
 

 

 

 

 

Abstract— This study deals with dynamic modeling and 

tracking control of a remotely underwater vehicle (ROV) 

with six degrees of freedom (DOF). The sliding mode scheme 

for tracking control of an ROV is a powerful approach to 

compensate structured and unstructured uncertainties. In 

this study, performance of sliding mode approach modified 

by robust adaptive fuzzy control algorithm for an ROV is 

presented. Fuzzy algorithm is used for on-line estimation of 

external disturbances as well as unknown nonlinear terms of 

dynamic model of the ROV. A robust control rule is 

employed to compensate for estimation errors. The 

boundedness and asymptotic convergence properties of the 

control algorithm and its semi-global stability are analytically 

proven using Lyapunov stability theory and Barbalat’s 

lemma. Moreover, adaptation laws and robust control terms 

are derived from Lyapunov stability synthises. The adopted 

control scheme is implemented in numerical simulations, 

based on the dynamic parameters of Shiraz University 

Remotely Operated Vehicle (Ariana I ROV). Simulations 

show the effectiveness of the adopted controller for trajectory 

tracking. 

I. INTRODUCTION 
HE significance of utilizing Remotely Underwater 

Vehicles in marine applications is a forgone 

conclusion. Industrial applications of ROV include 

inspection and maintenance of offshore oil and gas subsea 

structures, ships underwater bodies, damps structures and 

equipments, and data gathering for seabed studies and 

marine archeology, etc. [1], [2]. Designing an ROV 

system, especially its control system is a major challenge 

in which engineers and researchers are faced with a 

number of complexities such as considering inherently 

nonlinear dynamics, time-varying and undeterministic 

hydrodynamic parameters, disturbances caused by 

underwater currents and waves, etc [1].  

In order to meet the requirements of control systems for 

underwater robots, various types of control schemes are 

implemented in the literatures. Autopilot deign for an 

unmanned underwater vehicle based on the technique of 

H∞ is reported [3]. The tracking problem for low-speed 

maneuvering of (JHUROV) ROV using a linear 

proportional-derivative (PD) control and a family of fixed 

and adaptive model-based controllers is also reported [4]. 

Several adaptive control methodologies presented in other 

studies. [5], [6].  
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An adaptive PD controller for the dynamic positioning of 

ROVs working in close proximity of off-sure structures is 

introduced by [1]. Yoerger and Slotine applied sliding 

mode scheme for trajectory control of underwater vehicle 

quite successfully [7]. Walchko, Novick and Nechyba 

applied sliding mode control to Subjugator ROV [8] and 

Cristi, Papoulias and Healy employed an adaptive sliding 

mode control for their underwater vehicle [9]. In both of 

these studies uncertainties were assumed to be bounded. 

Hoang, Kreuzer proposed a robust adaptive sliding mode 

control for dynamic of an ROV in which prior knowledge 

of bounds for uncertainties in parameters was not required 

[10]. 

Artificial intelligence approaches have been widely used in 

the field of underwater robots. Autopilots formulated using 

fuzzy logic [11]. Some studies  applying fuzzy control to 

underwater robots can be found in [2], [12] and [13]. 

Implementing Artificial Neural Network (ANN) methods 

to underwater robots control are also reported [14], [15]. 

Ordinary fuzzy control algorithm needs a large number of 

training to achieve the desired performance. Training of 

neural network may be time consuming and it may be not 

proper for real-time control [16]. Moreover, in many cases 

stability and stronger mathematical approach should be 

considered. Other stable schemes have been combined 

with fuzzy logic control to achieve more stability [17]. 

Labiod, Boucherit and Guerra presented adaptive fuzzy 

control scheme for a class of MIMO nonlinear systems 

[18]. 

