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Abstract—A dynamic neural network (DNN) based robust
observer for second-order uncertain nonlinear systems is de-
veloped. The observer structure consists of a DNN to estimate
the system dynamics on-line, a dynamic filter to estimate the
unmeasurable state and a sliding mode feedback term to account
for modeling errors and exogenous disturbances. The observed
states are proven to asymptotically converge to the system states
though Lyapunov-based stability analysis.

I. INTRODUCTION
Full state feedback is not always available in many prac-

tical systems. In the absence of sensors, the requirement
of full-state feedback for the controller is typically fulfilled
by using ad hoc numerical differentiation techniques. The
Euler difference algorithms are the simplest and the most
common numerical methods, however, these approaches can
aggravate the presence of noise and lead to unusable state
estimates. The differentiation schemes proposed by Diop et
al. in [1] and [2] are discrete and off-line methods. A more
rigorous direction to estimate unmeasurable states in literature
is nonlinear observer design. For instance, sliding observers
were designed for general nonlinear systems by Slotine et
al. in [3], for robot manipulators by Wit et al. in [4], and
for mechanical systems subject to impacts by Mohamed et
al. in [5]. However, all these observers require exact model
knowledge to compensate for nonlinearities in the system.
Model-based observers are also proposed in [6], [7] which
require a high-gain to guarantee convergence of the estimation
error. The observes introduced in [8] and [9] are both applied
for Lagrangian dynamic systems to estimate the velocity,
and asymptotic convergence to the true velocity is obtained.
However, the symmetric positive-definiteness of the inertia
matrix and the skew-symmetric property of the Coriolis matrix
are required. Model knowledge is required in [8] and a partial
differential equation needs to be solved to design observers. In
[9], the system dynamics must be expressed in a non-minimal
model and only mass and inertia parameters are unknown in
the system.
Design of robust observers for uncertain nonlinear systems

is considered in [10]–[12]. In [10], a second-order sliding
mode observer for uncertain systems using super-twisting
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algorithm is proposed, where a nominal model of the system
is assumed to be available and estimated errors are proven
to converge in finite-time to a bounded set around the origin.
In [11], the proposed observer can guarantee that the state
estimates converge exponentially fast to the actual state, if
there exists a vector function satisfying a complex set of
matching conditions. In [12], the first asymptotic velocity
observer for general second-order systems is proposed, where
the estimation error is proven to asymptotically converge to
zero. However, all nonlinear uncertainties in the system are
damped out by a sliding mode term resulting in high frequency
state estimates. A neural network (NN) approach that uses the
universal approximation property is investigated for use in an
adaptive observer design in [13]. However, estimation errors in
this study are only guaranteed to be bounded due to function
reconstruction inaccuracies.
The challenge to obtain asymptotic estimation stems from

the fact that to robustly account for disturbances, feedback of
the unmeasurable error and its estimate is required. Typically,
feedback of the unmeasurable error is derived by taking
the derivative of the measurable state and manipulating the
resulting dynamics (e.g., this is the approach used in methods
such as [12] and [13]). However, such an approach provides
a linear feedback term of the unmeasurable state. Hence, a
sliding mode term could not be simply added to the NN
structure of the result in [13] to yield an asymptotic result,
because it would require the signum of the unmeasurable state,
and it does not seem clear how this nonlinear function of the
unmeasurable state can be injected in the closed-loop error
system using traditional methods. Likewise, it is not clear
how to simply add a NN-based feedforward estimation of
the nonlinearities in results such as [12] because of the need
to inject nonlinear functions of the unmeasurable state. The
novel approach used in this paper avoids this issue by using
nonlinear (sliding mode) feedback of the measurable state,
and then exploiting the recurrent nature of a dynamic neural
network (DNN) structure to inject terms that cancel cross
terms associated with the unmeasurable state. The approach
is facilitated by using the filter structure of the controller in
[12] and a novel stability analysis. The stability analysis is
based on the idea of segregating the nonlinear uncertainties
into terms which can be upper-bounded by constants and
terms which can upper-bounded by states. The terms upper-
bounded by states can be cancelled by the linear feedback
of the measurable errors, while the terms upper-bounded by
constants are partially rejected by the sign feedback (of the
measurable state) and partially eliminated by the novel DNN-

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7543



based weight update laws.
The contribution of this paper over previous results is that

the observer is designed for uncertain nonlinear systems,
and the on-line approximation of the unmeasurable uncertain
nonlinearities via the DNN structure should heuristically im-
prove the performance of methods that only use high-gain
feedback. Asymptotic convergence of the estimated states to
the real states is proven using a Lyapunov-based analysis. This
observer can be used separately from the controller even if
the relative degree between the control input and the output
is arbitrary.

