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Abstract— We introduce the notion of manipulability to
leader-follower networks as a tool to analyze how effective
inputs injected at a leader node are in terms of their impact
on the movements of the follower nodes, as a function of
the interaction topologies and agent configurations. Classic
manipulability is an index used in robotics for analyzing the
singularity and efficiency of configurations of robot-arm manip-
ulators. To define similar notions for leader-follower networks,
we use a rigid-link approximation of the follower dynamics and
under this assumption, we prove that the instantaneous follower
velocities can be uniquely determined by that of the leader’s,
which allows us to define a meaningful manipulability index of
the leader-follower networks.

I. INTRODUCTION

Consider a system consisting of multiple mobile units,

connected together through an information-exchange net-

work, where the agents use the information-exchange net-

work for their coordinations. If the movement of a select

agent is viewed as the inputs to the system, one can ask a

number of questions pertaining to the inputs effect on the

rest of the system, including: (1) What is the set of states

reachable under this control input?, (2) How “effective” is

the control input in terms of the network’s response?, and

(3) How we can design or adaptively improve the network

topology to render it amenable to “effective” control inputs?

Networked systems where control signals are injected

at particular input nodes are referred to as leader-follower

networks, and a large body of work has emerged concerning

how to control such networks. Examples include optimal

control [1], containment control [2], [3], and formation con-

trol [4]. And, question (1) above is intimately linked to the

controllability properties of such leader-follower networks,

which has been investigated, for example, in [5], [6]. In this

paper we ignore this question and focus instead on the second

question, i.e., the question of how “effective” the control

input is. This is not a controllability question but rather it

connects instantaneous inputs to instantaneous responses.

In fact, to address the notion of input “effectiveness”, we

borrow the notion of manipulability indices, and transfer

it to leader-follower networks as a tool to analyze the

instantaneous effectiveness of the leader input to the net-

work under given configurations and network topologies.

In robotics, the manipulability indices have been proposed

as means for analyzing the singularity and efficiency of

H. Kawashima is with the Graduate School of Informatics, Kyoto
University, Japan, a JSPS Postdoctoral Fellow for Research Abroad, and
a visiting researcher at the School of Electrical and Computer Engineering,
Georgia Institute of Technology kawashima@i.kyoto-u.ac.jp

M. Egerstedt is with the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta, GA 30308, USA
magnus@gatech.edu

x2

x4

x5

x3

x1

(a) More effective

x2

x4

x5

x3

x1

(b) Less effective

Fig. 1. Effectiveness in terms of the ratio of generated velocity norms of
the followers’ to the leader’s (Nℓ = 1 case). The filled circle, x5, is the
leader.

particular configurations and controls of robot-arm manip-

ulators [7], [8], [9]. And, while the original manipulability

indices are based on taking the Jacobian of the kinematic

relation between the input angular velocities of the joints and

the generated velocities of the end-effectors, leader-follower

network “links” are not rigid in the same way. As such, we

are required to approximate the interaction dynamics in order

to be able to define manipulability in terms of the relation

between the leader’s and followers’ instantaneous velocities.

The contributions in this paper are twofold. First, we

show how the dynamics of leader-follower networks can be

approximated as rigid-link networks if the followers move

fast enough to maintain given desired distances. Then, we

introduce the definition of manipulability of leader-follower

networks as the index of how the effort of leader agents

effectively affects to the follower velocities (Fig 1).

II. LEADER-FOLLOWER NETWORKS

We consider a network that consists of N agents divided

into two groups: leaders and followers. Let Nℓ and Nf be

the number of leader and follower agents, respectively. Let

xi(t) ∈ R
d (i = 1, ..., Nf , Nf+1, ..., N) be the state of agent

i at time t, where we, without loss of generality, have as-

signed the last indices to the leaders. Then, the overall state,

which we also refer to as the configuration, of the network

is given by x(t) = [xT
1 (t), ..., x

T
N (t)]T = [xT

f (t), x
T
ℓ (t)]

T ,

where xf (t) = [xT
1 (t), ..., x

T
Nf

(t)]T ∈ R
Nfd and xℓ(t) =

[xT
Nf+1(t), ..., x

T
N (t)]T ∈ R

Nℓd are follower and leader

states, respectively.

