
  

  

Abstract— In this paper, a wavelet-based neural network is 

proposed for the control of nonlinear systems. Activation 

functions of neural network nodes are determined based on the 

wavelet transform. The controller can efficiently compensate 

for the undesired effects of hard nonlinearities such as 

saturation and/or dead zone of control input. Compared with 

standard neuro-controllers, the structure of the controller is 

definite and simple. The proposed controller is localizable and 

has a systematically chosen structure, which improves the close-

loop performance. An off-line algorithm determines the number 

of nodes. In addition, an on-line algorithm adjusts the 

parameters of wavelet bases and network weights. Back 

propagation algorithm with a momentum term is used for 

updating the weights and parameters of activation functions. 

This controller reduces the quantity of network parameters, 

calculation cost and convergence time of online algorithms with 

respect to the conventional neural network. Also, the controller 

is able to control unstable and MIMO systems. To illustrate the 

capability and performance superiority of the proposed 

controller, two nonlinear systems are controlled and the 

corresponding results are compared. 

  Index Terms— Wavelet transform, neural network, 

nonlinear system control, adaptive activation functions. 

I. INTRODUCTION 

ONTROL of nonlinear systems is an important branch in 

control engineering. Control methods based on NN 

(neural networks) are effective tools for identification and 

control of nonlinear uncertain systems [1]-[3] since classic 

control methods need a mathematical model of plant and 

performance of control is reduced with modeling error of 

nonlinear system. NN can be used for determining an 

appropriate model by utilizing input-output data of the plant; 

however, neural networks are not able to localize and 

modeling error converge slowly. Using an appropriately 

chosen adaptive mechanism, the parameters of NN can be 

tuned online in order to approximate the unknown nonlinear 

model. The application of the Lyapunov’s direct method 

shows that the adaptive neural control can guarantee the 

stability of closed loop system [4]. Tracking error in the 

neural controller is a direct result of the function 

approximation error [5]. It is proven that a neural network is 

able to approximate any nonlinear function with the 

perspecified accuracy, but the selected network structure is 

very important [6]. Nevertheless, the selected structure is 
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very important to meet the desired accuracy. A trial and error 

method is often used for structure selection. 

Neural networks have several important disadvantages: no 

localizability, lack of a systematic method for structure 

selection and slow convergence of approximation. To 

overcome the lack of localization and global approximation 

of neural networks, the global activation function is 

substituted with a localized and compact support function 

such as radial base functions. However, in these local neural 

networks, only small spaces of input space can map to the 

output space. A wavelet network can overcome the above 

mentioned disadvantages because wavelet functions are 

compact-support and able to be localized in both time and 

space domains. Also, since different functions are used for 

the node’s activation functions, wavelet networks can map 

any input space to the output space.  Different activation 

functions can be determined based on wavelet decomposition 

techniques such as multi-resolution approximation, cut-down 

discrete wavelet transform and continuous wavelet 

transform. 

Recently, various studies have used wavelet transform and 

wavelet networks for the identification and control of 

nonlinear systems [7]-[11]. It has been mentioned that 

wavelet network is a universal approximator and that it can 

approximate any nonlinear function with prespecified 

accuracy using a linear combination of wavelet functions [4]. 

In [4], an adaptive wavelet controller (AWC) is used to 

control only SISO systems with a partially known structure 

or input-to-state-stable; in other words, 2L  and ∞L  stable 

systems. In this controller, activation functions are 

determined based on the multi-resolution analysis and are 

not adjustable. In addition, the convergence of tracking error 

is very slow. 

In this paper, a certain class of wavelet network is 

proposed for control of the nonlinear systems. This 

controller is a wavelet network in three layers, but the 

connection weights of only one layer will be adjusted. In this 

controller, the scaled and translated mother wavelet 

functions are utilized as the activation function of nodes 

based on the continuous wavelet transform. At first, the 

network structure is definite and only the number of nodes is 

unknown. An algorithm is used for determining the node’s 

number, which found the number of wavelet bases and the 

network structure proper for the identification of the 

nonlinear system. The supervised gradient descent method 

and on-line back propagation (BP) algorithm is applied in 
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order to adjust the scale and translation of mother wavelet 