II. ROBUST OBSERVER USING DYNAMIC NEURAL
NETWORKS

Consider a second order control affine nonlinear system
given by

ẋ1 = x2,

ẋ2 = f(x) +G(x)u+ d, (1)
y = x1,

where y(t) ∈ Rn is the measurable output with a finite
initial condition y(0) = y0, u(t) ∈ Rm is the control
input, x(t) = [x1(t)

T x2(t)
T ]T ∈ R2n is the state of the

system, f(x) : R2n → Rn, G(x) : R2n → Rn×m are
unknown continuous functions, and d(t) ∈ Rn is an external
disturbance. The following assumptions about the system in
(1) will be utilized in the observer development.
Assumption 1: The state x(t) is bounded, i.e, x1(t), x2(t) ∈

L∞, and is partially measurable, i.e, x2(t) is unmeasurable.
Assumption 2: The unknown functions f(x), G(x) and the

control input u(t) are C1, and u(t), u̇(t) ∈ L∞.
Assumption 3: The disturbance d(t) is differentiable, and

d(t), ḋ(t) ∈ L∞.
Assumption 4: Given a continuous function F : S → Rn,

where S is a simply connected compact set, there exist ideal
weights θ = θ∗, such that the output of the NN, F̂ (·, θ)
approximates F (·) to an arbitrary accuracy [14].
Based on the universal approximation property of the

multilayer NNs (MLNN) [15], [16], using Assumption 4,
the unknown functions f(x),G(x) in (1) can be replaced by
multi-layer NNs (MLNN) as

f(x) = WT
f σf (V

T
f1x1 + V T

f2x2) + εf (x) ,

gi(x) = WT
giσgi(V

T
gi1x1 + V T

gi2x2) + εgi (x) ,

where Wf ∈ RNf+1×n, Vf1 , Vf2 ∈ Rn×Nf are unknown
ideal weight matrices of the MLNN having Nf hidden
layer neurons, gi(x) is the ith column of the matrix G(x),
Wgi ∈ RNgi+1×n, Vgi1 , Vgi2 ∈ Rn×Ngi are also unknown
ideal weight matrices of the MLNN having Ngi hidden layer
neurons, i = 1...m, σf (t) , σf (V

T
f1
x1(t) + V T

f2
x2(t)) ∈

RNf+1, σgi(t) , σgi(V
T
gi1

x1(t) + V T
gi2

x2(t)) ∈ RNgi+1 are
the activation functions (sigmoid, hyperbolic tangent etc.),
εf (x), εgi (x) ∈ Rn, i = 1...m, are the function reconstruction

errors. Hence, the system in (1) can be represented as

ẋ1 = x2,

ẋ2 = WT
f σf + εf (x) + d

+
mX
i=1

£
WT

giσgi + εgi (x)
¤
ui, (2)

where ui(t) ∈ R is the ith element of the control input vector
u(t). The following assumptions will be used in the observer
development and stability analysis.
Assumption 5: The ideal NN weights are bounded by known

positive constants [17], i.e. kWfk ≤ W̄f , kVf1k ≤ V̄f1 ,
kVf2k ≤ V̄f2 , kWgik ≤ W̄gi, kVgi1k ≤ V̄gi1 , and kVgi2k ≤
V̄gi2 , i = 1...m, where k·k denotes Frobenius norm for a
matrix and Euclidean norm for a vector.
Assumption 6: The activation functions σf (·), σgi(·) and

their derivatives with respect to its arguments, σ0f (·), σ0gi(·),
σ00f (·), σ00gi(·), i = 1...m, are bounded.
Assumption 7: The function reconstruction errors

