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Abstract— In many applications of system identification,
output measurements are available, but measurements of the
input are not available. In these cases, sensor-only identification
techniques are needed. In the present paper, we define a
discrete-time MIMO pseudo transfer function (PTF) between
sensor measurements in a sampled-data system with multiple
excitation signals. We show that the MIMO PTF does not
depend on the unknown initial state or the unknown excitation.
We also characterize the order and relative degree of the
MIMO PTF. To consistently estimate the Markov parameters
of the MIMO PTF in the presence of sensor noise, we use
quadratically constrained least squares identification for MIMO
systems. We apply this technique to a three-degree-of-freedom
mass-spring-damper system to assess the accuracy of the
identified PTFs.

I. INTRODUCTION

In some applications, the excitation may be unknown and

thus sensor data may be the only available information for

system identification. In this case, it is typically assumed that

the excitation is generated by a white random process, and

various system identification techniques are used to detect

changes in the dynamics of the system [1–4]. Researchers

have considered MIMO sensor-to-sensor relationships [5],

but correct identification in the presence of multiple exci-

tations is difficult [6]. Authors have noted that parameters

identified using only sensor measurements may not corre-

spond to the poles of the system [7], but the connection

with system zeros has only recently been established [8].

Pseudo transfer functions (PTFs) are used in [8, 9] to

detect system changes under unknown excitation. SISO PTFs

for single-input, two-output systems are characterized in [9].

Sampling introduces additional zeros into a discrete-time

input-output model if the relative degree of the continuous-

time system is greater than 1 [10]. Hence, for a strictly

proper continuous-time system, the order of the SISO PTF

arising from a sampled-data application is n − 1, where n

is the order of the underlying system [8, 9]. Since a PTF is

essentially a ratio of transfer functions, the information in a

PTF consists of information about the zeros of the system

from the unknown excitation to each of the sensors.

For applications involving structural dynamics such as

operational modal analysis (OMA) [11], PTFs are a gen-

eralization of transmissibilities, where PTFs do not require

that one of the sensors be colocated with the prescribed
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displacement [2]. To compare a transmissibility [12] and a

PTF, consider the system G in Figure 1. The transmissibility

from y1 to y2 in Figure 1(a) assumes y1 is colocated with

the displacement excitation u so that the transfer function

from u to the displacement y1 is

y1 = u,

the transfer function from u to y2 is

y2 =
N2

D
u,

and the transmissibility from y1 to y2 is

y2 =
N2

D
y1. (1)

However, the PTF from y1 to y2 in Figure 1(b) does not

assume that y1 and u are colocated, and hence

y1 =
N1

D
u.

The PTF from y1 to y2 is then [8]

y2 =
N2

N1
y1. (2)

The transmissibility (1) contains pole information, while

the PTF (2) does not. Pole information appears in the

output-to-output relationship only if the excitation and sensor

measurement are colocated, and hence a transmissibility is a

special type of PTF.

Fig. 1. Difference between the transmissibility from y1 to y2 (a) and the
pseudo transfer function (PTF) from y1 to y2 (b).

Given multiple excitation signals, it is shown in [8] that

additional sensors can be used to obtain a MIMO PTF that

is independent of the excitation signals. For example, the

system shown in Figure 2 is excited by both u1 and u2

so that the sensor measurements y1, y2, and y3 contain

contributions from both u1 and u2. For j = 1, 2, 3, as

shown in Figure 2(a), yj,2 appears as sensor noise corrupting

measurement yj if the SISO PTF from y1 to y2 is identified.

Furthermore, identification of the SISO PTF from y1 to y2
involves estimation in the presence of a disturbance due

to u2. However, as shown in Figure 2(b), identification of

the MIMO PTF from [y1 y2]
T

to y3 is noise-free in the

sense that, in the absence of additional noise sources, exact

identification of the MIMO PTF is possible using finite data.
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Fig. 2. Illustration of how unknown multiple excitation signals can cause
sensor noise. For i = 1, 2, j = 1, 2, 3, excitation ui yields measurement
yj,i. In diagram (a), identification of the SISO PTF from y1 to y2 involves
estimation in the presence of a disturbance due to u2. In diagram (b),

identification of the MIMO PTF from [y1 y2]
T to y3 is noise-free.