functions (shape of wavelet functions) and the connection 

weights of the network. The proposed controller has several 

advantages. Due to the ability of wavelet functions in 

localization in both time and space domains, any arbitrary 

functions can be approximated more effectively than those of 

the conventional neural networks, especially functions with 

sharp changes [12], [13]. These wavelet networks have fewer 

coefficients to be adjusted than NN so that these parameters 

can converge much faster with less error in order to control 

or identify nonlinear systems [14]. In this control scheme, 

the network structure is definite and a proper number of 

wavelet bases (number of hidden layers’ nodes) can be 

obtained. In contrast, NN structures need to be determined 

by trial and error methods. The suggested controller can be 

used to control unstable and MIMO systems. In general, this 

wavelet network can be an appropriate candidate for 

replacing neural networks in various control schemes. 

The paper is organized as follows. In Section II, the 

preliminaries on the wavelet theory for neural networks is 

presented. In Section III, network structure and learning 

algorithms for the proposed controller is depicted. The 

illustrative examples and comparative results are given in 

Section IV and, in Section V, the conclusion is provided.of 

nonlinear systems is an important branch in  control 

engineering. Control methods based on NN (neural 

networks) are effective tools for identification and control of 

nonlinear uncertain systems [1]-[3].  

II. WAVELET THEORY FOR NEURAL NETWORKS  

From [15], we have following discussion:  

“Choose the function )()( 2 ℜ∈Lxϕ  which is also called 

the mother wavelet and satisfies the following conditions: 

• The finite energy condition: 
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• The admissibility condition: 
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where )(ˆ wϕ  is the Fourier transform of )(xϕ . Then, the 

corresponding family of dilated and translated wavelets can 

be defined by:  
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where a and b are, respectively, the dilation and translation 

parameters. By selecting a  and b properly, }(x){ j,kϕ  can be 

called affine wavelet which may constitute a frame of )(L2 ℜ , 

i.e.  
2

),(

2

,

2

2

,∑
∈

≤≤
Zkj

kj fBffA ϕ                 (4) 

where )(Lf 2 ℜ∈ , dt f(t) (t)f,
R

kj,kj, ∫= ϕϕ  is inner product 

and A>0 and B>0 are frame bounds. If A=B, 
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kj, ∈ϕ  is the tight frame. In this case, it leads 

to: 
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while A=B=1, } Z n)(m, ),, 2∈(x){ m,nϕ  becomes an 

orthonormal basis. In such a case, 
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It should be emphasized that the wavelet transform holds 

the advantage of variable time-frequency localization. The 

lattice points of the mother wavelets { }(x)kj,ϕ are located on 

(kbaj,±a-jωo); therefore, the width of the time-window of 

(x)kj,ϕ  can be changed with the variation of the frequency. 

Thus, this property is very useful for the analysis of non-

stationary signals and the nonlinear function learning. An 

often-quoted example of a wavelet is the second derivative 

of a Gaussian function:  
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This function has the excellent localization in time and 

frequency and satisfies the admissibility condition. 

In terms of the results shown above, the so-called wavelet 

basis function (WBF) neural networks can be defined as 

follows: 
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where ℜ∈iw , d

ia ℜ∈ , d

ib ℜ∈ , d is the dimension of 

input and K is the number of wavelet bases. Moreover, the 

values of ai and bi construct a regular lattice in wavelet bases 

and frames” [14], [15].  

For a multi-dimensional case, tensor product of one-

dimension wavelet can be used: 
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The network input is T

nxxx ],...,[ 21=x , where n is the input 

dimension. In general, any function can be approximated by 

a wavelet network whose activation function nodes are the 

scaled and translated mother wavelet, (x)abϕ : 

( ) Rb,Ra,baxa)x(ab ∈∈−= +ϕϕ        (10) 

The normalization factor a  is introduced so that the 

energy of )(xabϕ  be the same as that of )(xϕ . 
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If system output is multi-dimensional )( mℜ∈y :   
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Therefore, wavelet network has three layers: wavelet layer 

for computing wavelet function as activation functions of 

nodes (11), product layer for computing wavelet bases (12) 

and output layer for computing outputs (15). 

The control system configuration is shown in Fig. 1. 