εf (·), εgi (·) , and its first derivatives with respect to
their arguments are bounded, with i = 1...m [17].
Remark 1: Assumptions 5-7 are standard assumptions in

NN control literature (For details, see [17]). The idea weights
are unknown and may not even unique, however, their exis-
tence is only required. The upper bounds of the ideal weights
are assumed to be known to exploit in the projection algorithm
to ensure that the DNN weight estimates are always bounded.
Activation functions chosen as sigmoid, hyperbolic tangent
functions satisfy Assumption 6.
The following multi-layer dynamic neural network

(MLDNN) architecture is proposed to observe the system in
(1)

·
x̂1 = x̂2,
·
x̂2 = ŴT

f σ̂f +
mX
i=1

ŴT
giσ̂giui + v, (3)

where x̂(t)=[x̂1(t)
T x̂2(t)

T ]T ∈ R2n is the state of
the DNN observer, Ŵf (t) ∈ RNf+1×n, V̂f1(t), V̂f2(t) ∈
Rn×Nf , Ŵgi(t) ∈ RNgi+1×n, V̂gi1(t), V̂gi2(t) ∈ Rn×Ngi , i =
1...m, are the weight estimates, σ̂f (t) , σf (V̂f1(t)

T x̂1(t) +
V̂f2(t)

T x̂2(t)) ∈ RNf+1, σ̂gi(t) , σgi(V̂gi1(t)
T x̂1(t) +

V̂gi2(t)
T x̂2(t)) ∈ RNgi+1, and v(t) ∈ Rn is a function to be

determined to provide robustness to account for the function
reconstruction errors and external disturbances.
The objective in this paper is to prove that the estimated

state x̂(t) converges to the system state x(t). To facilitate the
subsequent analysis, the estimation error x̃(t) ∈ Rn is defined
as

x̃ , x1 − x̂1. (4)

To compensate for the lack of direct measurements of x2(t),
a filtered estimation error is defined as

r ,
·
x̃+ αx̃+ η, (5)
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where α ∈ R is a positive constant control gain, and η(t) ∈
Rn is an output of the dynamic filter [12]

ṗ = −(k + 2α)p− x̃f + ((k + α)2 + 1)x̃, (6)
·
x̃f = p− αx̃f − (k + α)x̃, (7)

p(0) = (k + α)x̃(0), x̃f (0) = 0,

η = p− (k + α)x̃, (8)

where x̃f (t) ∈ Rn is another output of the filter, p(t) ∈ Rn is
used as internal filter variable, and k ∈ R is a positive constant
gain. The filtered estimation error r(t) is not measurable, since
the expression in (5) depend on ẋ(t).
Remark 2: The second order dynamic filter to estimate the

system velocity was first proposed for the output feedback
control in [12]. The filter in (6)-(8) admits the estimation error
x̃(t) as its input and produces two signal outputs x̃f (t) and
η(t). The auxiliary signal p(t) is utilized to only generate the
signal η(t) without involving the derivative of the estimation
error

·
x̃(t) which is unmeasurable. Hence, the filter can be

physically implemented. A difficulty to obtain asymptotic
estimation is that the filtered estimation error r(t) is not
available for feedback. The relation between two filter outputs
is η =

·
x̃f + αx̃f , and this relationship is utilized to generate

the feedback of r(t). Since taking time derivative of r(t), the
term ẍf (t) appears implicitly inside η̇(t), and consequently,
the unmeasurable term

·
x̃(t) which can be replaced by r(t) is

introduced.
Taking the derivative of (8) and using the definitions (5)-(8)

yields
η̇ = −(k + α)r − αη + x̃− x̃f . (9)

The closed-loop dynamics of the derivative of the filtered
estimation error in (5) is calculated by using (2)-(5), and (9)
as

ṙ = WT
f σf − ŴT

f σ̂f +
mX
i=1

[WT
giσgi − ŴT

giσ̂gi]ui

+εf +
mX
i=1

εgiui + d− v + α(r − αx̃− η)