The contribution of the present paper is to analyze MIMO

PTFs in terms of the conditions on the sensors under which

a MIMO PTF can be defined. In particular, we consider the

normal rank of the PTF as well its order and relative degree.

We also go beyond the results of [8] by considering the case

in which the sensors are corrupted by noise that is not due

to an excitation signal. Since both sensors may be corrupted

by noise, we consider an errors-in-variables identification

problem. To address this problem, we apply quadratically

constrained least squares [13]. Since the results of [13] are

confined to SISO systems with ARMAX model structures,

we develop and apply an extension to MIMO systems

with µ-Markov model structures. Unlike an ARMAX model

structure, a µ-Markov model structure requires only a lower

bound on the estimated model order.
II. PROBLEM FORMULATION

Fig. 3. Pseudo transfer function (PTF) identification problem.

Consider system S with unknown inputs ū1, . . . , ūm

and measured outputs ȳ1, . . . , ȳp in Figure 3. Define ū ,

[ū1 · · · ūm]
T

and ȳ , [ȳ1 · · · ȳp]
T

. For Ā ∈ R
n×n,

B̄ ∈ R
n×m, C ∈ R

p×n, and D ∈ R
p×m, a state space

representation of S is denoted by (Ā, B̄, C,D), where

˙̄x(t) = Āx̄(t) + B̄ū(t), x̄(0) = x0, (3)

ȳ(t) = Cx̄(t) +Dū(t). (4)

For k ∈ {0, 1, . . .} and sample interval h > 0, we solve

(3) for x̄(t) from t = kh to t = kh+ h, which yields

x̄(kh+h)=eĀhx̄(kh)+
∫

kh+h
kh

eĀ(kh+h−τ)B̄ū(τ)dτ. (5)

We assume that ū(t) changes sufficiently slowly that ū(t) ≈
ū(kh) for all t ∈ [kh, kh+ h]. Hence, we rewrite (5) as

x(k + 1) = Ax(k) +Bu(k), (6)

where x(k) , x̄(kh), u(k) , ū(kh), A , eĀh, and

B ,

∫ h

0

eĀτdτB̄.

We rewrite (6) in terms of the forward-shift operator q as

δ(q)x = adj (qI −A)Bu, (7)

where

δ(q) , det(qI −A)

and adj(·) denotes the adjugate operator. Defining y(k) ,

ȳ(kh), it follows from (4) that

y(k) = Cx(k) +Du(k). (8)

For the remainder of this article, we assume p > m.

Hence, substituting (7) into (8) yields

δ(q)y = N(q)u, (9)

where, for U(q) ∈ R
m×m[q], L(q) ∈ R

(p−m)×m[q],
CU ∈ R

m×n, CL ∈ R
(p−m)×n, DU ∈ R

m×m, and DL ∈
R

(p−m)×m,

N(q) , Cadj (qI −A)B + δ(q)D (10)

=

[

U(q)
L(q)

]

=

[

CUadj (qI −A)B + δ(q)DU

CLadj (qI −A)B + δ(q)DL

]

∈ R
p×m[q].

We can also write (10) as

y = G(q)u

,

[

C (qI −A)
−1

B +D
]

u

=

[

GU (q)
GL(q)

]

u

=

[

CU (qI −A)
−1

B +DU

CL (qI −A)
−1

B +DL

]

u.

III. OUTPUT-ONLY MODEL

For 1 ≤ i ≤ j ≤ p, we define

y[i:j] ,
[

yi · · · yj
]T

,

so that

y =

[

y[1:m]

y[m+1:p]

]

.

