
Rank Deficiency and Superstability of Hybrid Systems
with Application to Bipedal Robots

Eric Wendel and Aaron D. Ames

Abstract— The objectives of this paper are to study the rank
properties of flows of hybrid systems, show that they are fun-
damentally different from those of smooth dynamical systems,
and consider applications that emphasize the importance of
these differences. In contrast with smooth dynamical systems,
the rank of a solution to a hybrid system, a hybrid execution, is
always less than the dimension of the space on which it evolves
and falls within easily-computed and possibly distinct upper
and lower bounds. Our main contribution is the derivation of
conditions for when an execution fails to have maximal rank,
i.e., when it is rank deficient. Given the importance of periodic
behavior in many hybrid systems applications, for example in
bipedal robots, these rank deficiency conditions are applied to
the special case of periodic hybrid executions. Our secondary
contribution is the derivation of superstability conditions for
when a periodic execution has rank equal to 0 and is therefore
completely insensitive to perturbations in initial conditions. The
results are illustrated in application to a planar kneed biped.

I. INTRODUCTION

Hybrid systems consist of both continuous and discrete
components and, as such, are capable of modeling a wide va-
riety of physical systems, i.e., systems that evolve with both
continuous and discrete dynamics. Although hybrid systems
model a wide variety of applications, we may not in general
assume that they share the same fundamental properties as
smooth dynamical systems. Moreover, the interaction of the
smooth and discrete components of a hybrid system can
result in solution behavior that is impossible for smooth
dynamical systems to exhibit. For example, the existence
and uniqueness properties of solutions of hybrid systems —
called hybrid executions — are not the same as for smooth
systems [1], [2]; therefore, one may not regard the stability
of hybrid system equilibria in the same way as the stability of
smooth system equilibria [3]. Recent work [4] has also shown
that Poincaré maps for hybrid systems are fundamentally
different from Poincaré maps for smooth systems.

The first contribution of the present work is the extension
of the results in [4] to arbitrary, non-periodic hybrid execu-
tions. In particular, we show that the rank of an execution
will always fall between possibly distinct upper and lower
bounds, and that the upper bound is always less than the
dimension of the space on which the execution evolves.
This result is in marked contrast with smooth dynamical
systems, where the rank of a solution is strictly equal to
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the dimension of the space. Our main contribution, however,
is the derivation of conditions describing when an execu-
tion fails to have maximal rank, that is, when it is rank
deficient. The secondary contribution of this work emerges
from application of the main result to periodic solutions of
hybrid systems. We show that when an execution is periodic
and rank deficient it may be possible for the system to
be superstable. Recall that a discrete dynamical system is
said to be superstable when it is completely insensitive to
perturbations in initial conditions [5]. This occurs when
the linearization of the discrete dynamical system is equal
to 0 at a superstable equilibrium point. By considering
superstability from within the context of rank deficiency,
we obtain a condition describing when a periodic hybrid
execution is completely insensitive to perturbations in its
initial conditions.

The superstability conditions presented here could enable
the design of controllers that reduce the sensitivity of hybrid
systems to perturbations. In [6], finite-time controllers and
the properties of feedback-linearized systems are used to
reduce the stability analysis of a planar biped to an interval
of the real line. We foresee that, in analogy to this work, our
rank deficiency conditions could be used to enable the design
of (feedback-linearizing) controllers that reduce the stability
analysis of complex hybrid systems to lower-dimensional
spaces.

We begin by briefly reviewing definitions from the stan-
dard theory of smooth dynamical systems in Section II. This
standard theory applies directly to the smooth components
of a hybrid system, leading to straightforward techniques for
linearizing executions of hybrid systems, in Section III. This
allows us to derive necessary and sufficient conditions for the
rank of an arbitrary hybrid execution to fall below its upper
bound. These are the rank deficiency conditions. In Section
IV we specialize the rank deficiency conditions to periodic
hybrid systems and illustrate our results by analyzing the
rank deficiency of a planar kneed biped.

