Wf( ) € RN+ Ve (1) £V,

Vi, () € RN Vi (8) £ Vi, — Vi, (1) € RPNs W, ()
qu - ng<t) € RNW_HX"? ti1 (t) = Vgil - Vgil(t)
R™Noi Voio (£) 2 Viiy — Vain (1) € RV Noi 1§ = 1..m, are
the estimate mismatches for the ideal NN weights; O(V 1+
Vf2$2) (t) S RNf+1 O(ng;lxl + V;;Q.TQ) (t) S RN91+1
are the higher order terms in the Taylor series of the vector
functions o ¢ (- ) 04:(+) in the neighborhood of VJZ; 1+ Vf€$2

T .
and Vq“xl + Vqlzxg, respectively, as

m > |

or = op(Vier+ Vi) + 04 [VEz + Vi)
JrO(VfT;xl + Vf€$2)2, (16)
ogi = 0g(VE a1+ Vi m) + 0, [Vik @1 + Vi, o)
—l—O(Vgaxl + Vq{2x2)2,
where the terms o’(t), op;(t) are defined as
opt) & GV Tat) + VM) aea(t) =
dO'f(H)/d9|9:Vf’;;zl+Vszwz and o/, (t) £ agZ(Vg“(t)Txl(t) +
Viin ()T (1)) = dogi(0)/db|,_ VI otV e To

facilitate the subsequent analysis, an aux111ary function
Ng(xl,xg,Wf,Vfl,sz,ng,ngl,Vm, t) € R™ is defined
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by replacing terms xq(¢),z2(t) in Na(-) by &1(t),Z2(t),
respectively.

The weight update laws for the DNN in (3) are developed
based on the subsequent stability analysis as

Wy = proj[Luwsés(@+as)"],

‘;/fl = proj[lup @1 (3 +&p)"W]6%,

Xg/f2 = proj[Lypta(T + if) Wf Uf] (17)
ng = proj[Luwgitgiui(Z +7s)"], i=1.m
Vi = projCogndyu(@+25)TW26! ], i = 1.m
Vo = proj[Tugi,daui(@+3p) Whol,], i =1..m

where T'pp € ROV/FDXWNs+D) T o e RWVaitDx(NgitD)
LofsTotes Tugin, Tugis, € R™X™, are constant symmetric
positive-definite adaptation Agains, the terms &f(t), G gz(t) are
defined as 6'(t) = oy (Vy, ()" 1(t) + Vi, ()T ia(t)) =
do (0 )/d9|9:f/ﬂjl+\7T@ &;i(t) 2 U;z(vqn(t)Txl(t) +

Vgiz (t)Tf@( )) = dggz( )/de‘e VT xﬁ.ng #a0 and PTOJ( )

a smooth projection operator [18], [19] used to  guarantee that
the weight estimates Wy (t), Vf, (£), Vi, (£), Wi(t), Vi, (1),
and V;,(t) remain bounded.

_Remark 3: In (3), the feedforward NN terms
W) 6(t),Wyi(t)T6,4:(t) are fed by the observer

states #(t), hence this observer has a DNN structure. The
DNN has a recurrent feedback loop, and is proven to be able
to approximate dynamic systems with any arbitrarily small
degree of accuracy [14], [20]. This property motivates for the
DNN-based observer design. The DNN is tuned on-line to
mimic the system dynamics by the weight update laws based
on the state, weight estimates, and the filter output.

Using (4)-(8), Assumptions 1 — 2,5 — 6, the proj(-) algo-
rithm in (17) and the Mean Value Theorem [21], the auxiliary
function N () in (13) can be upper-bounded as

7] = cula, (18)
where 2(t) € R is defined as
2(t) £ &7 xT nT 7T, (19)

Based on (4)-(8), Assumptions 1 — 3,5 — 7, the Taylor series
expansion in (16) and the weight update laws in (17), the
following bounds can be developed

INU < Co [IN2] < G
I5] < cototizmia, 0)
|7 < ¢,

where (; € R,4 = 1...5, are computable positive constants,

p(-) € R is a positive, globally invertible, non-decreasing
A

function, and ]\72(5:,5:,Wf,Vfl,VfQ,ng,%il,Vgiz,u) =
Na(-) = Na(:).