 

 

 
Fig. 1.  The proposed control system configuration 

III. NETWORK STRUCTURE AND LEARNING ALGORITHMS  

In this section, an algorithm is introduced to determine the 

network size; then learning rules are presented for adjusting 

network parameters. 

A. Determination of 'umber of Wavelet Bases 

Regarding the approximation function (15), wavelet 

network structure is clear and consists of three layers: two 

hidden layers (wavelet layer and product layer) and one 

output layer. Only the number of wavelet bases in the 

wavelet layer and product layer (K) is unknown. So, the 

wavelet network has n inputs, n*K nodes in wavelet layer, K 

nodes in product layer and m nodes in output layer, where n 

is input dimension and m is plant output dimension. K must 

be defined off-line and then network parameters will be 

adjusted on-line. The following algorithm determines K. At 

first, K=1 is assumed. A sequence of random input (u) is 

applied to plant and plant output is obtained. The 

corresponding input (x) is applied to the network and all 

wavelet bases (ψj) are computed. If the network has proper 

wavelet bases, at least a base is would be fired and new bases 

would not be required. Otherwise, a wavelet would be added 

and translation and scaling factors for the new wavelet would 

be randomly considered. In other words,  compact support 

property of wavelets, if the input is occurred in the dead zone 

of wavelet functions, no wavelet functions would be fired, 

the number of wavelet bases would not be appropriate and 

new wavelets would be required. This algorithm would 

continue until all the sequence input is applied. In this 

algorithm, the input and output vectors are normalized. For 

more details, see the illustrated algorithm in Fig. 2.  

B. The Parameters Learning Rules 

In Section A, the number of wavelet bases is defined and, 

in this section, adjusting rules of network parameters are 

introduced which include connection weights (W) for output 

layer and wavelet functions parameters (a, b). The error 

back-propagation (EBP) with momentum term algorithm is 

used for the online update of controller parameters. 
Error is defined as 

)()( xyxye d−=                (16) 

where )(xy is plant output and )()( xyxy refd = . The cost 

function E can be defined as  
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The adjusting rules for the network parameter are 
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So, connection weights can be updated as 
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Fig. 2.  The algorithm for determining the number of wavelet bases and 

network size 

   

 

Similarities, the updating rules for ija  and ijb  are as 

follows: 

)()()1( kakaka ijijij ∆+=+          (25) 

)()()1( kbkbkb ijijij ∆+=+          (26) 

where 

)1(k∆a.α
(k)a

E
η(k)a ij

ij

aij −+
∂

∂
−=∆          (27) 

)1(k∆b.α
(k)b

E
η(k)b ij

ij

bij −+
∂

∂
−=∆       (28) 

and 

( )

))exp()(

)((

ˆ.)(

'''

'

2

ij

2

ijij
2

1

ij

ij
2

1

ijijia

i

ij

ia

ij

aij

x
2

1
3xxa

xa
2

1
we

y
a

e
a

E
ka

−−

+−=

∂
∂

−=
∂
∂

−=

− ϕη

ηη∆

            (29) 

( )

)exp()(

ˆ.)(

''' 2

ij

2

ijij
2

1

ijijib

i

ij

ia

ij

bij

x
2

1
x3xawe

y
b

e
b

E
kb

−−−=

∂
∂

−=
∂
∂

−=

η

ηη∆

   

(30) 

where ijiij
'
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IV. ILLUSTRATIVE EXAMPLE 

In this section, two examples are given which illustrate the 

advantages of the proposed controller over the neural 

network controller and adaptive wavelet controller (AWC) in 

[4].  

A. Comparison of Wavelet based and Conventional 'eural 

'etwork Controllers 

Here, an example is given that is controlled by the 

proposed controller and conventional neural network. Then, 

these controllers are compared. This example demonstrates 

the benefits of wavelet network over conventional neural 

network for nonlinear control systems. 