II. SMOOTH DYNAMICAL SYSTEMS

In this section we review standard results [7] on the trajec-
tories of smooth dynamical systems that will be necessary to
our analysis of hybrid systems in Section III. In particular we
review how to convert the flow, which depends continuously
on time, into a discrete map.

A smooth dynamical system is a tuple (M,f), where M is
a smooth manifold with tangent bundle TM and f : M →
TM is a smooth vector field such that for the canonical
projection map π : TM → M , π ◦ f = Id, where Id is
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identity on M . We assume that M ⊂ Rn, in which case
we write the vector field in coordinates as ẋ = f(x). If
g : M → N is a smooth map between manifolds, its Jacobian
Dg(x) : TxM → Tg(x)N is a linear map between tangent
spaces.

Flows and variational equations. An integral curve of
the differential equation ẋ = f(x) is a trajectory c :
I ⊂ [0,∞) → M with initial condition c(t0) = x0, for
I = [t0, t1]. The flow of a smooth vector field ẋ = f(x)
is a smooth map φ : I × U → U ′ ⊂ M , where U is
some neighborhood of x0 = c(t0), satisfying x0 = φ0(x0),
c(t0 + t+ s) = φt+s(x0) = φt ◦φs(x0), and φ−r = (φr)

−1.
The flow, with t considered a parameter, is a diffeomorphism
φt : U → U ′, for all t ∈ I .

The space derivative or fundamental matrix of φt(x0)
is simply the partial derivative of the flow with respect
to initial conditions, Dxφt(x0) := ∂φt(x0)/∂x0, (cf. [7]–
[9]). It satisfies the time-varying, matrix-valued differential
equation called the variational equation:

Φ̇(t) = A(t) Φ(t), (1)

where Φ(t) = Dxφt(x0) and A(t) := Df
(
φt(x0)

)
. As

an integral curve, Φ(t) is nonsingular for all t and has the
property that φ̇t(x0) = Φ(t)Φ−1(0) φ̇0(x0) = Φ(t) φ̇0(x0).
That is, with x1 = φt(x0), f(x1) = Φ(t) f(x0). Note in
particular that Φ(0) = Idn, the n × n identity matrix. In
general, φt(x0) and Φ(t) must be obtained by simultaneous
numerical integration, as described in [8], [10].

Flows to sections. We are interested in the properties of
integral curves that intersect with particular submanifolds of
M called local sections.

A local section is a submanifold S ⊂M that is transverse
to the flow, such that f(x) 6∈ TxS for all x ∈ S. One can
always construct a local section through any point of the flow
that is not an equilibrium point [11]. In what follows we
consider local sections defined by zero-level sets of smooth
functions: S = {x ∈ M | h(x) = 0 and Lfh(x) 6= 0},
where h : M → R is smooth and Lfh(x) = Dh(x)f(x) is
the Lie derivative.

The time it takes a flow to reach a local section from initial
conditions is a well-defined map.

Lemma 1 (Hirsch & Smale, 1974): Let S be a local sec-
tion, x0 ∈ M and x1 = φt(x0) ∈ S. There exists a unique,
C1 function τ : U0 → [0,∞) called the time-to-impact map
such that for U0 a sufficiently small neighborhood of x0,
φτ(x)(x) ∈ S for all x ∈ U0.

We define the map φτ : U0 → V by φτ (x) := φτ(x)(x)
for all x ∈ U0, where U0 is defined as in the Lemma and
V := φτ (U0) ∩ S is the image of φτ in S.

Rank of flows to sections. The flow φt : U → U ′, with t
considered a fixed parameter, is a diffeomorphism, so its total
derivative, Dφt, will always have full rank. This is easily
confirmed by computing Dφt(x) = Dxφt(x) = Φ(t), which
is nonsingular. The total derivative of the flow to a section

φτ : U0 → V ⊂ S, on the other hand, is [4], [7], [8]

Dφτ (x0) = Φ(τ(x0)) + φ̇τ (x0)Dτ(x0)

=

(
Idn−

f(x1)Dh(x1)

Lfh(x1)

)
Φ(τ(x0)), (2)

where x0 ∈ U0, x1 = φτ (x0), Idn is the n × n identity
matrix and h defines the local section S. It was shown in
[4] that the rank of (2) is equal to the dimension of the local
section S, and that flows to sections satisfy:

(S1) For any local section S of c(t0) there exists a suf-
ficiently small neighborhood U0 of c(t0) such that
φτ (U0) ⊂ S.