Some types of combinations of fuzzy logic and sliding 

mode control have been reported [19]-[24].  In [21], this 

method was applied to an underwater vehicle robot. Bessa 

and Barreto chose the switching variable “s” instead of the 

state variables in the premise of fuzzy rules in order to 

avoid forming incredibly large fuzzy sets and fuzzy rules 

in higher-order systems [23] and applied it to depth 

regulation of underwater vehicles [24]. Adaptive fuzzy 

sliding mode control is applied in identification of external 

disturbances to control the dynamic positioning of 

underwater vehicles with four controllable degrees of 

freedom [22]. They experienced applying a fuzzy 

inference system to approximate random external 

disturbances, using sliding mode switching variable “s” as 

premise variable. They also assumed the estimations of 

mass, centripetal and hydrodynamic matrices can be 

achieved with some small bounds on the parameters. 

In this paper, adaptive fuzzy sliding mode algorithm with 

robustifying control term is employed for trajectory 

tracking of underwater vehicle with six controllable 

degrees of freedom. In this approach weight, centripetal, 
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hydrodynamic and disturbance matrices are assumed to be 

unknown. In order to guarantee the stability of the close 

loop system a robustifying term is added to control rule. 

Semi-global stability, asymptotic convergence to minimize 

the tracking error and boundedness of the close-loop 

signals are assured by Lyapunov stability theory and 

Barbalat’s lemma. Results show that the proposed control 

law can provide fine performance in trajectory tracking 

problem in spite of the system unknown parameters and 

external disturbances. 

In the next section the architecture of fully actuated 

Ariana-I ROV is described. In the third section, motion 

dynamics equations of the underwater vehicles is 

explained. In section 4 the proposed control scheme is 

introduced, simulation results are presented in section 5, 

conclusions can be found in section 6. 

  

II. SYSTEM ARCHITECTURE 

 The ROV constructed for this study is laboratory 

underwater vision based robot called Ariana-I. The Center 

of gravity and the center of buoyancy of  the vehicle are 

positioned such that Ariana-I ROV is self-stabilized; 

however, double actuators in lateral direction are provided 

in order to provide stronger reaction to some particular 

situations in which the system is forced to disturbances. 

The distribution of thrusters is designed in such a way that 

the vehicle is able to maneuver with high accuracy both in 

the horizontal and vertical plane and compensate for the 

disturbances and noises during its operation. 

The net weight of the vehicle out of water is about 130kg 

and it is almost neutrally buoyant in the water. The 

dimensions of the frame are ��� � ��� � ����	
 The 

frame is made from ABS whose density is����� �

��. In the 

bottom plate center plate of the frame, a box with a volume 

of ��� � ��� � ����		� is installed, which contains six 

24VDC sealed acid batteries and electronic board. The 

board includes drivers of thruster dc motors, Analog 

Devices micro processor for data acquisition and 

interfacing, heading magnetic compass, MEMS sensor for 

roll and pitch angles measurements, acceleration sensor 

and pressure sensor.  

 

III. MODELING AND DYNAMIC EQUATIONS 

OF MOTION 

   ROVs in the water would have at most six degree of 

freedom including three rotations and three translational 

motions. Dynamic equations of motion of ROVs include 

six non-linear differential equations which in general 

cannot be decoupled. However, many ROVs are designed 

such that the metacentric height would be sufficiently large 

and provide self-stabilization of roll and pitch angles. In 

this particular condition the order of dynamic model would 

be reduced to four DOF and the vertical motion could be 

decoupled from the horizontal motion plane [2], [7], [22]. 

In this paper we consider all six degrees of freedom whose 

equations are written in two coordinate frames, body-fixed 

frame and earth-fixed frame. Both coordinate systems are 

shown in Figure2. 

 
 

Figure1. Ariana-I ROV 

 

Figure2. 

Body-fixed frame and coordinate-fixed frame 

A. Kinematic Transformation 

  By using Jacobian matrix ��η�, kinematic transformation 

can be performed to transform linear and angular velocities 

between the two body and fixed coordinate frames. 
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(1) 

Where v1 and v2 denote the linear and angular velocities in 

body-fixed frame, �� � � ���
� � ��

���; ��� � ��� �� ���  
�� � �!� "� #��   (!� "� # are Euler angles). 