It follows from (9) that

δ(q)y[1:m] = U(q)u (11)

and

δ(q)y[m+1:p] = L(q)u. (12)

Multiplying (11) on the left by adj (U(q)) yields

δ(q)adj (U(q)) y[1:m] = det (U(q))u. (13)

Assuming det (U(q)) is not the zero polynomial and thus

U(q) is invertible, we substitute (13) into (12) to obtain

δ(q)det(U(q))y[m+1:p]=δ(q)L(q)adj(U(q))y[1:m].

Hence,

y[m+1:p] = Γ(q)y[1:m],

where

Γ(q),
δ(q)

δ(q)det(U(q))
L(q)adj(U(q))∈R

(p−m)×m[q] (14)
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is the MIMO PTF from y[1:m] to y[m+1:p]. For the case m =
1, the common factor δ(q) can be cancelled [8].

Note that

U(q) = PQ(q), (15)

where

P ,
[

CU DU

]

∈ R
m×(n+m)

and

Q(q) ,

[

adj (qI −A)B
δ(q)Im

]

∈ R
(n+m)×m.

The following result uses (15) to provide a necessary condi-

tion for detU(q) 6= 0.

Proposition 3.1: If detU(q) 6= 0, then rankP = m.

Proof 3.1:

normal rankU(q) = normal rankPQ(q)

= min{rankP, normal rankQ(q)}

= rankP = m. �

Note that

U(q) = R(q)S, (16)

where

R(q) ,
[

CUadj (qI −A) δ(q)Im
]

∈ R
m×(n+m)

and

S ,

[

B

DU

]

∈ R
(n+m)×m.

The following result uses (16) to provide a necessary condi-

tion for detU(q) 6= 0.

Proposition 3.2: If detU(q) 6= 0, then rankS = m.

Proof 3.2:

normal rankU(q) = normal rankR(q)S

= min{normal rankR(q), rankS}

= rankS = m. �

The following result provides necessary and sufficient

conditions for detU(q) 6= 0.

Proposition 3.3: detU(q) 6= 0 if and only if GU (q) has

full normal rank.

Proof 3.3:

normal rankGU (q) = normal rankCU (qI −A)
−1

B +DU

= normal rankU(q) = m. �

Propositions 3.1 and 3.2 provide necessary conditions for

detU(q) 6= 0. However, the following example shows that

these conditions are not sufficient for GU (q) to have full

normal rank and thus for detU(q) 6= 0.

Example 3.1: Let

A = −
1

4





1 −2 0
2 1 0
0 0 2



 , B =





2 2
0 1
1 0



 ,

CU =

[

−1 0 0
0 1 1

]

, DU =

[

0 0
0 0

]

.

Note that A is asymptotically stable, B and CU are full-rank,
(A,B,CU , DU ) is minimal, and rankP = rankS = m.
However,

GU (q) =
1

q3 + q2 + 9
16 q + 5

32

·

[

−(q + 1
4 )(2q + 1) −(q + 1

2 )(2q + 1)
1
4 (q + 1

4 )(4q − 3) 1
4 (q + 1

2 )(4q − 3)

]

. (17)

IV. MIMO PTF ORDER AND RELATIVE DEGREE

For i = 1, . . . , p, we write

yi(k) = Cix(k) +Diu(k),

and thus

δ(q)yi = Ni(q)u,

where Ni(q) is the ith row of N(q), Ci is the ith row of C,

and Di is the ith row of D. For all i ∈ {1, . . . , p} and all

j ∈ {1, . . . ,m},

ηi,j(q) , (N(q))(i,j) = Ciadj (qI −A)Bj +Di,jδ(q).

Proposition 4.1: Let GU (q) have full normal rank. Then

deg (det (U(q))) ≤ nm,

and, for all i, j ∈ {1, . . . ,m},

deg
(

adj (U(q))(i,j)

)

≤ n(m− 1).

Proof 4.1: For all r ∈ {1, . . . , p} the degree of ηr,j(q)
is n if Dr,j 6= 0 and n− 1 otherwise [8]. Hence, computing

detU(q) using the cofactor expansion yields

deg (det (U(q))) ≤ m

(

max
i,j

ηi,j(q)

)

= mn.