We consider the situation where the interaction dynamics

are defined through pairwise interactions. We say that when

follower agents i and j are connected, then they share

relative state information, and their pairwise control task is to

maintain their distance ||xi − xj || to a prespecified, positive

value dij . If one of the agents in a connected pair is a leader

agent and the other is a follower, then only the follower

dynamics is designed to maintain the distance.
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Using a graph representation, the agents are described by

nodes V = {v1, ..., vN} and the connections between agents

become edges E ⊆ V × V. Then, the overall network is

described by graph G = (V,E). In this paper, we assume

networks whose underlying graphs are undirected (the inter-

connections are symmetric), static, and connected.

A. Edge-Tension Energy

To formulate the follower dynamics, we use a general,

energy-based definition (e.g., [1]), rather than tying the

results to any specific set of interaction dynamics. In other

words, we introduce the following edge-tension energy

E(xf (t), xℓ(t)) =
1

2

N∑

i=1

N∑

j=1

Eij(xi(t), xj(t)), (1)

where

Eij(xi, xj) =

{
1
2{eij(||xi − xj ||)}

2 (vi, vj) ∈ E

0 (vi, vj) /∈ E,
(2)

where eij : R
+ ∪ {0} → R is a strictly increasing twice

differentiable function such that eij(dij) = 0 (dij > 0),
i.e., the edge-tension energy is zero when the desired distance

between agent i and j is realized.

An example for eij is (see [1] and the references therein)

eij(||xi − xj ||) = ||xi − xj || − dij . (3)

B. Agent Dynamics

Given the velocity of the leaders ẋℓ(t), we assume that

each of the followers tries to maintain (locally) the desired

distances between connected agent pairs by minimizing

the related parts of the edge-tension energy (1) through a

gradient descent direction:

ẋi(t) = −
∑

j∈N (i)

∂Eij(xi(t), xj(t))

∂xi

T

(i = 1, ..., Nf ) (4)

where N (i) = {j ∈ {1, ..., N} | (vi, vj) ∈ E} is the neighbor

set of agent i. Using the facts that Eij = Eji and ∂E
∂xi

=
1
2

∑

j∈N (i)

(
∂Eij

∂xi
+

∂Eji

∂xi

)

, the dynamics of overall followers

in the network can be described by

ẋf (t) = −
∂E(xf , xℓ)

∂xf

T

. (5)

Therefore, using this dynamics, the followers try to decrease

(locally) the overall energy (1) since Ė = ∂E
∂xf

ẋf +
∂E
∂xℓ

ẋℓ =

−|| ∂E
∂xf

||2 + ∂E
∂xℓ

ẋℓ.

III. MANIPULABILITY OF LEADER-FOLLOWER

NETWORKS

To introduce the effectiveness of the input to the network,

we define the manipulability of a leader-follower network

based on the ratio between the norm of follower velocities

and the norm of leader velocities similar to the definition

used by Bicchi, et al. in robot arms [8], [9]. In other words,

this ratio is given by

R(x,E, ẋℓ) =
ẋT
f Qf ẋf

ẋT
ℓ Qℓẋℓ

, (6)

where Qf = QT
f ≻ 0 and Qℓ = QT

ℓ ≻ 0 are positive definite

weight matrices.

Once we successfully define this kind of indices under

a given configuration and topology, it becomes possible

to estimate the most effective inputs to the network by

maximizing (6) with ẋℓ:

ẋℓ,max(x,E) = arg max
ẋℓ

R(x,E, ẋℓ), (7)

Rmax(x,E) = max
ẋℓ

R(x,E, ẋℓ). (8)

Another possible application, albeit beyond the scope of this

paper, is to find an effective, adaptive topology process when

the configuration and input velocities are given.

While the manipulability is an intuitively clear notion, it

needs to be connected to the agent dynamics in the previous

section in a meaningful way, which presents some difficulty.

The reason is that since ẋf = − ∂E
∂xf

T
is a function of xf and

xℓ but not ẋℓ, we need to introduce an integral action to see

the influence of ẋℓ. But, the input velocity ẋℓ can change on

the time interval of the integration. Thus, it is impossible to

calculate an instantaneous measure given by (6). Two choices

present themselves. The first is to change the agent dynamics.