 

B. Dynamic Model 

   The general vectorial representation of 6-DOFs rigid-

body equation of motion in the space is written in the 

compact form as:  

( )RB RB RB
M v C v v τ+ =ɺ  (2) 

where $%&, '%&�(� and )%& are the inertia matrix, coriolis 

and centripetal matrix and the vector of external forces and 

moments acting on the vehicle. For underwater 

applications external forces and moments acting on vehicle 

can be classified to hydrodynamic forces and moments )* 

which include added mass +,(- . /,�(�(, hydrodynamic 

damping 0�(� and restoring forces 1���, environmental 

forces and moments )2 which include; propulsion forces 

and moments )� which include actuators forces and 

moments. 
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RB H E Tτ τ τ τ= + +  
( ) ( ) ( )H A AM v C v v D v v gτ η= − − − −ɺ �

(3) 

(4)�

C. Hydrodynamic Terms 

   By a rough approximation it is possible to assume that if 

the vehicle has three planes of symmetry in performing a 

non-coupled motion with low speed and it assumed that 

the terms higher than second order are negligible, then 

diagonal structure of 3�4� with only linear and quadratic 

damping can be adopted in the modeling [25]. Moreover: 

( ) { }

{
}

, , , , ,

           , , ,

                        , ,

u v w p q r

u u v v w w

p p q q r r

D v diag X Y Z K M N

diag X u Y v Z w

K p M q N r

= −

−  

 

 

(5) 

 

Coefficients in (5) ( , ..., , ...u u u
X X ) should be determined 

analytically (for example by use of strip theory) or 

identified experimentally.  

 

D. Added inertia terms 
   In general, if the vehicle is geometrically symmetric and 

it moves at low speeds, +, obtained as: 

{ }, , , , ,A u v w p q rM diag X Y Z K M N= − ɺ ɺ ɺ ɺ ɺ ɺ
  

(6) 

and /, is derived from the matrix, $5. More details can be 

found in [25]. 

 

E. Hydrostatic Forces 
   The Ariana-I ROV is nearly neutrally buoyant.  

We consider restoring forces and moments can be 

passively compensated [22]. 

 

F. Thruster Force ()�) 

   In general, thruster force and moment vector has a 

complicated function form. An extensive study on 

thrusters and their effects on the underwater vehicles is 

reported in [29]. The simplified nonlinear equation for 

steady-state axial thrust T produced by fixed pitch 

propeller marine thrusters is presented in the literature as 

below [30]: 

TT C n n=  (7) 

The parameter '� should be identified experimentally. 6 is 

the propeller rate of rotation.  

 

G. Forces and Moments on the ROV due to the 

Umbilical Cable 

   Disturbance forces and moments caused by umbilical 

cable can be modeled in different ways. Some modeling 

for umbilical cable of ROV can be found in [26], [27]. 

Adoption of any of these schemes is not proper for on-line 

identification and control action, which is mainly because 

of complexity and large amount of computation required in 

such approaches. It is common to address this problem by 

considering the forces and moments due to umbilical cable 

as random and add them to other disturbance terms in the 

disturbance vector 7. 

 

H. Representation of Equation of Motion of ROV in the 

Body-Fixed Frame 

   Replacement of (4) into (3) and together with (2) yields 

the following representation of 6-DOFs dynamic equation 

of motion of underwater vehicles: 

( ) ( ) ( )Mv C v v D v v g Pη τ+ + + + =ɺ
 

( )J vη η=ɺ  
( ) ( ) ( ); ;RB A RB A T EM M M C v C v C v τ τ τ+ = + = +≜  

 

 

(8) 

  

I. Earth-fixed coordinate frame equation of motion of 

ROV 

   The following representation in earth-fixed coordinate 

frame can be obtained by applying kinematic 

transformation [25] to eliminate ( and (-  from (8):  

( ) ( , ) ( , ) ( )M C v D v g Pη η η η η ηη η η η η η η τ+ + + + =ɺɺ ɺ ɺ  (9) 

Based on III.E, we eliminate the term 

�
1η��� in the 

following sections.
 