−(k + α)r − αη + x̃− x̃f . (10)

The robustifing term v(t) is designed based on the subsequent
analysis as

v = −[γ(k + α) + 2α]η + (γ − α2)x̃

+β1sgn(x̃+ x̃f ), (11)

where γ, β1 ∈ R are positive constant control gains. Adding
and subtracting WT

f σf (V̂
T
f1
x1 + V̂f2x2) + ŴT

f σf (V̂
T
f1
x1 +

V̂ T
f2
x2)+

Pm
i=1[W

T
giσgi(V̂

T
gi1

x1+ V̂ T
gi2

x2)+ŴT
giσgi(V̂

T
gi1

x1+

V̂ T
gi2

x2)]ui and substituting v(t) from (11), the expression in
(10) can be rewritten as

ṙ = Ñ +N − kr− β1sgn(x̃+ x̃f ) + γ(k+α)η− γx̃, (12)

where the auxiliary function
Ñ(x1, x2, x̂1, x̂2, x̃f , Ŵf , V̂f1 , V̂f2 , Ŵgi, V̂gi1 , V̂gi2 , t) ∈ Rn is
defined as

Ñ , ŴT
f [σf (V̂

T
f1x1 + V̂ T

f2x2)− σ̂f ] + x̃− x̃f

+
mX
i=1

ŴT
gi[σgi(V̂

T
gi1x1 + V̂ T

gi2x2)− σ̂gi]ui, (13)

and N(x1, x2, Ŵf , V̂f1 , V̂f2 , Ŵgi, V̂gi1 , V̂gi2 , t) ∈ Rn is segre-
gated into two parts as

N , N1 +N2. (14)

In (14), N1(x1, x2, Ŵf , V̂f1 , V̂f2 , Ŵgi, V̂gi1 , V̂gi2 , t),
N2(x1, x2, Ŵf , V̂f1 , V̂f2 , Ŵgi, V̂gi1 , V̂gi2 , t) ∈ Rn are
defined as

N1 , W̃T
f σ

0
f [Ṽ

T
f1x1 + Ṽ T

f2x2] +WT
f O(Ṽ

T
f1x1 + Ṽ T

f2x2)
2

+
mX
i=1

W̃T
giσ

0
gi[Ṽ

T
gi1x1 + Ṽ T

gi2x2]ui

+
mX
i=1

WT
giO(Ṽ

T
gi1x1 + Ṽ T

gi2x2)
2ui

+εf +
mX
i=1

εgiui + d,

N2 , W̃T
f σf (V̂

T
f1x1 + V̂ T

f2x2) + ŴT
f σ

0
f [Ṽ

T
f1x1 + Ṽ T

f2x2]

+
mX
i=1

W̃T
giσgi(V̂

T
gi1x1 + V̂ T

gi2x2)ui

+
mX
i=1

ŴT
giσ

0
gi[Ṽ

T
gi1x1 + Ṽ T

gi2x2]ui, (15)

where W̃f (t) , Wf − Ŵf (t) ∈ RNf+1×n, Ṽf1(t) , Vf1 −
V̂f1(t) ∈ Rn×Nf , Ṽf2(t) , Vf2 − V̂f2(t) ∈ Rn×Nf , W̃gi(t) ,
Wgi − Ŵgi(t) ∈ RNgi+1×n, Ṽgi1(t) , Vgi1 − V̂gi1(t) ∈
Rn×Ngi , Ṽgi2(t) , Vgi2 − V̂gi2(t) ∈ Rn×Ngi , i = 1...m, are
the estimate mismatches for the ideal NN weights; O(Ṽ T

f1
x1+

Ṽ T
f2
x2)

2(t) ∈ RNf+1, O(Ṽ T
gi1

x1 + Ṽ T
gi2

x2)
2(t) ∈ RNgi+1

are the higher order terms in the Taylor series of the vector
functions σf (·), σgi(·) in the neighborhood of V̂ T

f1
x1+ V̂ T

f2
x2

and V̂ T
gi1

x1 + V̂ T
gi2

x2, respectively, as

σf = σf (V̂
T
f1x1 + V̂ T

f2x2) + σ0f [Ṽ
T
f1x1 + Ṽ T

f2x2]