Furthermore,

deg
(

adj (U(q))(i,j)

)

≤ (m− 1)

(

max
i,j

ηi,j(q)

)

= (m− 1)n. �

Proposition 4.2: Let G(q) have full normal rank. Then,

for all i ∈ {1, . . . , p−m} and all j ∈ {1, . . . ,m},

deg [L(q)adj (U(q))](i,j) ≤ nm.

Proof 4.2: For all r ∈ {1, . . . , p} the degree of ηr,j(q)
is n if Dr,j 6= 0 and n − 1 otherwise [8]. Hence, for all

k ∈ {1, . . . ,m},

deg [L(q)adj (U(q))](i,j) ≤ max
i,j

(

deg [L(q)](i,j)

)

+max
j,k

(

deg [adj (U(q))](j,k)

)

= n+ n(m− 1)

= nm. �

The following result characterizes the order and relative

degree of each of the entries of the MIMO PTF (14).
Theorem 4.1: Let G(q) have full normal rank and

assume that the common factor δ(q) in (14) can be cancelled.

Then, for all i ∈ {1, . . . , p−m} and for all j ∈ {1, . . . ,m},

the order of Γ(q)(i,j) is less than or equal to nm. Further-

more, the relative degree d(i,j) of Γ(q)(i,j) is given by

d(i,j) , deg [det (U(q))]− deg [L(q)adj (U(q))](i,j) .
Proof 4.3: The result follows from Prop. 4.1 and 4.2.
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V. THREE-SENSOR, TWO-INPUT CASE

Let p = 3 and m = 1. From (54) of [8], the PTF from y1
to y3 is given by

y3 =
η3,1(q)

η1,1(q)
y1. (18)

Next, let m = 2. Assuming δ(q) in (14) can be cancelled,

the PTF from Y[1:2] to y3 is given by

y3 = Γ(1,1)(q)y1 + Γ(1,2)y2, (19)

where

Γ(1,1)(q) =
η3,1(q)η2,2(q)− η3,2(q)η2,1(q)

η1,1(q)η2,2(q)− η2,1(q)η1,2(q)

and

Γ(1,2)(q) =
η3,2(q)η1,1(q)− η3,1(q)η1,2(q)

η1,1(q)η2,2(q)− η2,1(q)η1,2(q)
.

It follows from (18) that, if two excitation signals are present,

the SISO PTF from y1 to y3 given by (17) is incorrect. We

see from (18) that both y1 and y2 contribute to y3.

VI. EXAMPLES

Consider the mass-spring-damper structure in Figure 4,

which has the equations of motion

Mq̈(t) + Cdq̇(t) +Kq(t) = F (t), (20)

where

q(t) =





q1(t)
q2(t)
q3(t)



 , M =





m1 0 0
0 m2 0
0 0 m3



 ,

Cd =





c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3 + c4



 ,

K =





k1 + k2 −k2 0
−k2 k2 + k3 −k3
0 −k3 k3 + k4



 ,

F (t) = Bu(t) =





1 0
0 1
0 0





[

u1(t)
u2(t)

]

.

We express (19) in state-space form (3), where x̄(t) =
[

q1(t) q2(t) q3(t) v1(t) v2(t) v3(t)
]T

, ȳ(t) =
[

q1(t) q2(t) v2(t)
]T

,

Ā ,

[

03×3 I3
−M−1K −M−1Cd

]

, B̄ ,

[

03×2

M−1B

]

,

and where m1 = 1
2m2 = 1

3m3 = 1 kg, k1 = 4
5k2 = 2

3k3 =
4
7k4 = 4 N/m, c1 = 1

2c2 = 1
3c3 = 1

4c3 = 0.1 kg-m/s, and

h = 0.5 s.
We use Markov parameter matrices to characterize the PTF

estimate. To do this, we use the µ-Markov model structure

A0y2(k) = − Aµy2(k − µ) − · · · − Aµ+nmod−1y2(k − µ − nmod + 1)

+ H0y1(k) + · · · + Hµ−1y1(k − µ + 1)

+ Bµy1(k − µ) + · · · + Bµ+nmod−1y1(k − µ − nmod + 1)
(21)

Fig. 4. 3 DOF mass-spring-damper structure.

of order nmod. The absence of terms involving y2(k −
1), . . . , y2(k−µ+1) is responsible for the explicit presence

of the Markov parameter matrices H0, . . . , Hµ−1.