IV. CONTROL 

Generally ROVs are underwater robots which are moving 

at low speeds (less than 2 knots) and the Ariana_I ROV 

almost has three planes of symmetry. As referred in III.C 

under these conditions vehicle is performing a non-couple 

motion. In the following, sliding mode scheme is 

combined with adaptive fuzzy algorithm and robust 

adaptive control. The nonlinear dynamic system can be 

rewritten in the following form: 

( )
( )

( )
�

1

G U
F

C D P M
η

η

η τ−= + + +ɺɺ
�����

  

(10) 

In order to simplify control analysis, in this section 

nonlinear equation (10) system in the earth-reference is 

adopted.  

Where ( )( )1 1 1 1,T TM J MJ C M J C v v J MJ η− − − − − −= = − + ɺ ɺ ,  

( ) ( )( ) ( )( )1 1 1 1,D M J D v v P M J Pη η− − − −= − = − and 

)8 � 9:�). For further simplicity the term $;:� is multiplied 

to the centripetal, hydrodynamics and disturbance terms. It 

should be noted that the off-diagonal terms of matrix $; 

are incorporated in the vector 7<. In addition, the following 

assumptions have been made for control analysis: 

 

   Assumption1. 

the matrix $;:� is positive definite. Indeed, a strictly 

positive constant => exists such that: 

   $;:� ? =>@A. 

 
   Assumption 2.  

The desired trajectories �BC  and �-BC are at least once 

differentiable and �BC , �-BC  and �DBC  are bounded and known. 

Also, states �E and �-E are available through measurements. 

   Let tracking error �FE due to each DOF be defined as 
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ii d i
η η η= −ɶ  (11) 

 

where  �BC  is the desired path for each DOF. Assume that 

GE�H� is the sliding surface and it is defined as 

( )
( )

, 0 where

,   1, 2, ..., 6

i i i

i i i i

s

s t i

η η

η λ η

=

= + =

ɺɶ ɶ

ɺɶ ɶ
 

(12) 

 

(13) 

 IE� is strictly positive constant. Obviously, JE�H� K � 

derive �FE�H� K � asymptotically for L � �� M �. Therefore, 

designing a controller which contributes to JE�H� K � for 

each DOF is the control objective. The time derivative of 

(13) can be written as 

( ) 1

ii d i i i i i i i
s c d p mη λη τ−= + − + + −ɺɺɺ ɶɺ  (14) 

If nonlinear functions of the system �'8 . 3; .�7<��and  

$;:� are known, the following control law can be 

employed to satisfy the control purpose 

( ) ( )sgn
ii i i i i d i i i im c d p k sτ η λη = − + + + + + 
ɺɺɺ ɶ  

 

(15) 

Where sgn(.) is the Sign function. Substituting (15) into 

(14) results in 

( ) ( )sgn ,      1,2,...,6i i is t k s i= − =ɺ  (16) 

Equation (16) implies the finite time convergence to the 

sliding surface GE�H�, contributing to convergence of the 

tracking error �FE to 0. In this study, we assumed that 

nonlinear functions are unknown. In order to design a 

proper control law to cope with this problem we employ 

fuzzy inference system for online estimation of unknown 

functions. 

The fuzzy inference system used in this study is zero-order 

Sugeno. It can be characterized by a set of if-then rules in 

the form: 

:     k

i
k k r ir
i i h

R if s S then h θ= =
⌢ ⌢

  

(17) 

Where GEN  are fuzzy sets whose membership functions 

should be properly selected. The parameter O<PE will be 

replaced by approximation of the nonlinear functions in 

(10) and are shown by Q�8RE .�S8RE .�T8REU and 	;V E
:�. "PWCX  is 

output value of each fuzzy rule k, with Y � �� M � Z. The 

final output of the fuzzy system is calculated by a 

weighted average formula: 

( ) 1

1

R

r
i i R

r

r i r

r

i h

i

h s

ω θ

ω

=

=

=
∑

∑

⌢
⌢

 
 

 

 

(18) 

Equation (18) can be written in compact form as: 

( ) ( )T

i i i i
ih

h s s= Ω Θ
⌢ ⌢

 
 

(19) 

where ΘV[\ � �"PWC]
� "PWC^

� M � "PWC_
�`, 

Ωa�JE� � �Ωa] �Ωa^ � M �Ωab�� whose components are 

Ωac � ω\c
∑ eCN

_
Nfg

 and ωac is the firing strength of each rule. 