(S2) By Theorem 1 and Corollary 1 of [4], there exists a local
section S0 through c(t0) such that for V0 := U0 ∩ S0

and V := φτ (U0) ∩ S, the restricted map φτ : V0 → V
is a diffeomorphism with rank n− 1.

These properties will be revisited for hybrid systems.

III. HYBRID DYNAMICAL SYSTEMS

Our objective is to understand the rank properties of
arbitrary hybrid executions in order to enable the design
of controllers that improve the stability properties of hybrid
systems. We begin by revisiting the results of the previous
section from the perspective of hybrid systems.
Hybrid systems and executions.

Definition 1: A hybrid system is a tuple H =
(Γ, D,G,R, F ), where
• Γ = (Q,E) is a graph such that Q = {q1, . . . , qk}

is a set of k vertices and E = {e1 = (q1, q2), e2 =
(q2, q3), . . .} ⊂ Q×Q. With the set E we define maps
sor : E → Q which returns the source of an edge (the
first element in the edge tuple), and tar : E → Q,
which returns the target of an edge (second element in
the edge tuple).

• D = {Dq}q∈Q is a collection of smooth manifolds
called domains, where Dq is assumed to be embedded
submanifolds of Rnq with dim(Dq) = nq ≥ 1.

• G = {Ge}e∈E is a collection of guards, where Ge is
assumed to be an embedded submanifold of Dsor(e).

• R = {Re} is a collection of reset maps which are
smooth maps Re : Ge → Dtar(e).

• F = {fq}q∈Q is a collection of Lipschitz vector fields
on Dq , such that ẋ = fq(x).

The continuous and discrete dynamics of a hybrid system
are described using a notion of solution called a hybrid
execution.

Definition 2: A hybrid execution is a tuple χ =
(Λ, I, ρ, C), where
• Λ = {0, 1, 2, 3, . . . } ⊆ N is an indexing set.
• I = {Ii}i∈Λ such that with |Λ| = N , Ii = [ti, ti+1] ⊂

R and ti ≤ ti+1 for 0 ≤ i < N − 1. If N is finite then
IN−1 = [tN−1, tN ] or [tN−1, tN ) or [tN−1,∞), with
tN−1 ≤ tN .

• ρ : Λ→ Q is a map such that eρ(i) := (ρ(i), ρ(i+1)) ∈
E.
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• C = {ci}i∈Λ is a set of continuous trajectories where
each ci is the integral curve of the vector field fρ(i) on
Dρ(i). Specifically, ci(t) = φ

ρ(i)
t−ti(ci(ti)), where φρ(i)t is

the flow associated with fρ(i).

We require the consistency conditions:

• For i < |Λ| and for all t ∈ Ii, ci(ti) = φi0(ci(ti)),
ci(t) ∈ Dρ(i) and ci(ti+1) ∈ Geρ(i) .

• For i < |Λ| − 1, Reρ(i)(ci(ti+1)) = ci+1(ti+1).

Assumptions. We only consider executions that are deter-
ministic and non-blocking [1] and are sufficiently “well-
behaved,” described as follows. Let i < |Λ| − 1 and e =
(ρ(i), ρ(i+ 1)).

(A1) The execution does not have any equilibria, i.e.,
fρ(i)(ci(t)) 6= 0, for all t ∈ Ii.

(A2) Re has constant rank re and Re(Ge) is a subman-
ifold of Dtar(e).

(A3) Ge is a codimension-1 local section of fsor(e).
(A4) Re(Ge) is transverse to ftar(e) whenever

dim(Dsor(e)) ≤ dim(Dtar(e)), that is, ftar(e)(y) 6∈
TyRe(Ge) for all y ∈ Re(Ge).