To facilitate the subsequent stability analysis, let D C
R4"*2 be a domain containing y(¢) = 0, where y(t) € Ri"+2

is defined as
VP(t) Vo) @1

In (21), the auxiliary function P(¢t) € R is the generated
solution to the differential equation as

P(t) 2 —L(),

P0) = B

(22)

z,(0) + 7, (0)| — (2(0) + &£(0))" N (0)

Jj=1

where the subscript j = 1,2, .., n denotes the j*" element of
Z(0) or Z£(0), and the auxiliary function L(¢) € R is defined
as

(1>

rT(Ny = Bysgn(@ + &5)) + (& + &) T No
—V2p(2I)) |12, 23)

where 3, € R is a positive constant chosen according to the
sufficient condition

L(t)

By > max(Ca + G Co + 22, (4)

where (;,7 = 2,3,4 are introduced in (20). Provided the
sufficient condition in (24) is satisfied, the following inequality

can be obtained P(t) > 0 (see [22], [21]). The auxiliary
function Q(t) € R in (21) is defined as

QW) & Fr(WITjWy) + Str(VIT L V)

+— tr(vff r,; o Vi,) +

5 Ztr (WEITL W)

gr— wgq

(VTF ; Vgil)

gi1— vgiy

| Q
.MS

@
Il
—

_|_

+ (Vg,z;grvqlzz Vgiz)’ (25)

| Q
.MS

Il
—

(2

where tr(-) denotes the trace of a matrix. Since the gains
Twsr Twgis Doy Do fas Dugin s ugi, are symmetric, positive-
definite matrices, Q(t) > 0.

III. LYAPUNOV STABILITY ANALYSIS FOR DNN-BASED
OBSERVER

Theorem 1: The dynamic neural network-based observer
proposed in (3) along with its weight update laws in (17)
ensures asymptotic estimation in sense that

[Z()[| — 0 and

HHOastHoo

provided the control gain k = ki + ko introduced in (6)-(8) is
selected sufficiently large based on the initial conditions of the
states (see the subsequent proof), the gain condition in (24) is
satisfied, and the following sufficient conditions are satisfied

5
4/ 2ks’

1 1
y>ali4+ —, k1> =, and A > (26)
2 2
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where

1 1
A2 — |min(a(y — al?), k1) — =], 27
75 [min(a(y —a¢3). k) ~ 3 @)
and ¢, (5 are introduced in (18), (20), respectively.
Proof:  Consider the Lyapunov candidate function
Vi(y) : D — R, which is a Lipschitz continuous regular
positive definite function defined as
VT

V& oai+ ’y$fxf + '277]T17+

L r
5 5 -r'r+P+Q, (28)

2

which satisfies the following inequalities:
Ur(y) < Vi(y) < Ua(y). (29)

In (29), Ui(y),Us(y) € R are continuous positive definite
functions defined as

Ur(y) e lyl®, Ualy) = e |yl
where €1,e9 € R are defined as
€1 —111111(’27 2) €2 max(%,l).

Using (5), (12), (22), the differential equations of the closed-
loop system are continuous except in the set {y|Z = 0} . Using
Filippov’s differential inclusion [23]-[26], the existence of so-
lutions can be established for iy = f(y), where f(y) € R4"+2
denotes the right-hand side of the closed-loop error signals.
Under Filippov’s framework, a generalized Lyapunov stability
theory can be used (see [26]-[29] for further details). The
generalized time derivative of (28) exists almost everywhere

(a.e.), and V(y) €% V(y) where

- T .T
V= K
£eBV( 5 T 3: 77 7T

T
1 1.1 1.
§P 2P§Q Q|

where OV is the generalized gradient of V' (y) [27], and K]
is defined as [28], [29]

K[flly) & N

5>0 uM 0

cof(B(y,0) — M),

where N denotes the intersection of all sets M of

pM=0
Lebesgue measure zero, co denotes convex closure, and

B(y,0) = {we R*"™|[ly—w| <d}. Since V(y) is a
Lipschitz continuous regular function,

- T .T T
Vv = VVIK {x it il S —3p Q‘Q]
C [’yiﬁT 'y:%;"; nt T 2P 2Q5}
T .T 1
K[:c Ty nt T— —2p Q‘Q}