Let us consider the approximation of the nonlinear 

functions as follows: 

i i i i i i

T

i i i c d p c d p
c d p + + + ++ + = Ω Θ
⌢ ⌢⌢ ⌢

 
,      1, 2,...,6

i i

T

i m mm i= Ω Θ =
⌢⌢

 

 

 

(20) 

We define optimal parameters "PhC
i .�"PBC

i .�"PjC
i
 and "P�C

i
 

based upon optimal estimation [18], [22]. Minimum 

parameter estimation errors are defined as: 

*

i i i i i i i i ic d p c d p c d pθ θ θ+ + + + + += −
⌢ ⌢ɶ

 
* ,      1, 2,..., 6

i i im m m iθ θ θ= − =
⌢ ⌢ɶ  

 

 

(21) 

Minimum fuzzy approximation errors are defined as: 

( ) ( )* * *

i i i i i i
i i ic d p

c d p c d pε + + = + + − + +
⌢⌢ ⌢

 
1 1* ,  1, 2,..., 6

im i im m iε − −= − =
⌢

 

 

 

(22) 

Here, the employed fuzzy sets should not be larger than 

universal approximation property. As a consequence, 

minimum approximation error supposed to be bounded as: 

1,2,...,6, ; 
i ii i i i i i

m mc d p c d p
iε ε ε ε+ + + + =≤ ≤  

 

(23) 

where k 8hClBCljC and k 8�C  are given constants. Now, let us 

define certainty control term )8hC  as follows: 

( ) ( )sgnAFSMC i i i i i i i i
ii dm c d p k sτ η λη = − + + + + + 

⌢⌢ ⌢ ⌢ ɺɺɺ ɶ  
(24) 

It should be noted that the term  	;V E
:� is estimated on-line 

and it may contribute to a singular estimation for this term. 

In order to address this problem, in (25) regularized 

inverse of 	;V E
:� will be used. This regularized inverse is 

well-defined when 	;V E
:� is singular. Modified control law 

is: 

( ) ( )
1

sgn
2

0

mi c d p k si i i i i i iAFSMC d
i imi

η λη
ε

τ
−

= − + + + + +
−

+

   
   

⌢ ⌢⌢ ⌢ ɺɺɺ ɶ⌢

 

 

(25

) 

Control law (25) is well-defined, but the stability of the 

close-loop system would not be guaranteed by this term 

alone. Hence, a robustifying control term )8mC  will be added 

to the control law: 

i ii AFSMC rτ τ τ= +  (26) 

Incorporating )8mC to control term can guarantee the stability 

of close loop system and it define as 

 

0

2

0

i i i i i i

i

i i c d p m AFSMC

r

i i

s s

s

ε ε τ τ
τ

µ σ

+ +
 + + =

+
 

 

 

(27) 

where )8>C is 

( ) ( )0
0 2

0

sgn
i ii i i d i i i i

i

c d p k s
m

ε
τ η λη

ε −

  = − + + + + +   + 

⌢⌢ ⌢ ɺɺɺ ɶ⌢  
 

(28) 

and n is a time-varying design parameter. The adaptation 

laws (29), (30) are used to achieve the most appropriate 

approximation for unknown nonlinear functions and 

design parameter n is updated (31) as follows: 

i i i i i i i i ic d p c d p c d p isγ+ + + + + +Θ = − Ω
⌢ɺ

 
 

(29) 
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i i i im m m i AFSMCsγ τΘ = − Ω
⌢ɺ

 

0

0

2

0

i i i i i ii c d p m AFSMC

i i

i i

s

s

ε ε τ τ
σ γ

µ σ

+ +
 + + = −

+
ɺ  

 

(30) 

 

 

(31) 

Here, we should prove that the adaptation laws (29) -(31) 

give suitable approximations for nonlinear functions of the 

system and also guarantee the convergence of the tracking 

error to zero. First, by substituting (26) into (14), J-E can be 

rewritten as 

( ) ( )
( )