+O(Ṽ T
f1x1 + Ṽ T

f2x2)
2, (16)

σgi = σgi(V̂
T
gi1x1 + V̂ T

gi2x2) + σ0gi[Ṽ
T
gi1x1 + Ṽ T

gi2x2]

+O(Ṽ T
gi1x1 + Ṽ T

gi2x2)
2,

where the terms σ0f (t), σ0gi(t) are defined as
σ0f (t) , σ0f (V̂f1(t)

Tx1(t) + V̂f2(t)
Tx2(t)) =

dσf (θ)/dθ|θ=V̂ T
f1
x1+V̂ T

f2
x2
and σ0gi(t) , σ0gi(V̂gi1(t)

Tx1(t) +

V̂gi2(t)
Tx2(t)) = dσgi(θ)/dθ|θ=V̂ T

gi1
x1+V̂ T

gi2
x2
. To

facilitate the subsequent analysis, an auxiliary function
N̂2(x̂1, x̂2, Ŵf , V̂f1 , V̂f2 , Ŵgi, V̂gi1 , V̂gi2 , t) ∈ Rn is defined

7545



by replacing terms x1(t), x2(t) in N2(·) by x̂1(t), x̂2(t),
respectively.
The weight update laws for the DNN in (3) are developed

based on the subsequent stability analysis as
·
Ŵ f = proj[Γwf σ̂f (x̃+ x̃f )

T ],
·
V̂ f1 = proj[Γvf1 x̂1(x̃+ x̃f )

T ŴT
f σ̂

0
f ],

·
V̂ f2 = proj[Γvf2 x̂2(x̃+ x̃f )

T ŴT
f σ̂

0
f ], (17)

·
Ŵ gi = proj[Γwgiσ̂giui(x̃+ x̃f )

T ], i = 1...m
·
V̂ gi1 = proj[Γvgi1 x̂1ui(x̃+ x̃f )

T ŴT
giσ̂

0
gi], i = 1...m

·
V̂ gi2 = proj[Γvgi2 x̂2ui(x̃+ x̃f )

T ŴT
giσ̂

0
gi], i = 1...m

where Γwf ∈ R(Nf+1)×(Nf+1), Γwgi ∈ R(Ngi+1)×(Ngi+1),
Γvf1 ,Γvf2 ,Γvgi1 ,Γvgi2 ∈ Rn×n, are constant symmetric
positive-definite adaptation gains, the terms σ̂0f (t), σ̂

0
gi(t) are

defined as σ̂0f (t) , σ0f (V̂f1(t)
T x̂1(t) + V̂f2(t)

T x̂2(t)) =

dσf (θ)/dθ|θ=V̂ T
f1
x̂1+V̂ T

f2
x̂2
, σ̂0gi(t) , σ0gi(V̂gi1(t)

T x̂1(t) +

V̂gi2(t)
T x̂2(t)) = dσgi(θ)/dθ|θ=V̂ T

gi1
x̂1+V̂ T

gi2
x̂2
, and proj(·) is

a smooth projection operator [18], [19] used to guarantee that
the weight estimates Ŵf (t), V̂f1(t), V̂f2(t), Ŵgi(t), V̂gi1(t),
and V̂gi2(t) remain bounded.
Remark 3: In (3), the feedforward NN terms

Ŵf (t)
T σ̂f (t), Ŵgi(t)

T σ̂gi(t) are fed by the observer
states x̂(t), hence this observer has a DNN structure. The
DNN has a recurrent feedback loop, and is proven to be able
to approximate dynamic systems with any arbitrarily small
degree of accuracy [14], [20]. This property motivates for the
DNN-based observer design. The DNN is tuned on-line to
mimic the system dynamics by the weight update laws based
on the state, weight estimates, and the filter output.
Using (4)-(8), Assumptions 1− 2, 5− 6, the proj(·) algo-

rithm in (17) and the Mean Value Theorem [21], the auxiliary
function Ñ(·) in (13) can be upper-bounded as°°°Ñ°°° ≤ ζ1 kzk , (18)

where z(t) ∈ R4n is defined as

z(t) , [x̃T x̃Tf ηT rT ]T . (19)