After substituting the dynamics from (5), (7)-(9), (12), (22),
(23) and (25) and adding and subtracting (% + & s)” No and

using (15), V(y) can be rewritten as

V< 43"(r—aZ —n) + i} (n — aFy)
T [—(k+ a)r — an+ & — 5] — a(@ + 75)T Ny
+a(i + aéf)T{WfT&f + W& Ve + Vi)
W
i=1
+rT [N+ N — kr — ,Blsgn(a: +Z)+
T E — 1T (Ny — Bysgn( + 7))
—(@+ &) "Nz +V20(|1211) |21
waf)

—atr(VfZF;fi f/fz)

Ugluz + Z wZls! VT i+ VT Zolu; }

gt gz gi1 gia

v(k + a)n]

—atr(Wf atr(Vfl val V )

gr— wg

—aZtr (WZr; 1W :)

T 1 ~
o Z t?” ‘/2122 Fvgm

where the fact that (r7 — 7)), SGN(Z; + @7,) = 0 is used
(the subscript 7 denotes the i*" element), where K[sgn(Z +
Zf)] = SGN(& + &) [29], such that SGN(&; + Zy,) = 1
if (& + &) > 0, [-1,1] if (& + &5) = 0, and —1 if
(@; + &5,) < 0. Substituting the weight update laws in (17)
and cancelling common terms, the above expression can be
upper bounded as

m .
E T 1 17
—Q t’l“ Vgufvg“ gl1 gzz)u

V < —ayiltz-— avi?jf —ayntn —krlr
+a(@ 4 35) "Ny + TN +vV2p(|12]) |1 211> -(30)
Using (18), (20), the fact that
L ~2 o2, Lbye
as |1 + Z¢[l [|2]] < o®C 12" + 2 1|24 (1" + 7 =17,

substituting £ = k; + ko, and completing the squares, the
expression in (30) can be further bounded as

Vo< —aly—ald) |zl - aly - ac?) |3]° - ay |n))?
s, (1. @ 2

— -4+ 2L 2 )

ky |Ir|) + (2 + T 2 ERNE

Provided the sufficient conditions in (26) are satisfied, the
above expression can be rewritten as

V< V21—

2

4\/_k —p(lzID) I21* < =U(y) Vy €D,

€1y
where A is defined in (27) and U(y) = c||z|?, for some
positive constant ¢, is a continuous positive semi-definite
function which is defined on the domain

ES {y(t) € R4n+2| ly()| < pil()\ 4\jik2 }

The size of the domain D can be increased by in-
creasing the gains k and «. The inequalities in (29) and
(31) show that V(y) € L, in the domain D; hence,
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I(t), 24 (t),n(t),r(t), P(t) and Q(t) € Lo in D; (5)-(9)
are used to show that Z(t),Z;(t),n(t) € Lo in D. Since
x1(t),x2(t) € Lo by Assumption 1, Z1(t),Z2(t) € L in
D using (4). Since Z(t),Zs(t),n(t) € L in D, using (11),
v(t) € Loo in D. Since Wy, Wi, 0¢(-),04i(-),€¢(),€4i(-) €
Loo,i = 1l...m, by Assumption 5-7, the control input u(t)
and the disturbance d(t) are bounded by Assumption 2-3, and
Wf(t),ng(t) € L,i = 1l..m, by the use of the proj(-)
algorithm, from (10), 7(t) € Lo in D; then 2(t) € L in D,
by using (19). Hence, U(y) is uniformly continuous in D.

Let S C D denote a set defined as

4 >)2} (32)
42k )
The region of attraction in (32) can be made arbitrarily large
to include any initial condition by increasing the control gains
k and « (i.e. a semi-global type of stability result), and hence

S 2

{y<t> € DIUa(y(t)) < er(p~ (A —

cllz]> = 0 ast— oo Vy(0) €S,

and using the definition of z(¢) the following result can be
proven

[N In@IF ()] — 0 as t — oo Vy(0) € S.

From (5), it can be further shown that

g'z(t)H —0ast— oo Wy(0)€S.

IV. CONCLUSION

The novel design of an adaptive observer using dynamic
neural networks for uncertain second-order nonlinear systems
is proposed. The DNN works in conjunction with a dynamic
filter without any off-line training phase. A sliding feedback
term is added to the DNN structure to account for reconstruc-
tion errors and external disturbances. The observation states
are proven to asymptotically converge to the system states
through Lyapunov stability analysis.
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