( ) ( ) ( )* * * *

1 1

1 1

1 1

1

0

sgn
i

i i i

i

i

i i i i i i

i i r i

i i i i i

i

AFSMCi

AFSMCi

AF

AFSMCii i

i id

i

c d pi i i
r m

s c d p m m

m m k s

c d p c d p m m

m

η λη τ

τ τ

τ

τ τ ε ε τ

− −

− −

− −

−
+ +

 
  

= + − + + − −

− − = −

− + + − + + − −

+ − − −

⌢ɺɺɺ ɶɺ
⌢

⌢ ⌢⌢ ⌢ ⌢ ⌢ ⌢ ⌢

 

 

 

 

(32) 

 

Multiplying (32) by JE � from right, gives: 

( )

( ) 1

0

i i i i i i

i i i i i

i i i i i

T

i i i i c d p c d p i

T

m m AFSMC i r i i

c d p i m i AFSM C

s s k s s

m s s

s s

τ τ τ

ε ε τ

+ + + +

−

+ +

= − − Ω Θ

− Ω Θ − +

− −

ɶɺ

ɶ  

 

 

 

 

(33) 

Now, let’s consider the following positive definite 

Lyapunov function candidate: 

( )
1 1 12

2 2

1 1 2

2
0

T
V t si i c d pc d p i i ii i i

c d pi i i

T
m im iim ii

γ

σ
γ γ

= + + ++ +
+ +

+ +

Θ Θ

Θ Θ











ɶ ɶ

ɶ ɶ

 

 

 

 

(34) 

By use of (34) and (20) and applying (29), (30), the time 

derivative of  Lyapunov function become: 

( ) ( )i i i iV t k s V t′= − +ɺ ɺ  (35) 

( )
11

0

0

V t m s s s sr mi i i i i i i iAFSMCc d pi ii ii i i i

ε ε σ σ
γ

τ τ τ−′ = − + − − +
+ +

ɺ ɺ   

(36) 

Equation (36) can be bounded by using (23) 

( )

0

1

0

1

i i i i

i i i

i i r i i c d p

m AFSMC i i

i

V t m s sτ ε

ε τ τ σ σ
γ

−

+ +
′ ≤ − + 

+ + +

ɺ

ɺ
 

 

 

 

(37) 

By considering assumption 1 and (27), one can easily 

verify that 

1

0

0

2

0

i i i i i i i

i i i i i i

i r i i c d p m AFSMC

i i c d p m AFSMC

i i

m s s

s

s

τ ε ε τ τ

σ ε ε τ τ

µ σ

−

+ +

+ +

 ≥ + + 

 + + −
+

 

 

 

 

 

(38) 

Therefore, (37) becomes: 

( )
0 1

2

00

s mi i AFSMCc d p i i ii i i
V ti i i

isi i

σ ε ε τ τ

σ σ
γµ σ

+ +
+ +

′ ≤ +

+

 
  ɺ ɺ

 

 

(39) 

By applying adaptation law (31) to (39) yields 

( ) ( )0i i i iV t V t k s′ ≤ ⇒ ≤ −ɺ ɺ  (40) 

As a result,  o-E�H� is negative semi-definite and oEp�q∞. It 

implies the boundedness of the signals JE�H�, Θrs\lt\lua, 
and Θrv\, which in turn contribute to boundedness of 

wVs\lt\lua ,ΘVv\, )8E and J-E�H�. Since oE�H� x oE���, by 

integrating both sides of (40): 

( ) ( )
0

lim lim 0
t

t t
i i i ik s d V V tθ

→ ∞ → ∞
≤ − ≤ ∞  ∫   

(41) 

It implies that JEp�q�. Since JEp�q� y q∞ and J-E�H�p�q∞, 

using Barbalat’s lemma [28] yields JE�H� z � as H z ∞. 

Hence, the asymptotically convergence of trajectory 

tracking error to zero is guaranteed. 

Although this scheme demonstrates good stability and 

tracking properties, discontinuous term in the control law 

contributes to a chattering phenomenon. To surmount 

chattering, a thin boundary layer can be adopted to smooth 

out the control discontinuity [28]. 