Based on (4)-(8), Assumptions 1− 3, 5− 7, the Taylor series
expansion in (16) and the weight update laws in (17), the
following bounds can be developed

kN1k ≤ ζ2, kN2k ≤ ζ3,°°°Ṅ°°° ≤ ζ4 + ρ(kzk) kzk , (20)°°°Ñ2

°°° ≤ ζ5 kzk ,

where ζi ∈ R, i = 1...5, are computable positive constants,
ρ(·) ∈ R is a positive, globally invertible, non-decreasing
function, and Ñ2(x̃,

·
x̃, Ŵf , V̂f1 , V̂f2 , Ŵgi, V̂gi1 , V̂gi2 , u) ,

N2(·)− N̂2(·).

To facilitate the subsequent stability analysis, let D ⊂
R4n+2 be a domain containing y(t) = 0, where y(t) ∈ R4n+2
is defined as

y(t) , [zT (t)
p
P (t)

p
Q(t)]T . (21)

In (21), the auxiliary function P (t) ∈ R is the generated
solution to the differential equation as

Ṗ (t) , −L(t), (22)

P (0) , β1

nX
j=1

¯̄̄
x̃j (0) + x̃fj (0)

¯̄̄
− (x̃(0) + x̃f (0))

TN (0) ,

where the subscript j = 1, 2, .., n denotes the jth element of
x̃(0) or x̃f (0), and the auxiliary function L(t) ∈ R is defined
as

L(t) , rT (N1 − β1sgn(x̃+ x̃f )) + (
·
x̃+

·
x̃f )

TN2

−
√
2ρ(kzk) kzk2 , (23)

where β1 ∈ R is a positive constant chosen according to the
sufficient condition

β1 > max(ζ2 + ζ3, ζ2 +
ζ4
α
), (24)

where ζi, i = 2, 3, 4 are introduced in (20). Provided the
sufficient condition in (24) is satisfied, the following inequality
can be obtained P (t) ≥ 0 (see [22], [21]). The auxiliary
function Q(t) ∈ R in (21) is defined as

Q(t) , α

2
tr(W̃T

f Γ
−1
wfW̃f ) +

α

2
tr(Ṽ T

f1Γ
−1
vf1

Ṽf1)

+
α

2
tr(Ṽ T

f2Γ
−1
vf2

Ṽf2) +
α

2

mX
i=1

tr(W̃T
giΓ
−1
wgiW̃gi)

+
α

2

mX
i=1

tr(Ṽ T
gi1Γ

−1
vgi1

Ṽgi1)

+
α

2

mX
i=1

tr(Ṽ T
gi2Γ

−1
vgi2

Ṽgi2), (25)

where tr(·) denotes the trace of a matrix. Since the gains
Γwf ,Γwgi,Γvf1 ,Γvf2 ,Γvgi1 ,Γvgi2 are symmetric, positive-
definite matrices, Q(t) ≥ 0.

III. LYAPUNOV STABILITY ANALYSIS FOR DNN-BASED
OBSERVER

Theorem 1: The dynamic neural network-based observer
proposed in (3) along with its weight update laws in (17)
ensures asymptotic estimation in sense that

kx̃(t)k→ 0 and
°°°° ·x̃(t)°°°°→ 0 as t→∞

provided the control gain k = k1+k2 introduced in (6)-(8) is
selected sufficiently large based on the initial conditions of the
states (see the subsequent proof), the gain condition in (24) is
satisfied, and the following sufficient conditions are satisfied

γ > αζ25 +
1

2α
, k1 >

1

2
, and λ >

ζ21
4
√
2k2

, (26)
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where

λ , 1√
2

∙
min(α(γ − αζ25), k1)−

1

2

¸
, (27)

and ζ1, ζ5 are introduced in (18), (20), respectively.
Proof: Consider the Lyapunov candidate function

VL(y) : D → R, which is a Lipschitz continuous regular
positive definite function defined as

VL ,
γ

2
x̃T x̃+

γ

2
x̃Tf x̃f +

γ

2
ηT η +

1

2
rT r + P +Q, (28)

which satisfies the following inequalities:

U1(y) ≤ VL(y) ≤ U2(y). (29)

In (29), U1(y), U2(y) ∈ R are continuous positive definite
functions defined as

U1(y) , ε1 kyk2 , U2(y) , ε2 kyk2 ,

where ε1, ε2 ∈ R are defined as

ε1 , min(
γ

2
,
1

2
), ε2 , max(

γ

2
, 1).