The µ-Markov model structure has two principal advan-

tages over the traditional ARMAX structure. First, within the

context of least squares identification with white input, it is

shown in [14] that the µ-Markov model provides consistent

estimates of the Markov parameters in the presence of arbi-

trary output noise. Furthermore, unlike parameter coefficients

in an ARMAX model structure, the estimates of the Markov

parameters are insensitive to the assumed model order nmod

as long as nmod is larger than the true model order n.

Consequently, only an upper bound on the true model order

is needed.

For MIMO PTF identification, neither of the sensor signals

is white, and thus we use quadratically constrained least

squares (QCLS) with the µ-Markov model structure (20).

MIMO QCLS with a µ-Markov model structure is developed

in the Appendix. QCLS yields consistent parameter estimates

in the presence of both input and output noise as long as

the noise autocorrelation matrices are known to within a

scalar multiple [13]. When this assumption is not satisfied,

instrumental variables methods can be used [15].

To quantify the difference between the estimated and

actual Markov parameter matrices, we define

εT ,
‖T − T̂ ‖2

‖T ‖2
,

where

T ,







vec (H0)
...

vec (H3)







and T̂ is the estimate of T obtained from QCLS.

A. Effect of model order with noise-free measurements

We investigate the effect of the µ-Markov model order

nmod on the accuracy of the estimated Markov parameter

matrices of the PTF. We simulate (19) with x0 6= 0 to obtain

the position q1 of the first mass, the position q2 of the second

mass, and the velocity v2 of the second mass, where u1 and

u2 are realizations of white Gaussian processes with mean

0 and variance 1.

First we consider the SISO PTF from q1 to v2 and use LS

with the µ-Markov model structure (20) of relative degree 0

to estimate the first 4 (scalar) Markov parameters of the PTF

from q1 to v2. For 10 realizations of 1000 samples of each u,

we construct εT and compute the average estimation error ε̄T
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over all u. Plotting ε̄T as a function of the µ-Markov model

order nmod in Figure 5 shows that the Markov parameters

are not correctly estimated for all nmod from 1 to 15. This

is expected because q1 and v2 are corrupted by contributions

from both u1 and u2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

ε̄
T

µ-Markov model order n
mod

Fig. 5. Error in the Markov parameters of the SISO PTF from q1 to v2,
estimated using SISO LS with the µ-Markov model structure (20), as the
µ-Markov model order increases. The error in estimated Markov parameters
is nonzero for all values of nmod because the sensor measurements arise
from two excitation signals.

Next we consider the two-input, one-output PTF from
[

q1 q2
]T

to v2 and use LS with the µ-Markov model

structure (20) of relative degree 0 to estimate the first 4

(2 × 2) Markov parameters of the PTF from
[

q1 q2
]T

to v2. For 10 realizations of 1000 samples of each u, we

construct εT and compute the average estimation error ε̄T
over all u. Plotting ε̄T as a function of the µ-Markov model

order nmod in Figure 6 shows that the Markov parameters

are correctly estimated for nmod ≥ 4.

B. Consistency of the estimated MIMO PTF

We now investigate the effect of sensor noise on the

accuracy of the identified PTF by adding noise to the

sensor measurements. We assume that measurement yi is

corrupted by white, zero-mean Gaussian noise wi and we

assume that each measurement yj is corrupted by white,

zero-mean Gaussian noise vj−m, where i ∈ {1, . . . ,m} and

j ∈ {m + 1, . . . , p}. Hence, the measured pseudo-inputs

ξ[1:m] are

ξ[1:m] = y[1:m] + v[1:m],

and the measured pseudo-outputs ξ[m+1:p] are

ξ[m+1:p] = y[m+1:p] + w[1:p−m].