The term {EJ|6�JE� would be substituted by YEJ}H�JE~ϕa� 

in the control law (25). It will be guaranteed that the 

boundary layer is an attractive set; hence, it would be an 

invariant set. Let us define a parameter Jϕ\ 

sis s sa ti i
i i

φφ φ
= −

 
  
 

 
 

(42) 

In order to show the stability and boundedness of the 

closed loop signals, in the new proposded control law, 

instead of JE in Lyapunov function (34), Jϕ\ should be 

used. Inside the boundary layer Jϕ\ � �, and outside the 

boundary the first term in the time derivative of adopted 

Lyapunov function would be  

 

( ) ( )
i i i i ii i d i i iW t s s s s sφ φ φ φη η λη= = = − + ɺɺ ɺɺ ɺɺ ɶɺ ɺ  

(43) 

According to definition of saturation function outside the 

boundary layer )85����C  would become (25). Consequently, 

it is easy to show that the time derivative of new Lyapunov 

function would also be negative semi-definite. 

 

   Remark. 

   One may argue that the terms YEJ|6�JE� can be 

substituted with the term YEJE in the control term (25). That 

would be exactly the same as control scheme in [18]. It 

should be noted that this approach may face the problem of 

saturation for control term )85����C  in the simulations. In 

this approach (40) becomes : 

( ) 2

i i iV t k s≤ −ɺ  (44) 

which also satisfies the control objective. It should be 

noted that when JE is in small orders comparing (40) and 
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(44) shows that the rate of the convergency when using 

J|6�
 �  function will be faster than the other one in close 

vicinity of JE and it implies that the rate of convergency of 

tracking error by using J|6�
 � is faster, although both 

approaches satisfy the objectives of control problem. In 

[18] state variables are used as the premise variables of 

fuzzy rules, contributing to the problem of forming large 

fuzzy sets. In this study, in order to avoid this difficulty 

“s” is adopted as the premise variable in the fuzzy rules. 

 

V. SIMULATION RESULTS 

   The usefulness and strength of the adopted controller has 

been checked on numerical simulations. Forth-order Rung-

Kutta method is employed in order to solve differential 

equations in the numerical simulations. We performed an 

adaptive fuzzy control with robustifying term which 

described in equation (26) to obtain trajectory tracking 

goal. The parameters of the model are  

{ }

( ) {

}

141.78,178.51,159.39, 49.25,44,57.82

5.8u 36.76u u ,47.1v 246.43v v ,

33.5w 238.5w w , 40p p ,80q q ,20.73r 40.5r r

M diag

D v v diag

=

= + +

+ +

 

For the thruster DC motors which we used the forces are 

varied in the range of ����
��� ����. The results are 

demonstrated for the tracking of the trajectory �B �
�� � �����
 ��H��. There are 13 triangular fuzzy sets take 

into account for fuzzy system. Their ranges are followed in 

proportion with the variation of the switching variable s in 

the related state. The initial value for j
th

 rule-base for the 

unknown parameter Q�8RE .�S8RE .�T8REU were set to � and the j
th

 

rule-base were set to 0.1 for 	;V E
:� where � � �� M ���. Rule-

bases are updated at each time step due to the adaptation 

laws, Eq. (30), (31). The disturbance signal which is acted 

on the heave motion is produced by a random source. 

Other disturbance forces are in the range of ��N and 

moments in the range of ��N.m, respectively. Firstly, in 

the simulation the nonlinear functions Q�8RE .�S8RE .�T8REU and 

	;V E
:� are assumed to be completely unknown. Fuzzy 

systems in each degree of freedom are used to estimate the 

nonlinear functions. The design parameters in the first case 

are chosen as follows: 

[ ]

[ ]

[ ] [ ]

[ ]
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I

γ µ

γ

ε

ε

ε γ −

−

−

−

=

Φ = ×

= =

=
− −

× =

− − − − − −
=

+ + + +

= Λ =

=

  

 

The trajectory tracking of position and velocity in the 

heave motion are presented in Figs. 3(a), (b). In spite of 

the fact that dynamics of underwater systems are highly 

nonlinear, as observed the desired and actual trajectories 

are closely overlap each other and the control signal which 

is shown in Fig. 3(c) is smooth. It is capable to supply high 

accuracy trajectory tracking with no chattering. 