Assumption (A4) allows us to tighten the lower bound on
the rank of our executions.

Properties. We may extend properties (S1-2) of flows to
sections from Section II to every integral curve ci ∈ C,
i < |Λ|, satisfying (A1-4).

(H1) For any local section Si ⊂ Ge of ci(ti+1) there
exists a sufficiently small neighborhood U i0 of ci(ti)
such that φρ(i)τ (U i0) ⊂ Si.

(H2) There exists a local section Si0 through ci(ti) such
that for V i0 := U i0 ∩ Si0 and V i := φ

ρ(i)
τ (U i0) ∩ Si,

the restricted map φρ(i)τ : V i0 → V i is a diffeomor-
phism with rank equal to dim(Dρ(i))− 1.

These properties are generically satisfied by any flow that
reaches a guard, and will be necessary to our results on rank
deficiency in the following subsections.

Fundamental hybrid executions. The rank of a hybrid
execution is determined by the rank of its linearization, or
total derivative, at every point. This motivates the following
definition.

Definition 3: The fundamental hybrid execution associated
with a given execution χ is a tuple Fχ = (Λ, I, ρ, C,W )
where Λ, I , ρ, and C are given in Definition 2 and W =
{Φi}i∈Λ is a set of continuous trajectories, where each Φi
is an integral curve of the variational equation:

Φ̇i(t− ti) = Dfρ(i)(ci(t)) Φi(t− ti). (3)

Furthermore, every Φi ∈ W has the property φ̇it(ci(ti)) =
Φi(t− ti) φ̇i0(ci(ti)).

The fundamental execution allows us to compute the total
derivative of the flow on each domain. Given an execution
χ, we integrate (3) on Dρ(i), i < |Λ|, to obtain Fχ and then

use (2) to compute the total derivative of φρ(i)τ ,

Dφρ(i)τ (x0) = Φi(τ(x0)) + fρ(i)(x0)Dτ(x0) (4)

=

(
Idni −

fρ(i)(x1)Dhi(x1)

Dhi(x1) fρ(i)(x1)

)
Φi(τ(x0)),

where, for ease of notation, we set x0 = ci(ti), x1 =
ci(ti+1), hj : Dρ(i) → R defines the local section Si ⊂
Geρ(i) , τ(x0) = ti+1 − ti is the time it takes the flow to
reach the guard and ni = dim(Dρ(i)).
Rank of edge maps. Let H be a hybrid system and χ its
hybrid execution with initial condition in the guard, c0(t0) ∈
Geρ(0) . This initial condition is related to a point ci(ti+1) in
the guard Geρ(i) , for some i < |Λ|, by the partial function
ψρ(i) : V 0 → V i defined by

ψρ(i) = φρ(i)τ ◦Reρ(i−1)
◦ · · · ◦ φρ(1)

τ ◦Reρ(0) . (5)

The neighborhoods V 0 of c0(t0) and V i of ci(ti+1) are
defined as in (H2). We may think of the partial function as
describing the progress of the execution through the hybrid
system H. Our analysis of the rank properties of χ is aided
by identifying the terms in (5) that can be associated with
each edge in the graph Γ of H.

Definition 4: Let i < |Λ| − 1. For every edge e =
(ρ(i), ρ(i + 1)) ∈ E, the edge map ψe : V i → V i+1

takes the guard of one domain to the next and is defined
ψe = φ

tar(e)
τ ◦Re. Using the edge map, (5) becomes

ψρ(i) = ψeρ(i−1)
◦ · · · ◦ ψeρ(0) , (6)

Dψρ(i) = Dψeρ(i−1)
◦ · · · ◦Dψeρ(0) . (7)

Let {Ai}ki=1 be a collection of matrices, with Ai ∈
Rni+1×ni . Repeated application of Sylvester’s inequality
shows that the composition

∏k
i=1Ai = A1 ◦A2 ◦ · · · ◦Ak is

bounded above and below:

rank

(
k∏
i=1

Ai

)
≤ min
i∈{1,...,k}

{rank(Ai)}, (8)

rank

(
k∏
i=1

Ai

)
≥

k∑
i=1

rank(Ai)−
k−1∑
i=1

ni. (9)

Recall the rank-nullity theorem [12]: for every linear map
A : Rn → Rm, rank(A)+nty(A) = n, where nty(A) is the
dimension of the nullspace of A. The following Lemma is a
consequence of rank-nullity. We omit proofs of the following
two results for the sake of brevity.