Since the pseudo inputs are not realizations of white

random processes, LS does not yield consistent estimates

of the Markov parameters. Hence, for comparison, we use

both MIMO LS and MIMO QCLS with the µ-Markov model

structure (20) with nmod = 4 and relative degree 0 to

1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ε̄
T

µ-Markov model order n
mod

Fig. 6. Error in the Markov parameters of the MIMO PTF from [q1 q2]
T to

v2, estimated using MIMO LS with the µ-Markov model structure (20), as
the µ-Markov model order increases. For nmod ≥ 4 the Markov parameter
estimates equal the true values.

estimate the first µ = 4 Markov parameter matrices of the

PTF from
[

q1 q2
]T

to v2. To obtain consistent estimates,

QCLS requires knowledge of the noise autocorrelation to

within a scalar multiple, as discussed in the Appendix and

in [13].

We simulate (19) with x0 6= 0 to obtain the position q1
of the first mass, the position q2 of the second mass, and

the velocity v2 of the second mass, where u1 and u2 are

realizations of white Gaussian processes with mean 0 and

variance 1. We choose v1, v2, and w1 so that the signal-

to-noise ratio (SNR) of each measurement is 10. For LS

and QCLS, we let µ = 4 in (20) and estimate the Markov

parameter matrices of the PTF from
[

q1 q2
]T

to v2. We

use the estimated and true Markov parameter matrices to

compute εT , which we average over 10 noise sequences and

10 input sequences u to obtain ε̄T . The estimates provided

by QCLS in Figure 7 appear consistent, while the estimates

provided by LS do not. This result is expected since the

pseudo-inputs q1 and q2 have colored spectra.

VII. CONCLUSIONS

In applications, the number of excitation signals to a

system, and their spectra, may be unknown. However, by

using at least one more sensor than the number of excitation

signals, MIMO pseudo transfer functions (PTFs) can be used

to characterize sensor-to-sensor relationships. In this article,

we provide conditions under which MIMO PTFs can be

defined, as well as results on the order and relative degree

of each entry of a MIMO PTF.
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APPENDIX

We consider QCLS identification of a MIMO system with

input ũ(k) and output ỹ(k) that satisfy

Ã(q)ỹ = B̃(q)ũ, (22)

where

Ã(q) , Ã0qn + · · ·+ Ãn

and

B̃(q) , B̃0qn + · · ·+ B̃n.

Assuming Ã(q) has full normal rank, we can express the

identification problem (21) as the QCLS problem

min
θ∈D(N)

1

l
θTΦTΦθ, (23)

where l > 0, N = NT ∈ R
[pm(n+µ)+n+1]×[pm(n+µ)+n+1],

D(N) ,
{

θ̂ ∈ R
pm(n+µ)+n+1 : θ̂TNθ̂ = 1

}

,

Φ ,
[

Φy −Φu

]

,

Φy ,

[

y(µ + n − 1) y(n − 1) · · · y(0)
...

...
. . .

...
y(l) y(l − µ) · · · y(l − µ − n + 1)

]

,

Φu ,

[

uT(µ + n − 1) ⊗ Ip · · · uT(0) ⊗ Ip
...

. . .
...

uT(l) ⊗ Ip · · · uT(l − µ − n + 1) ⊗ Ip

]

,

and

θ ,







































α0

αµ

...

αµ+n−1

vec(H ′
0)

...

vec(H ′
µ−1)

vec(B′
µ)

...

vec(B′
µ+n−1)







































∈ R
pm(n+µ)+n+1.

The solution θ of the QCLS problem (22) corresponds

to the generalized eigenvector associated with the smallest

positive generalized eigenvalue of ( 1
l
ΦTΦ, N). Note that the

solution of the QCLS problem (22) is unbiased and consistent

under the persistency conditions given in [13].
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