(
)

,
dz

z
m

( )sect
 

Figure3 (a). Desired and actual displacement trajectories (RAFSMC) 

  

(
)

,
d

w
w

m

( )sect

Figure3 (b). Desired and actual velocity trajectories (RAFSMC) 

 

The second simulation case is similar to the previous one 

except it was assumed that the parameter 	;V E
:� is not 

approximated online, so the robustifying term is not 

needed in this case. 

(
)

Z
N

τ

( )sect

Figure3 (c). Control variable )8� (RAFSMC) 

 

Also 	;V E
:� is not exactly known and it has been chosen 

with a maximal uncertainty of ���� of the exact values 

which described before. Online estimations were carried 
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out for Q�8RE .�S8RE .�T8REU  and the adaptive fuzzy sliding mode 

controller (AFSMC) has a well performance for trajectory 

tracking of position and velocity. Figs. 4(a), (b) display the 

desired and actual trajectories of position and velocity of 

this case. Control signal of this case is demonstrated in 

Fig. 4(c). 

 

( )sect

(
)

,
dz

z
m

 
Figure4 (a).  Desired and actual displacement trajectories (AFSMC2) 

 

Fig. 3 presented the tracking error of the first and second 

cases and traditional sliding mode control. In the 

simulation that sliding mode control (SMC) used, { is 

similar to previous cases and !� � �
��, another terms of Φ 

were chosen as before. In the SMC simulation, disturbance 

forces and moments vector 7 were not estimated but the 

tracking error still remain in the satisfactory bounds. In the 

SMC simulation, disturbance forces and moments vector 7 

were not estimated but the tracking error still remain in the 

satisfactory bounds. 

According to the Fig. 5 the second simulation controller 

(AFMC2) has the minimum tracking error on the basis of 

knowing the parameter 	;V E
:� almost. Whilst all nonlinear 

functions in the first simulation study are unknown, 

tracking error of this simulation controller (AFMC1) is 

smaller than SMC and close to the first study with no 

chattering.  
 

(
)

,
d

w
w

m

( )sect
 

Figure4 (b). Desired and actual velocity trajectories (AFSMC2) 

 

Indeed, the capability and effectiveness of the adopted 

controller is clearly shown and it can be verified that an 

adaptive fuzzy sliding mode controller with robustifying 

term has a satisfactory performance in trajectory tracking 

despite disturbances and unknown functions of nonlinear 

systems.  
 

( )sect
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Figure4 (c). Control variable )8� (AFSMC2) 
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Figure5. Tracking error �̃ 

 

VI. CONCLUSION 

This paper described the dynamic modeling and designing 

a strong controller for the trajectory tracking problem of  

Remotely Operated underwater Vehicles (ROVs). The 

main objective of this study was to design a controller 

which is able to provide on-line estimation of nonlinear 

functions of dynamic equation of the vehicle and also 

external disturbances acting on the vehicle when it moves 

in the water. The adopted control law was an adaptive 

fuzzy sliding mode controller with regularized inverse 

matrix to avoid singularity problem incorporated with a 

robustifying term to deal with the approximation error and 

guarantee the boundedness and stability of the closed-loop 

control signals. This approach ensured the convergence of 

the trajectory tracking error to zero, as well. The 

boundedness and stability of the closed-loop signals are 
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clearly  shown by Lyapunov stability theory and Barbalat’s 

lemma. Simulation results show that the proposed 

controller can compensate the time-varying unknown 

uncertainties and lead to good performance. The results 

were compared to the cases in which we have some 

knowledge from the mathematical dynamic modeling of 

the plant. Dynamic features of the plant were taken from 

the Ariana-I ROV. Whilst the control algorithm which we 

used is a complicated approach; we are working to 

implement it on the experimental set up. 
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