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Abstract— The optimal decentralized control of coupled sub-
systems with control sharing is investigated. The system consists
of n-coupled subsystems, each with a local control station. The
evolution of a subsystem is controlled by the actions of all
control stations. However, each control station observes only
the state of its subsystem and the one-step delayed actions of all
control stations. At each time, a cost that depends on the state of
all subsystems and the actions of all control stations is incurred.
The system has non-classical information structure; since each
control station observes the delayed control actions of all other
control stations, the system is said to have control-sharing
information structure. We use the approach of Mahajan et al.
(2008), to obtain the structure of optimal control stations and a
dynamic programming decomposition, which is similar to the
dynamic program for centralized partially observed systems.
The structure of optimal control stations is simpler than the
general structure proposed in Mahajan et al. (2008), and,
consequently, so is the dynamic programming decomposition.

I. INTRODUCTION

A. Motivation

In this paper, we investigate one of the simplest ar-
chitectures for networked control systems—a collection of
dynamically coupled subsystems, each with a local control
station. A local control station directly observes the state
of its subsystem, but does not observe the state of other
subsystems. However, the control actions of any control sta-
tion are observed by all control stations with one-step delay.
Such a control sharing happens naturally in applications
like queueing networks and multi-terminal communication,
or when control actions are communicated over a broadcast
medium like the Internet.

The above model provides a modular architecture for
networked control systems. In this paper, we investigate the
optimal design of such a decentralized control system. The
system has a non-classical information structure. In general,
the optimal design of decentralized control systems with
non-classical information structure is notoriously difficult.
Nonetheless, we show that the salient features of the model—
each local control observes the state of its subsystem; the
dynamics of a subsystem does not depend on the state of
other subsystems; and all control actions are shared between
the control stations—simplify the design of such a system.

B. Notation

We denote random variables with upper case letters,
their realization with lower case letters, and their space of
realizations by script letters. For example, for a random
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variable X , x denotes its realization and X denotes its
space of realizations. Subscripts denote time and superscripts
denote the subsystem. For example, X i

t denotes the state of
subsystem i at time t . The short hand notation X i

1Wt denotes
the vector .X i

1; X
i
2; : : : ; X

i
t /. Bold face letters denotes the

collection of variables at all subsystems. For example, Xt

denotes .X1
t ; X

2
t ; : : : X

n
t /. The notation X�i

t denotes the
vector .X1

t ; : : : ; X
i�1
t ; X iC1

t ; : : : ; Xn
t /.

�.X / denotes the probability simplex on the space X .
P.A/ denotes the probability of an event A, and EŒX�

denotes the expectation of a random variable X . Let N
denote the set of natural numbers.

C. Model and Problem Formulation

Consider a discrete-time networked control system with
n subsystems. Let Zt 2 Z denote the global state of the
system and X i

t 2 X i , i D 1; : : : ; n, denote the local state
of subsystem i at time t . The initial global state Z1 has
a distribution PZ . Conditioned on the initial global state
Z1, the initial local state of all subsystems are independent;
initial local state X i

1 is distributed according to PX i jZ , i D
1; : : : ; n. Let Xt WD .X1

t ; : : : ; X
n
t / denote the local state of

all subsystems.
A control station is co-located with each subsystem. Let

U i
t 2 U i denote the control action of control station i and

Ut WD .U
1
t ; U

2
t ; : : : ; U

n
t / denote the collection of all control

actions.
At time t , control station i , i D 1; : : : ; n, perfectly

observes the global state Zt , the local state X i
t of subsystem

i , and the one-step delayed control actions Ut�1 of all control
stations—thus, the system has a control sharing information
structure.