But, we do not want to follow that route since edge-tension

functions (and weighted consensus equations) are used quite

frequently. As such, to define a notion that is practically

relevant, we choose to go with the second option instead,

namely to introduce an approximate notion of manipulability

instead, i.e., to assume that the followers move fast enough

to always maintain the desired distances.

IV. RIGID-LINK APPROXIMATION

A. Approximation

Definition 4.1: The rigid-link approximation of the dy-

namics in a given leader-follower network is the ideal

situation when all the given desired distances {dij}(vi,vj)∈E

are perfectly maintained by the followers (i.e., ||xi − xj || =
dij ∀(vi, vj) ∈ E).

Note that this approximation is valid if the scale of edge-

tension energy E(t) is large enough compared to that of the

leader velocities ẋℓ(t). Note also that, in real situations, E(t)
needs to be greater than zero in order for the followers

to move, while this approximation implies E(t) = 0 ∀t.
Therefore, the situation of Definition 4.1 is never realized

perfectly in actual dynamics as long as leaders are moving.

Nevertheless, this approximation gives us a good estimation

of actual network responses to injected leader inputs unless

leaders move much faster than followers. We will show in

simulation that the approximation is reasonable.

Now, to analyze the approximated dynamics, we first

introduce the method of using the rigidity matrix [10], [11].

If the connections in agent pairs associated with the edges
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can be viewed as rigid links, the distances between connected

agents do not change in time. Assume that the trajectories

of xi(t) are smooth and differentiable, then

d

dt
||xi − xj ||

2 = 0 ∀(vi, vj) ∈ E,

and therefore

(xi − xj)
T (ẋi − ẋj) = 0 ∀(vi, vj) ∈ E. (9)

Here, (9) can be written in the following matrix form

C(x)

[
ẋf

ẋℓ

]

= [Cf (x)|Cℓ(x)]

[
ẋf

ẋℓ

]

= 0, (10)

where C(x) ∈ R
M×Nd, Cf (x) ∈ R

M×Nfd, Cℓ(x) ∈
R

M×Nℓd, and M is the number of edges (i.e., M = |E|).
The matrix C is known as the rigidity matrix, which is

a function of the current configuration x and also of the

network topology E in the underlying graph G. Specifically,

considering that C consists of M ×N blocks of 1× d row

vectors, its (k, ik) and (k, jk) blocks are either (xik −xjk)
T

and −(xik − xjk)
T , respectively, or −(xik − xjk)

T and

(xik − xjk)
T , respectively, where ik and jk are the agents

connected by edge k.

Assume that the leaders move in a feasible manner so

that the approximation in Definition 4.1 stays valid. (We will

discuss this point in Section V.) From the constraint equation

(10) and the property of Cf that will be shown in (17) or (26),

the possible set of ẋf associated with ẋℓ can be obtained as

the following general solution:

ẋf = −C†
fCℓẋℓ + [null(Cf )]p, (11)

where C†
f is the Moore-Penrose pseudo inverse of Cf ,

[null(Cf )] is a matrix whose columns span null(Cf ), and

p ∈ R
nullity(Cf ) is arbitrary. This means that there may exist

infinite possibilities of ẋf (i.e., rotational freedom and/or

formation flexibility) once an input ẋℓ is given.

In this indeterminate case, the definition of the manipula-

bility (6) cannot be determined uniquely, and it seems that we

need to modify the definition of manipulability, for example,

by using the “worst-case approach” [9] that assumes the least

object velocity (follower velocity, in our case). However,

when we approximate the follower dynamics (5) based

on Definition 4.1, it can be proven that ẋf is uniquely

determined by given ẋℓ. This is the key for introducing the

notion of manipulability (6) in leader-follower networks. In

the following paragraphs, we prepare some facts and then

show how ẋf is determined uniquely.