Consider a temperature control system as  
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where sT

s eTA
α−=)(  and )1)(/()( sT

s eabTB
α−−= .The 

parameters in this simulation are 400151.1 −= ea , 
367973.8 −= eb , 40.0γ = , 30=sT  and the initial 

temperature is 25 
o
C [16]. In this control system, input u  is 

saturated as:  

This open loop system is unstable.  The control system is 

shown in Fig. 3. In the proposed control scheme, the plant 

was controlled successfully by implementing the off-line 

algorithm to determine the number of wavelet bases and on-

line algorithms for adjusting the controller parameters. For 

demonstrating the ability and benefit of the wavelet 

controller, the plant is controlled by a four-layer neural 

network. In this controller, a bipolar sigmoid function is used 

as the activation function and error back-propagation 

algorithm and a momentum term is used for updating 

connection weights for both controllers. In order to compare 

the performance of these controllers, a criterion is used as 

follows: 
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For discrete cases: 

∑
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 The performance of two controllers is compared and the 

results are presented in Figs. 4, 5 and Table I.    
 

 
Fig. 3.  The control scheme for temperature control problem 
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Fig. 4.  Performance of the proposed controller: (a) Step response, (b) 

Control signal (TH=0.8, K=2, structure: 1-2-2-1) 
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Fig. 5.  Performance of the four-layer neural network controller: (a) Step 

response, (b) Control signal (NN structure: 2-5-5-1) 

 

 

A. Comparison of Wavelet based 'ero-controller and 

AWC 

In order to compare the proposed controller and the 

adaptive wavelet controller (AWC) proposed in [4], a 

nonlinear system which was formerly controlled by AWC is 

controlled by the wavelet-based controller. The nonlinear 

non-affine dynamic system is constructed as follows: 

(35) 
2xe1

1
)]ucos(u2[

)xsin()x5(x

−+
+

++=&

     

(34) 

where 0x(0) = . The tacking error profile by AWC is shown 

in Fig. 6 [4]. This nonlinear system is controlled by the 

proposed controller and the tracking error curve with unit 

reference is shown in Fig. 7. 

V. CONCLUSION 

In this study, a wavelet network was proposed for 

controlling nonlinear systems with hard non-linearity. In this 

control scheme, neural network disadvantages such as 

network structure selection as trial-and-error, lack of 

localization and slow convergence are avoided. This 

controller improves the control performance and reduces the 

calculation cost of updating parameters by reducing the 

number of adjustable parameters. An off-line algorithm was 

proposed to determine the size of network and an on-line 

updating rule based on the error back propagation with a 

momentum term was used for adjusting the controller 

parameters including the shape of wavelet bases and output 

layer weights. 

TABLE I 

PERFORMANCE COMPARISON OF THE PROPOSED CONTROLLER WITH THE 

CONVENTIONAL NEURAL NETWORK  

Controller 

Type 
TH a 

Controller 

structure 

Number of 

Parameters 

Control 

Performance 

 (J) 

Wavelet 

Network 

0.8 1-2-2-1 6 15.4 

0.6 1-3-3-1 9 11.2 

0.4 1-7-7-1  21 8.5 

      

Neural 

Network 

 2-5-5-1 40 115.3 

 2-10-10-1 130 69.1 

 2-15-15-1 270 47.6 

In both controllers, all initial values are considered uniformly random in   

(-1, 1) only a∈  (0,1).  

The results are as mean 10 independent run. 
a TH is threshold value in the algorithm Fig. 2. 
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Fig. 6.  Performance of the adaptive wavelet controller (AWC) for a step 

response: Tracking error [4] 
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Fig. 7.  Performance of the proposed controller (a) Step response, (b) Error 

profile. (K=5, structure: 2-5-5-1) 

 

The suggested controller may be used to control unstable 

and MIMO systems. To illustrate the performance and 

effectiveness of the proposed controller, an unstable 

nonlinear system was controlled as an example. In addition, 

this system was controlled by a conventional neural network. 

The comparison of the control performance between the 

proposed controller and neural network controller in a 

computer simulation demonstrated that the wavelet-based 

controller could result in a better control performance, 

quicker convergence and fewer parameters than the NN 

controller for controlling nonlinear systems, especially for 

the systems with hard nonlinearity. In general, this wavelet 

network can be an appropriate candidate and can replace 

neural networks in various control schemes. In addition, 

another nonaffine nonlinear system was controlled by the 

proposed controller and simulation results illustrated the 

advantages of the controller over AWC which were proposed 

in [4].  
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