Lemma 2: Let A and B be linear maps. Then

nty(B ◦A)− nty(A) = dim(ns(B) ∩ im(A)).

Lemma 2 and the rank-nullity theorem allow us to com-
pute the rank of the execution by determining the rank of
every edge map in ψρ(i).

Lemma 3: Let i < |Λ|−1. For every edge e = (ρ(i), ρ(i+
1)), the rank of the edge map ψe : V i → V i+1 is bounded
from below by rank(ψe) ≥ rank(Re)− 1.

However, if Re(Ge) is transverse to ftar(e) then
rank(ψe) = rank(Re).
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Lemma 3 indicates that the rank of an edge map is only
known a priori whenever transversality of the image of the
reset map with the vector field in the target domain is known.
As we will see, transversality in the target domain allows us
to tighten the lower bound on the rank of the execution.
Rank of hybrid executions. The following definitions allow
us to track the progress of the execution through the graph
Γ of H.

Definition 5: Given i < |Λ|−1, the set of traversed edges
is Ei = {eρ(0), . . . , eρ(i−1)}, and the set of visited vertices
is the set of all source and target vertices of Ei,

Qi = sor(Ei) ∪ tar(Ei) = {ρ(0), . . . , ρ(i)}.

Definition 6: Let m be the number of non-transverse
edges for which we do not assume Re(Ge) is transverse
to ftar(e). Then m is given by

m =
∣∣{e ∈ Ei : dim(Dsor(e)) > dim(Dtar(e))}

∣∣ .
We now show that the rank of an execution falls between

possibly distinct upper and lower bounds. The following
result is the extension of Theorem 4 in [4] to arbitrary, non-
periodic hybrid systems and executions, and so we omit the
proof for reasons of space.

Theorem 4: Let H be a hybrid system with execution χ
satisfying assumptions (A1-4). For any i < |Λ| − 1,

rank(ψρ(i)) ≤ min
e∈Ei
{rank(Re)} ≤ min

q∈Qi
{dim(Dq)− 1},

rank(ψρ(i)) ≥
∑
e∈Ei

rank(Re)−m−
∑

q∈sor(Ei)−{ρ(0)}

(dim(Dq)− 1) ,

and where m, Ei and Qi are given in Definitions 5 and 6.
If the upper and lower bounds on rank in Theorem 4

are distinct then there must be a mechanism that causes an
execution to fail to have maximal rank. We determine this
mechanism in the next section.
Rank deficiency of hybrid executions. Our objective is to
understand the causes of rank deficiency. As we will see, rank
deficiency can result in superstable hybrid systems that are
completely insensitive to perturbations in initial conditions.
We begin by formally defining the rank deficiency of a hybrid
execution.

Definition 7: Let H be a hybrid system with execution
χ satisfying assumptions (A1-4). We say the execution
is rank deficient at a point ci(ti+1), i < |Λ| − 1, if
ψρ(i)(ci(ti+1)) does not have maximal rank, that is, if
rank

(
ψρ(i)(c0(t0))

)
< r, where r is the upper bound on

rank(ψρ(i)) from Theorem 4.
The following Theorem is the main result of this paper.
Theorem 5: Let H be a hybrid system with execution χ

satisfying (A1-4), initial condition x0 = c0(t0) and i < |Λ|−
1. Then ψρ(i) is rank deficient if and only if∑
e∈Ei−{eρ(0)}

dim(ns(Dψe)∩ im(Dψsor(e))) > rank(ψeρ(0))− r,

where r is the upper bound on ψρ(i) from Theorem 4.