Lemma 4.1: Let A ∈ R
n×n be a negative semidefinite

matrix, which can be decomposed into A = −V ΛV T � 0,

where the i-th column vector of V ∈ R
n×r is an eigenvector

corresponding to eigenvalue λi > 0 (i = 1, ..., r), r =
rank(A), Λ = diag([λ1, ..., λr]), and V TV = Ir. Then, the

following equation is satisfied:
(

lim
s→∞

∫ s

0

eA(s−τ)dτ

)

V = V Λ−1. (12)

Proof: Using the fact that e−V ΛV T t − In =
∑∞

k=1
tk

k!V (−Λ)kV T = V (e−Λt − Ir)V
T with V TV = Ir,

LHS = lim
s→∞

∫ s

0

{V (e−Λ(s−τ) − Ir) + V }dτ

= V lim
s→∞

∫ s

0

e−Λ(s−τ)dτ

= V lim
s→∞

diag

([
1− e−λ1s

λ1
, · · · ,

1− e−λrs

λr

])

= RHS.

Corollary 4.1: Given a linear system ẋ(s) = Ax(s)+Bu
with x(0) = 0 and constant input u ∈ R

m, where A ∈
R

n×n and B ∈ R
n×m are time-invariant matrices that can be

decomposed into A = −GTG and B = GTH , respectively,

where G ∈ R
M×n, H ∈ R

M×m, and M ∈ N (= {1, 2, ..}),
the state converges to lims→∞ x(s) = G†Hu.

Proof: Let G = UΣV T be the singular value decom-

position of G, where U ∈ R
M×r and V ∈ R

n×r are column-

orthogonal matrices (i.e., V TV = Ir and UTU = Ir), Σ ∈
R

r×r is a diagonal matrix, and r = rank(A) ≤ min{n,M}.

Then, the zero-state response of the system converges to

lim
s→∞

x(s) = lim
s→∞

∫ s

0

eA(s−τ)dτBu

=

(

lim
s→∞

∫ s

0

e−V Σ2V T (s−τ)dτV

)

ΣUTHu

= (V Σ−2)ΣUTHu = (V Σ−1UT )Hu.

Note that all the diagonal elements in Σ are non-zero (strictly

positive); hence, Σ−1 exists and G† = V Σ−1UT .

Lemma 4.2: The second-order partial derivatives of the

edge-tension energy (1) with respect to xf and xℓ have

the following form if all the connected agents satisfy their

desired distances (i.e., ||xi − xj || = dij ∀(vi, vj) ∈ E):

∂2E

∂x2
f

= DT
f Df ,

∂2E

∂xf∂xℓ

= DT
f Dℓ, (13)

where ∂2E
∂x2

f

∈ R
Nfd×Nfd, ∂2E

∂xf∂xℓ
∈ R

Nfd×Nℓd, and

Df = WCf , Dℓ = WCℓ. (14)

W ∈ R
M×M is a diagonal matrix whose elements are

[W ]kk =
e′ikjk(dikjk)

dikjk
(k = 1, ...,M), (15)

where e′ij(z) ,
deij(z)

dz
; ik and jk are the two agents

connected by edge k.

Recall that we assumed dij ∈ (0,∞) and that eij(z)
is a strictly increasing twice differentiable function for all

(vi, vj) ∈ E. Therefore, in (15), [W ]kk ∈ (0,∞) exists for

all k ∈ {1, ...,M}.

Proof: Let (vi, vj) ∈ E. The first-order and second-

order derivatives of Eij(xi, xj) in (2) with respect to xi in

a general configuration of xi and xj (i.e., without assuming
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||xi − xj || = dij) become the followings.

∂Eij(xi, xj)

∂xi

= wij(||xi − xj ||)(xi − xj)
T ,

∂2Eij(xi, xj)

∂x2
i

(

= −
∂2Eij(xi, xj)

∂xi∂xj

)

=
w′

ij(||xi − xj ||)

||xi − xj ||
(xi − xj)(xi − xj)

T + wij(||xi − xj ||)Id,

where the equality in the bracket follows from the fact that
∂Eij

∂xi
is a function of xi − xj ; and, let e′′ij(z) ,

d2eij(z)
dz2 ,

wij(z) ,
eij(z)e

′
ij(z)

z
,

w′
ij(z) ,

dwij

dz
=

{e′ij(z)
2 + eij(z)e

′′
ij(z)}z − eij(z)e

′
ij(z)

z2
.

If ||xi − xj || = dij , then

∂Eij
∂xi

= 0,

∂2Eij
∂x2

i

= −
∂2Eij
∂xi∂xj

=

(
e′ij(dij)

dij

)2

(xi − xj)(xi − xj)
T .