Control station i , i D 1; : : : ; n, chooses a control action
U i

t 2 U i
t based on all the data available to it. Thus,

U i
t D g

i
t .Z1Wt ; X

i
1Wt ;U1Wt�1/ (1)

where Z1Wt WD .Z1; : : : ; Zt /, X i
1Wt WD .X i

1; X
i
2; : : : ; X

i
t / and

U1Wt�1 WD .U1;U2; : : : ;Ut�1/. The function gi
t is called the

control law of control station i .
The global state and the local state of each subsystems are

coupled through the control actions; the global state evolves
according to

ZtC1 D f
0

t .Zt ;Ut ; W
0
t / (2)

while the local state of subsystem i , i D 1; : : : ; n, evolves
according to:

X i
tC1 D f

i
t .Zt ; X

i
t ;Ut ; W

i
t / (3)
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W i
t 2 W i , i D 0; 1; : : : ; n, is the plant disturbance with

distribution PW i . The processes fW i
t ; t D 1; : : : g, i D

0; 1; : : : ; n, are assumed to be independent of each other and
also independent of the initial state .Z1;X1/ of the system.

Note that the updated local state of subsystem i depend
only the previous local state of subsystem i and previous
global state but is controlled by all control stations.

The subsystems are also coupled through cost. At time
t , the system incurs a cost ct .Zt ;Xt ;Ut / that depends on
the global state, the local state of all subsystems, and the
actions of all control stations. The system runs for a time
horizon T . The collection gi WD .gi

1; g
i
2; : : : ; g

i
T / of control

laws at control station i is called the control strategy of
control station i . The collection g WD .g1; g2; : : : ; gn/ of
control strategies of all control stations is called the control
strategy of the system. The performance of a control strategy
g is measured by the expected total cost incurred by that
strategy, which is given by

J.g/ WD E
h TX

tD1

ct .Zt ;Xt ;Ut /
i

(4)

where the expectation is with respect to a joint measure
of .Z1WT ;X1WT ;U1WT / induced by the choice of the control
strategy g.

We are interested in the following optimal control prob-
lem:

Problem 1: Given the distributions PZ , PX i jZ and PW i

of the initial global state, initial local state, and plant distur-
bance of subsystem i , i D 1; : : : ; n, a horizon T , and the
cost functions ct , t D 1; : : : ; T , find a control strategy g that
minimizes the expected total cost given by (4).

D. Literature overview

The model described above has a non-classical informa-
tion structure [1], [2] because no control station knows the
information available to all other control stations. There are
a few general methods to obtain a dynamic programming
decomposition of systems with non-classical information
structure: for finite horizon systems, a framework was pre-
sented by Witsenhausen [3]; for two-agent finite and infinite
horizon systems, a framework was presented by Mahajan [4].
We are interested in a solution framework that works for
multiple control stations and extends to infinite horizon
systems.

Given the difficulty of a general framework for dynamic
programming for systems with non-classical information
structures, researchers have focused attention on specific
non-classical information structures. One common theme has
been sharing of information between the control stations.
Examples include:

1) Systems in which the state of the plant is observed
by all control stations after a delay. Such systems are
said to have a delayed state observation information
structure and were investigated in [5], who obtained the
structure of optimal control strategies and a dynamic
programming decomposition for such systems.

2) Systems in which the (possibly noisy) observations and
control actions of a control station are observed by all
control stations with a delay. Such systems are called
delayed (observation) sharing information structure.
For such systems, the structure of optimal control
strategies and a dynamic programming decomposition
were obtained in [6] (for one-step delay) and in [7]
(for general delay).

3) Systems in which the control action of a control station
is observed by all control stations with a delay. Such
systems are said to have a control sharing information
structure. One-step delayed control sharing with con-
tinuous valued control actions was considered in [8],
[9], who exploited the continuous nature of the control
actions by embedding the observations densely in the
controls. This information embedding transforms the
systems to a one-step delayed observation sharing
information structures and incurs an arbitrarily small
loss in performance. However, the resulting control
laws are not continuous.

4) System in which the state of the plant is observed peri-
odically by all control stations. Such systems are said
to have a periodic sharing information structure and
were investigated in [10], who obtained the structure of
optimal control strategies and a dynamic programming
decomposition.