Proof: The proof will follow from recursively applying
the rank-nullity theorem and Lemma 2 to the sequence of
linear maps (7).

First, realize that any two linear maps defined on the same
domain are related by the rank-nullity theorem. In particular,
it is an immediate consequence of rank-nullity that for all j
such that i ≥ j ≥ 2,

dim(Tc0(t0)V
0) = rank(Dψeρ(0)) + nty(Dψeρ(0))

= rank(Dψρ(j)) + nty(Dψρ(j)),

where the statement is obvious for j = 1 since ψρ(1) =

φ
ρ(1)
τ ◦ Reρ(0) = ψeρ(0) . Thus, the rank-nullity of ψρ(i) is

certainly equal to the rank-nullity of ψρ(i−1):

rank(ψρ(i)) + nty(ψρ(i)) = rank(ψρ(i−1)) + nty(ψρ(i−1)).

Applying Lemma 2 to the above equation while noting that
ψρ(i) = ψeρ(i−1)

◦ ψρ(i−1) yields

rank(ψρ(i)) = rank(ψρ(i−1))

− dim(ns(Dψeρ(i−1)
) ∩ im(Dψρ(i−1))).

If we continue in this vein by relating the rank-nullity of
ψρ(j) with ψρ(j−1) for j = i− 1, . . . , 2, we obtain

rank(ψρ(i)) = rank(ψeρ(0))

−
∑

e∈Ei−{eρ(0)}

dim(ns(Dψe) ∩ im(Dψsor(e))).

The result follows by observing that the execution is rank
deficient if and only if r − rank(ψρ(i)) > 0, where r is the
upper bound on rank from Theorem 4.

Remark 1: The left-hand side of the inequality in the state-
ment of Theorem 5 shows that rank deficiency is primarily
affected by the intersection of the nullspace of every reset
map with the tangent space over the execution. To see this,
realize that for any given e ∈ E, the nullspace of the edge
map ψe is the union of the tangent spaces

ns(Dψe) =
(

ns(Dφtar(e)
τ ) ∩ im(DRe)

)
∪ ns(DRe).

Therefore, because the nullspace of the flow to the
guard on the target is small, i.e., nty(Dφ

tar(e)
τ ) =

dim(span{ftar(e)}) = 1, in general the nullspace of every
edge map is primarily determined by ns(DRe).

Remark 2: The right-hand side of Theorem 5 shows that
the rank of the first edge map in the execution significantly
affects rank deficiency. Since r = mine∈Ei{rank(Re)},
rank(ψeρ(0)) ≥ r and the inequality will not be satisfied
unless enough intersections occur in the left-hand side, or
the intersections are large enough. This is a consequence
of the fact that perturbations to initial conditions propagate
differently through the execution depending on the starting
domain Dρ(0).
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IV. APPLICATION TO PERIODIC HYBRID SYSTEMS

We are interested in applying the general results obtained
thus far to periodic solutions of hybrid systems. To this end,
we restrict our attention to hybrid systems with cyclic graphs
and consider the rank properties of hybrid periodic orbits.

Definition 8: A hybrid system on a cycle is a hybrid
system H = (Γ, D,G,R, F ) where Γ = (Q,E) is a directed
cycle such that Q = {q1, . . . , qk} is a set of k vertices and
E = {e1 = (q1, q2), e2 = (q2, q3), . . . , ek = (qk, q1)} ⊂
Q×Q.

Definition 9: A hybrid periodic orbit O = (Λ, I, ρ, C)
with period T is an execution of the hybrid system on a
cycle H such that for all n ∈ Λ,
• ρ(n) = ρ(n+ k),
• In + T = In+k,
• cn(t) = cn+k(t+ T ).

Remark 3: Since O is periodic we may index the elements
Sn0 , Sn, Un0 , V n0 and V n defined in (H1-2) using the vertex
set Q of the graph Γ of H rather than the indexing set Λ
(e.g., one can take Sn = Sn+k).