Hence, we get ∂2E
∂x2

f

= CT
f W

2Cf and ∂2E
∂xf∂xℓ

= CT
f W

2Cℓ.

Example 4.1: If the edge-tension energy is given by (3),

e′ij(z) = 1 and [W ]kk = (dikjk)
−1 (k = 1, ...,M).

In the following, we assume single-leader networks (i.e.,

Nℓ = 1), and assume that the leader can move arbitrarily.

In cases of Nℓ > 1, we need to restrict the freedom of

the leaders. While we now focus on single-leader cases, we

will later extend the result being derived here to multi-leader

cases in Section V.

Lemma 4.3: If Nℓ = 1, then C†
fCℓ = D†

fDℓ.

Proof: Since all diagonal elements in W are non-zero,

Cf and Df (= WCf ) have the same row space. Therefore,

their projection matrices onto the row space are identical:

C†
fCf = D†

fDf . (16)

Now, since we assume that Nℓ = 1, the matrices Cf and Df

have the following properties, respectively:

Cf [ Id · · · Id
︸ ︷︷ ︸

Nf matrices

]T = −Cℓ, Df [ Id · · · Id
︸ ︷︷ ︸

Nf matrices

]T = −Dℓ. (17)

Using (17) with (16), we get C†
fCℓ = −C†

fCf [Id · · · Id]
T =

−D†
fDf [Id · · · Id]T = D†

fDℓ.

Theorem 4.1: If Nℓ = 1 (i.e., single-leader cases), the

rigid-link approximation of dynamics (5) is given by

ẋf (t) = −C†
fCℓẋℓ(t). (18)

Note that (18) does not depend on a specific choice of

function eij in (2).

Proof: We here see the details of the approximation

described in Definition 4.1. The most part of this proof

can also be applied to the cases of Nℓ > 1. Consider

that the velocity of leaders gives a small displacement,

δxℓ(t), of their configuration from time t to t + δt. Here,

ẋℓ(t) = limδt→0
δxℓ(t)

δt
. Since we assume that the desired

distances are perfectly maintained by the followers, we

introduce another time axis s and track the configuration of

followers, x̃f (t, s) , xf (t)+δx̃f (t, s), to see its convergence

in s → ∞, where the leader configuration x̃ℓ(t, s) ,

xℓ(t)+δxℓ(t) is constant on the axis of s. We can think of s
describing the time evolution when the system is executing

the actual, as opposed to the approximate, dynamics. Then,

we consider the approximation in Definition 4.1 as ẋf (t) =

limδt→0 lims→∞
δx̃f (t,s)

δt
. We also assume that x̃f (t, 0) =

xf (t) and all the desired distances are satisfied at s = 0.

Since the dynamics of the followers is given by (5), the

system equation of δx̃f (t, s) becomes

d

ds
δx̃f (t, s) =

d

ds
x̃f (t, s) = −

∂E(x̃f (t, s), x̃ℓ(t, s))

∂xf

T

=−
∂E(xf (t) + δx̃f (t, s), xℓ(t) + δxℓ(t))

∂xf

T

=−
∂2E(xf (t), xℓ(t))

∂x2
f

δx̃f (t, s)−
∂2E(xf (t), xℓ(t))

∂xf∂xℓ

δxℓ(t),

where we assumed that δxℓ(t) and δx̃f (t, s) are small

enough to use the first-order approximation. We also

used
∂E(xf (t),xℓ(t))

∂xf
= 0. Note that

∂2E(xf (t),xℓ(t))

∂x2

f

and

∂2E(xf (t),xℓ(t))
∂xf∂xℓ

are constant on the time axis of s.

Using Lemma 4.2, we can rewrite the above system

equation as

d

ds
δx̃f (t, s) = −(DT

f Df )δx̃f (t, s)− (DT
f Dℓ)δxℓ(t). (19)

Recall that the initial condition is δx̃f (t, 0) = 0. Therefore,

using corollary 4.1, we know that (19) converges and its

convergence point is given by

δxf (t) , lim
s→∞

δx̃f (t, s) = −D†
fDℓδxℓ(t). (20)

Here, δxf (t) gives the displacement of the followers

caused by the displacement δxℓ(t). Thus, dividing (20) by

δt and taking δt → 0, we obtain

ẋf (t) = −D†
fDℓẋℓ(t). (21)

Finally, if Nℓ = 1, (21) and Lemma 4.3 yield (18).