5) Systems in which the belief of each control station
on the state of the plant is shared between all control
stations after a delay. Such systems are said to have a
belief sharing information structure. Systems in which
the sharing delay is one were considered in [11], who
obtained the structure of optimal control strategies and
a dynamic programming decomposition for the system.

6) Systems in which the observations of the control sta-
tions is split between common observations and private
observations in such a way that the size of the private
observations does not increase. Such systems were
investigated in [12], who obtained the structure of the
optimal control stations and a dynamic programming
decomposition for the system.

The model considered in this paper has a one-step delayed
control sharing information structure. We want a solution
approach that will also work when the control actions are
finite valued (as is the case in network controlled systems).
So, the technique proposed by Bismut [8] to embed the
observations in the control actions does not necessarily work.

E. Main result

In the model of Section I-C, the data available at control
station i increases with time. Consequently, the domain of
the control laws of the form (1) increases with time, which
makes it difficult to implement the control laws. In this paper,
we show that without loss of optimality we can restrict
attention to control laws whose domain does not increase
with time.

For simplicity of exposition, in the sequel we will assume
that the alphabets Z , X i , U i , and W i , i D 1; : : : ; n, are
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finite. The results extend to general alphabets under suitable
technical conditions.

Definition 1: Let …i
t , i D 1; : : : ; n, t D 1; : : : ; T , denote

the posterior probability of the local state of subsystem i

given the past history of global state and control actions of
all the control stations, i.e., for any x 2 X i , the component
x of …i

t is given by

…i
t .x/ WD P.X

i
t D xjZ1Wt ;U1Wt�1I g/

…i
t is a random variable taking values in �.X i /. � i

t denotes
the realization of …i

t and ………t denotes .…1
t ;…

2
t ; : : : ;…

n
t /.

Theorem 1 (Structure of control laws): In Problem 1, re-
stricting attention to control stations of the form

U i
t D g

i
t .X

i
t ; Zt ;………t / (5)

is without any loss of optimality.
In centralized stochastic control problems, the dynamic

program consists of a sequence of nested optimality
equations—one for each time step. The optimality equation
at time t finds the best control action for the current
(information) state.

In contrast, the dynamic programming decomposition in
decentralized stochastic control is coarser. The dynamic
program still consists of a sequence of nested optimality
equations. However, as different control stations have differ-
ent information, the optimality equations cannot find the best
control action for all control stations. To over this limitations,
we exploit the structure of optimal control laws derived in
Theorem 1. We split the control law at control station i into
two parts: first a coordinator chooses function sections

Di
t .�/ D g

i
t .�; Zt ;………t /

based on common data .Zt ;………t / for all control stations i D
1; : : : ; n. Then, each control station uses the prescription Di

t

and its local data X i
t to generate a control action

X i
t D D

i
t .X

i
t /:

In the dynamic programming decomposition, the optimality
equation at time t finds the best function sections Dt D

.D1
t ; : : : ;D

n
t /. Such a dynamic programming decomposition

is given below.
Theorem 2 (Dynamic programming decomposition):

For a particular realization zt of Zt and ��� t of ………t , an
optimal choice dt D .d1

t ; : : : ; d
n
t / of function sections

Dt D .D1
t ; : : : ;D

n
t / is given by the solution of the

following nested optimality equations

VT .zT ; ���T / D min
dT

E
h
cT .XT ;UT /

ˇ̌̌
ZT D zT ;

………T D ���T ;DT D dT

i
(6)

and for t D T � 1; T � 2; : : : ; 1,

Vt .zt ; ��� t / D min
dt

E
h
ct .Zt ;Xt ;Ut /

C VtC1.Ft .��� t ; ZtC1;Ut ;dt /
ˇ̌̌
Zt D zt ;

………t D ��� t ;Dt D dt

i
(7)

where Ft is a function that will be defined later in Lemma 7.
The arg min at each step in (6) and (7) gives an optimal
choice for the function section Dt . Denote the arg min at
.zt ; ��� t / by d�t .zt ; ��� t /. Then, the optimal control law g

�;i
t at

time t is given by

g
�;i
t .xi

t ; zt ; ��� t / D d
�;i
t .zt ; ��� t /.x

i
t /: (8)

The rest of this paper is organized as follows. We prove
Theorems 1 and 2 in Sections II and III. We argue how
to extend the results to infinite horizon in Section IV and
conclude in Section V.