Definition 10: The fundamental hybrid periodic orbit as-
sociated with O is the fundamental execution
FO = (Λ, I, ρ, C,W ), with the fundamental matrix solu-
tions Φn ∈W such that Φn(t− tn) = Φn+k(t+T − tn+k).

Extending equations (5) and (6) to periodic orbits yields
the following definition for a Poincaré map of a hybrid
system.

Definition 11: Let O be a given hybrid periodic orbit of
H with initial condition x∗ = c0(t0) ∈ Dρ(0), where ρ(0) =
q = ρ(k) and so c0(t0) = φqτ (ck(tk)). The hybrid Poincaré
map Pq : V q → Sq is given by

Pq(x
∗) = ψρ(k) = ψeρ(k−1)

◦ · · · ◦ ψeq (10)

It is well-known that the stability of hybrid periodic orbits
is related to the stability of the hybrid Poincaré map. In
particular, the following result is a corollary to Theorem 1
of [13] and the results of [4].

Corollary 6: Let H be a hybrid system with hybrid pe-
riodic orbit O satisfying (A1-4). Then x∗ = Pq(x

∗) is an
exponentially stable fixed point of the hybrid Poincaré map
Pq : V q → Sq if and only if O is exponentially stable.

As a discrete dynamical system, the stability of the
Poincaré map is determined by the eigenvalues of its deriva-
tive evaluated at a fixed point. The following is a corollary
to Theorem 4.

Corollary 7: The hybrid Poincaré map Pq : V q → Sq is
exponentially stable if and only if all eigenvalues of DPq(x∗)
fall within the unit circle. In particular, Pq(x∗) has only
rq = rank(DPq(x

∗)) many nontrivial eigenvalues, where

rq ≤ min
e∈E
{rank(Re)} ≤ min

q∈Q
{dim(Dq)− 1},

rq ≥
∑
e∈E

rank(Re)−m−
∑

q∈sor(E)−{q}

(dim(Dq)− 1) ,

m is the number of non-transverse edges in the cycle, and
E and Q are the edge and vertex sets of Γ.

It follows that the stability of a rank deficient Poincaré
map is determined by fewer eigenvalues than a Poincaré map
with maximal rank.

We now consider the case when a Poincaré map is
completely rank deficient. Recall that a superstable discrete
dynamical system [5] is characterized by the derivative of the
system equal to 0. When this occurs, the discrete dynamical
system is said to be completely insensitive to perturbations
in initial conditions. This notion adapts to periodic hybrid
systems as follows.

Definition 12: The hybrid periodic orbit O with initial
condition x∗ and its associated Poincaré map Pq are said
to be superstable at x∗ if rank(DPq(x

∗)) = 0.
All eigenvalues of a superstable Poincaré map are equal

to 0, implying that not only is it exponentially stable, it is
completely insensitive to perturbations in initial conditions.
We obtain the following Corollary to Theorem 5.

Corollary 8: The Poincaré map Pq is superstable if and
only if the lower bound on rank in Corollary 7 is equal to
0 and ∑

e∈E−{eq}

dim(ns(Dψe) ∩ im(Dψsor(e))) = rank(ψeq ).

From the Corollary it is easy to see that single-domain
hybrid systems are rank deficient if and only if the reset map
has rank equal to 0, in which case it is superstable. Thus, the
planar compass biped, a single-domain hybrid system studied
in [14], [15], will never be rank deficient nor superstable. On
the other hand, it is certainly possible to construct simple
multi-domain hybrid systems that exhibit superstability, like
the application first presented in [4].

In the following example we illustrate how one might use
our results to achieve rank deficiency of a two-domain planar
kneed biped.

A. Planar kneed biped

The planar kneed biped walks on flat ground with locking
knees using controlled symmetries [15], and was studied in
[4], [16]. It may be considered the augmentation of the planar
compass biped with an additional domain where the stance
leg is locked and the non-stance leg is unlocked at the knee.
See Figure 1.