B. Manipulability with Rigid-Link Approximations

As a corollary to Theorem 4.1, the manipulability (6) of a

leader-follower network under the rigid-link approximation

of the follower dynamics is given by the Rayleigh quotient

R(x,E, ẋℓ) =
ẋT
ℓ J

TQfJẋℓ

ẋT
ℓ Qℓẋℓ

, (22)

where J(x,E) , −C†
fCℓ. Hence, similar to the ma-

nipulability indices in robot-arm manipulators, the maxi-

mum/minimum values of the manipulability index can be

obtained by the eigenvalue analysis. That is, Rmax is the

maximum eigenvalue, λmax, of the generalized eigenvalue

problem JTQfJv = λQℓv, and ẋℓ,max is obtained from its

corresponding eigenvector, vmax, as ẋℓ,max = αvmax (α 6=
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0). Similarly, the minimum value and its corresponding

inputs can be obtained from the minimum eigenvalue, λmin,

and its corresponding eigenvector, respectively.

Now, we introduce a tool to depict effective input direc-

tions (axes) in case of Qℓ ∝ INℓd. Let us first consider

a robot-arm manipulability index defined by ṙT ṙ

θ̇T θ̇
, where θ

and r are the states of joint angles and the end-effector,

respectively. Given a kinematic relation r = f(θ), thus

ṙ = ∂f
∂θ

θ̇, the manipulability ellipsoid can be defined as

ṙT (∂f
∂θ

∂f
∂θ

T
)†ṙ = 1, which depicts the range of end-effector

velocities under inputs θ̇ with norm ||θ̇|| ≤ 1. In contrast,

since what we are interested in is the effective direction (axis)

of inputs, we define a similar ellipsoid not in the space of

follower velocities but in the space of leader velocities:

ẋT
ℓ (J

TQfJ)
†ẋℓ = const., (23)

which we refer to as the leader-side manipulability ellipsoid.

Here, the longest axis of the ellipsoid corresponds to the

eigenvector that gives the maximum eigenvalue of JTQfJ .

V. MULTIPLE LEADERS

In case that multiple leaders exist (i.e., Nℓ > 1), it is

obvious that the leaders cannot take arbitrary velocities one

another under the rigid-link approximation of Definition 4.1.

For instance, when two leaders take opposite directions

for a while, then it becomes impossible to maintain some

of the desired distances since those desired distances have

finite constant lengths. We here show a method to take

multiple leaders into account by preserving the assumption

of Definition 4.1.

To extend the discussion in the previous section, we exploit

the notion of motion feasibility of multi-agent networks [12].

Let us consider the following matrices:
[
Kf

Kℓ

]

, [null(C)], (24)

where Kf ∈ R
Nfd×nc , Kℓ ∈ R

Nℓd×nc , nc = nullity(C), and

[null(C)] is a matrix whose columns span null(C). Then, the

set of a feasible motion of the agents can be represented by
[
ẋf

ẋℓ

]

=

[
Kf

Kℓ

]

q, (25)

where q(t) ∈ R
nc is an arbitrary (time-varying) vector.

Definition 5.1: Given an agent configuration x and their

topology E in the underlying graph G = (V,E), a feasible

leader motion is an instantaneous velocity given by ẋℓ =
K̃ℓq̃, where q̃ ∈ R

rank(Kℓ) is arbitrary and the columns of K̃ℓ

span the column space of Kℓ defined in (24). If rank(Kℓ) =
Nℓd, the leaders can take arbitrary instantaneous velocities,

which we refer to as an arbitrary motion.

Example 5.1: In the configurations of two-leader single-

follower networks shown in Fig. 2, rank(Kℓ) of (a), (b), and

(c) are 4, 3, and 3, respectively, where Nℓ = 2 and d = 2.

Therefore, only the leaders in (a) can take arbitrary motion

under the given configuration.

Once a feasible leader motion is given, we show that the

result in the previous section, i.e. (18), is true even if Nℓ > 1.

x x3x2

x 3

x2

1

1

1

x

x

3x2 x

	B
 	C
 	D


Fig. 2. 2-leader 1-follower networks. (a) and (b) are the same leader-
follower networks with different configurations; (a) and (c) are different
leader-follower networks (same configuration with different assignments).