Using (5), (12), (22), the differential equations of the closed-
loop system are continuous except in the set {y|x̃ = 0} . Using
Filippov’s differential inclusion [23]–[26], the existence of so-
lutions can be established for ẏ = f(y), where f(y) ∈ R4n+2
denotes the right-hand side of the closed-loop error signals.
Under Filippov’s framework, a generalized Lyapunov stability
theory can be used (see [26]–[29] for further details). The
generalized time derivative of (28) exists almost everywhere

(a.e.), and V̇ (y) ∈a.e.
·
Ṽ (y) where

·
Ṽ = ∩

ξ∈∂V (y)
ξTK

∙
·
x̃
T ·
x̃
T

f η̇T ṙT
1

2
P−

1
2 Ṗ

1

2
Q−

1
2 Q̇

¸T
,

where ∂V is the generalized gradient of V (y) [27], and K[·]
is defined as [28], [29]

K[f ](y) , ∩
δ>0

∩
μM=0

cof(B(y, δ)−M),

where ∩
μM=0

denotes the intersection of all sets M of
Lebesgue measure zero, co denotes convex closure, and
B(y, δ) =

©
w ∈ R4n+2| ky − wk < δ

ª
. Since V (y) is a

Lipschitz continuous regular function,

·
Ṽ = ∇V TK

∙
·
x̃
T ·
x̃
T

f η̇T ṙT
1

2
P−

1
2 Ṗ

1

2
Q−

1
2 Q̇

¸T
⊂

h
γx̃T γx̃Tf γηT rT 2P

1
2 2Q

1
2

i
K

∙
·
x̃
T ·
x̃
T

f η̇T ṙT
1

2
P−

1
2 Ṗ

1

2
Q−

1
2 Q̇

¸T
.

After substituting the dynamics from (5), (7)-(9), (12), (22),
(23) and (25) and adding and subtracting α(x̃+ x̃f )

T N̂2 and

using (15),
·
Ṽ (y) can be rewritten as

·
Ṽ ≤ γx̃T (r − αx̃− η) + γx̃Tf (η − αx̃f )

+γηT [−(k + α)r − αη + x̃− x̃f ]− α(x̃+ x̃f )
T N̂2

+α(x̃+ x̃f )
T{W̃T

f σ̂f + ŴT
f σ̂

0
f [Ṽ

T
f1 x̂1 + Ṽ T

f2 x̂2]

+
mX
i=1

W̃T
giσ̂giui +

mX
i=1

ŴT
giσ̂

0
gi[Ṽ

T
gi1 x̂1 + Ṽ T

gi2 x̂2]ui}

+rT [Ñ +N − kr − β1sgn(x̃+ x̃f ) + γ(k + α)η]

−γrT x̃− rT (N1 − β1sgn(x̃+ x̃f ))

−(
·
x̃+

·
x̃f )

TN2 +
√
2ρ(kzk) kzk2

−αtr(W̃T
f Γ
−1
wf

·
Ŵ f )− αtr(Ṽ T

f1Γ
−1
vf1

·
V̂ f1)

−αtr(Ṽ T
f2Γ
−1
vf2

·
V̂ f2)− α

mX
i=1

tr(W̃T
giΓ
−1
wg

·
Ŵ gi)