As a two-domain hybrid system on a cycle, H =
(Γ, D,G,R, FG) has graph structure Γ =

{
Q = {u, l}, E =

{eu = (u, l), el = (l, u)}
}

. In the unlocked domain Du, the
non-stance calf rotates at the knee and the biped is a 3-link
mechanism, so the dynamics evolve on the tangent bundle to
the configuration space Θu := T3 with chosen coordinates
θu = (θs, θns, θk)T , where the stance leg angle is θs, non-
stance thigh angle is θns, and non-stance calf angle is θk.
Since the non-stance thigh and calf are locked together in
the locked domain Dl, the biped is a 2-link mechanism with
dynamics on the tangent bundle to Θl := T2, coordinates
given by θl = (θs, θns)

T . The dynamics on Du are specified
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Fig. 1. Diagram of a planar kneed biped. The annotations indicate
dimensions, point-mass locations and measuring conventions for stance, calf
and thigh angles from the vertical.

by the controlled vector field fu and on Dl by f l, with
FG = {fu, f l}. We transition from Du to Dl when the knee
locks, and from Dl to Du when the foot strikes the ground.
The reset maps R = {Reu , Rel} model these transitions as
perfectly plastic impacts; see [6], [16], [17] for details. Note
that since dim(Du) = 4 and dim(Dl) = 6, the transition to
the unlocked domain has full rank, rank(DRel) = 3, since
it is a map to a higher-dimensional domain. On the other
hand, we find that rank(DReu) = 4 and nty(DReu) = 1.

Define the Poincaré map for initial conditions in the locked
domain by Pl = φlτ ◦ Reu ◦ φuτ ◦ Rel = ψeu ◦ ψel , and in
the unlocked domain by Pu = φuτ ◦ Rel ◦ φlτ ◦ Reu = ψel ◦
ψeu . Corollary 7 implies that 2 ≤ rank(Pu) ≤ 3 and 0 ≤
rank(Pl) ≤ 3, so the stability of the biped is determined by
at most 3 eigenvalues. Immediately we see that superstability
might be possible in Dl, but sensitivity to perturbations in
initial conditions cannot be removed from Du.

In [4], exactly 3 stable eigenvalues were found for a
given execution χ of this hybrid system by computing the
eigenvalues of DPu and DPl using Fχ, as described after
Definition 3 in Section III.

We use Theorem 5 to assess the rank deficiency of
Pu for any given execution χ. First, realize that since
transversality of Reu(Geu) is not guaranteed, Lemma 3
implies rank(ψeu) ≥ rank(Reu) − 1 = 3. However, since
rank(Dφlτ ) = 3, it follows that Pu is rank deficient if and
only if dim(ns(Dφuτ ◦ DRel) ∩ im(Dφlτ ◦ DReu)) > 0.
Since DRel is full rank, we conclude that rank-deficiency
of Pu is achieved when im(Dφlτ ) intersects with the 1-
dimensional subspace ns(Dφuτ ◦DRel). On the other hand,
since rank(ψel) = rank(Rel) by Lemma 3 and (A4), rank
deficiency of Pl requires dim(ns(Dφlτ ◦DReu)∩ im(Dφuτ ◦
DRel)) > 0 by Theorem 5. Rank deficiency occurs when
im(Dφuτ ) aligns with either of the 1-dimensional subspaces
ns(Dφlτ ◦ DReu) or ns(DReu). We have thus determined
that our objective in each case is to align the linearization
of the flow with a 1-dimensional nullspace.

V. CONCLUSION

Rank deficiency emphasizes fundamental differences be-
tween hybrid systems and smooth systems and implies a
depth to hybrid systems that is not yet fully understood. We

have shown that the rank of a hybrid execution is always less
than the dimension of the space on which solutions evolve,
and that the upper and lower bounds on rank are known a
priori. The rank deficiency condition is determined by the
alignment of the tangent space to the execution with the
nullspace of a reset map. We applied our results to a planar
kneed biped and determined which tangent spaces needed to
align to induce rank deficiency.

A future research direction is to employ existing tech-
niques, such as those in [18], to design hybrid systems con-
trollers that directly induce rank deficiency and superstability,
and hence improve robustness to perturbations.
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