To generalize Theorem 4.1 for multiple-leader cases, we first

extend (17).

Lemma 5.1: Given a rigidity matrix C = [Cf |Cℓ],

CfKf = −CℓKℓ, DfKf = −DℓKℓ (26)

is always satisfied by arbitrary choices of Kf and Kℓ, where

null(C) is spanned by the column vectors of [KT
f |K

T
ℓ ]

T .

Proof: This is directly obtained from the fact that C =
[Cf |Cℓ] and WC = [Df |Dℓ] have the same null space; thus,

[Cf |Cℓ][K
T
f |K

T
ℓ ]

T = [Df |Dℓ][K
T
f |K

T
ℓ ]

T = 0.

Theorem 5.1: If the velocities of leaders are given by a

feasible leader motion, then (18) is true even if Nℓ > 1.

Proof: From (25), a feasible leader motion can also be

written as a redundant form ẋℓ = Kℓq; there exists a set of

q, {q|Kℓq = K̃ℓq̃}, corresponding to given q̃. Let us pick

one q. Using Lemma 5.1 with (16) and (21), we get

ẋf (t) = −D†
fDℓẋℓ(t) = −D†

fDℓKℓq = D†
fDfKfq

= C†
fCfKfq = −C†

fCℓKℓq = −C†
fCℓẋℓ(t).

Note that (8) needs to be solved 1 with respect to q̃ instead

of ẋℓ to obtain Rmax in case of rank(Kℓ) < Nℓd.

VI. EXAMPLES

In order to verify the approximation of dynamics, we first

compare original dynamics (5) with rigid-link approximated

dynamics (18) using d = 2 (i.e., the state of each agent

corresponds to its two dimensional position in the 2-d plane).

Then, we show how the defined manipulability can be used

to analyze the effectiveness of leader inputs. In the following

examples, dij = 1 is used for all the desired distances. For

simplicity, we used Qf = INfd and Qℓ = INℓd for the

weight matrices in (6).

A. Rigid-Link Approximation

Fig. 3 shows an example of agent motion generated by

(5) and (18), where a single-leader network with N = 7
(Nf = 6 and Nℓ = 1) was used. Uniformly-accelerated

motion ẋℓ(t) = t[cos(π/4), sin(π/4)]T was used for the

leader input. For the follower dynamics (5), the edge-tension

energy (3) multiplied by 200 was used, which ensures the

connected agents almost satisfy the desired distances.

We see that the follower motion is almost identical be-

tween the original and approximated dynamics. When we

used the edge-tension energy with smaller scale, the distances

between connected agents vary more. This is prominent when

the leader takes large velocity (e.g., the last part of the

1Eigenvalue problem (K̃T
ℓ JTQfJK̃ℓ)q̃ = λ(K̃T

ℓ QℓK̃ℓ)q̃ can be used.
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Fig. 3. Comparison of agent motion between original dynamics Eq. (5)
(left) and rigid-link approximated dynamics Eq. (18) (right). The filled circle
in each figure is the leader agent.

example). However, the rough characteristics of the agent

motion are still preserved in many cases even if the distances

between connected agents vary.

B. Manipulability

Fig. 4 shows an example of the temporal change of

the manipulability index during a single leader moves with

ẋℓ(t) = [1, 0]T , where N = 3 (Nf = 2 and Nℓ = 1)

and |E| = 2. From the leader-side manipulability ellipsoids

depicted in Fig. 4 (a), we see that the effective direction was

the horizontal direction in the first and the last parts of the

motion. Fig. 4 (b) shows the maximum and minimum square-

root eigenvalues of JTJ . From these figures, we see that the

vertical direction was once the most effective around t = 1.3,

when the three agents were lined in the vertical direction.

VII. CONCLUSIONS

In this paper, we defined the notion of manipulability in

leader-follower networks by using rigid-link approximation

of network dynamics, where every connected agent pairs

keep their desired distances. This enables us to find the

relation between instantaneous velocities of leaders and

followers, which is crucial to define the approximate ma-

nipulability indices in leader-follower networks.
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