−α
mX
i=1

tr(Ṽ T
gi1Γ

−1
vgi1

·
V̂ gi1)− α

mX
i=1

tr(Ṽ T
gi2Γ

−1
vgi2

·
V̂ gi2),

where the fact that (rT − rT )iSGN(x̃i + x̃fi) = 0 is used
(the subscript i denotes the ith element), where K[sgn(x̃ +
x̃f )] = SGN(x̃ + x̃f ) [29], such that SGN(x̃i + x̃fi) = 1
if (x̃i + x̃fi) > 0, [−1, 1] if (x̃i + x̃fi) = 0, and −1 if
(x̃i + x̃fi) < 0. Substituting the weight update laws in (17)
and cancelling common terms, the above expression can be
upper bounded as

·
Ṽ ≤ −αγx̃T x̃− αγx̃Tf x̃f − αγηT η − krT r

+α(x̃+ x̃f )
T Ñ2 + rT Ñ +

√
2ρ(kzk) kzk2 .(30)

Using (18), (20), the fact that

αζ5 kx̃+ x̃fk kzk ≤ α2ζ25 kx̃k
2 + α2ζ25 kx̃fk

2 +
1

2
kzk2 ,

substituting k = k1 + k2, and completing the squares, the
expression in (30) can be further bounded as
·
Ṽ ≤ −α(γ − αζ25) kx̃k

2 − α(γ − αζ25) kx̃fk
2 − αγ kηk2

−k1 krk2 +
µ
1

2
+

ζ21
4k2

+
√
2ρ(kzk)

¶
kzk2 .

Provided the sufficient conditions in (26) are satisfied, the
above expression can be rewritten as
·
Ṽ ≤ −

√
2(λ− ζ21

4
√
2k2
− ρ(kzk)) kzk2 ≤ −U(y) ∀y ∈ D,

(31)
where λ is defined in (27) and U(y) = c kzk2, for some
positive constant c, is a continuous positive semi-definite
function which is defined on the domain

D ,
½
y(t) ∈ R4n+2| ky(t)k ≤ ρ−1(λ− ζ21

4
√
2k2

)

¾
.

The size of the domain D can be increased by in-
creasing the gains k and α. The inequalities in (29) and
(31) show that V (y) ∈ L∞ in the domain D; hence,
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x̃(t), x̃f (t), η(t), r(t), P (t) and Q(t) ∈ L∞ in D; (5)-(9)
are used to show that

·
x̃(t),

·
x̃f (t), η̇(t) ∈ L∞ in D. Since

x1(t), x2(t) ∈ L∞ by Assumption 1, x̂1(t), x̂2(t) ∈ L∞ in
D using (4). Since x̃(t), x̃f (t), η(t) ∈ L∞ in D, using (11),
v(t) ∈ L∞ in D. Since Wf ,Wgi, σf (·), σgi(·), εf (·), εgi(·) ∈
L∞, i = 1...m, by Assumption 5-7, the control input u(t)
and the disturbance d(t) are bounded by Assumption 2-3, and
Ŵf (t), Ŵgi(t) ∈ L∞, i = 1...m, by the use of the proj(·)
algorithm, from (10), ṙ(t) ∈ L∞ in D; then ż(t) ∈ L∞ in D,
by using (19). Hence, U(y) is uniformly continuous in D.
Let S ⊂ D denote a set defined as

S ,
½
y(t) ∈ D|U2(y(t)) < ε1(ρ

−1(λ− ζ21
4
√
2k2

))2
¾
. (32)

The region of attraction in (32) can be made arbitrarily large
to include any initial condition by increasing the control gains
k and α (i.e. a semi-global type of stability result), and hence

c kzk2 → 0 as t→∞ ∀y(0) ∈ S,

and using the definition of z(t) the following result can be
proven

kx̃(t)k , kη(t)k , kr(t)k→ 0 as t→∞ ∀y(0) ∈ S.

From (5), it can be further shown that°°°° ·x̃(t)°°°°→ 0 as t→∞ ∀y(0) ∈ S.

IV. CONCLUSION
The novel design of an adaptive observer using dynamic

neural networks for uncertain second-order nonlinear systems
is proposed. The DNN works in conjunction with a dynamic
filter without any off-line training phase. A sliding feedback
term is added to the DNN structure to account for reconstruc-
tion errors and external disturbances. The observation states
are proven to asymptotically converge to the system states
through Lyapunov stability analysis.
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