II. PROOF OF STRUCTURAL RESULT

The proof of Theorem 1 proceeds in two stages. First,
we show that the past values of the local state X i

1Wt�1 are
irrelevant at control station i at time t . Thus, shedding
this irrelevant information at each control station does not
entail any loss of optimality. Second, we show that the
common data .Z1Wt ;U1Wt�1/ observed by all control stations
may be replaced by an appropriate sufficient statistic. This
replacement results in the structural result of Theorem 1.

A. Shedding of irrelevant information

The result of this section depends on the following result.
Lemma 3: Consider the model of Section I-C for an arbi-

trary but fixed choice of control strategy g. Then, conditioned
on the history of global state and control actions, the local
states of all subsystems are independent. Specifically, for any
realization zt 2 Z , xi

t 2 X i and ui
t 2 U i of X i

t and U i
t ,

i D 1; : : : ; n, t D 1; : : : ; T , we have

P.X1Wt D x1Wt jZ1Wt D z1Wt ;U1Wt D u1Wt /

D

nY
iD1

P.X i
1Wt D x

i
1Wt jZ1Wt D z1Wt ;U1Wt D u1Wt / (9)

This is proved in Appendix I.
An immediate consequence of the above result is the

following:
Lemma 4: Consider the model of Section I-C for an

arbitrary but fixed choice of control strategy g. Define Ri
t D

.X i
t ; Z1Wt ;U1Wt�1/. Then,
1) The process fRi

t ; t D 1; : : : ; T g is a controlled Markov
process with control action U i

t , i.e., for any xi
t ; Qx

i
t 2

X i , zt ; Qzt 2 Z , ui
t ; Qu

i
t 2 U i , r i

t D .xi
t ; z1Wt ;u1Wt�1/,

Qr i
t D . Qx

i
t ; Qz1Wt ; Qu1Wt�1/, i D 1; : : : ; n, and t D 1; : : : ; T ,

P.Ri
tC1 D Qr

i
tC1 jR

i
1Wt D r

i
1Wt ; U

i
1Wt D u

i
1Wt /

D P.Ri
tC1 D Qr

i
tC1 jR

i
t D r

i
t ; U

i
t D u

i
t /

2) The instantaneous conditional cost simplifies as fol-
lows:

EŒct .Zt ;Xt ;Ut / jR
i
1Wt D r

i
1Wt ; U

i
1Wt D u

i
1Wt �

D EŒct .Zt ;Xt ;Ut / jR
i
t D r

i
t ; U

i
t D u

i
t �

The proof is omitted due to lack of space.
In light of Lemma 4, pick any control station i , i D

1; : : : ; n, arbitrarily fix the choice of control strategy gi for
all other control stations, and consider the subproblem of
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finding an optimal strategy for control station i in Prob-
lem 1. In this subproblem, control station i has access
to Ri

1Wt , chooses U i
t , and incurs an expected instantaneous

cost EŒct .Xt ;Ut / jR
i
1Wt ; U

i
1Wt �. Lemma 4 implies that the

optimal choice of control strategy gi is a Markov decision
process. Thus, using Markov decision theory [13], we get
the following (recall that Ri

t D .X
i
t ; Z1Wt ;U1Wt�1/):

Proposition 5: In Problem 1, restricting attention to con-
trol stations of the form

U i
t D g

i
t .X

i
t ; Z1Wt ;U1Wt�1/ (10)

is without loss of optimality.

B. Sufficient statistic for common data

Now consider Problem 1 with control strategies of the
form (10). Split the data at each control station into two parts:
the common data .z1Wt ;u1Wt�1) that is observed by all control
stations and the local (or private) data xi

t that is observed by
only control station i . Note that the size of the local data does
not increase with time. Mahajan et al. [12] showed that this
particular subclass of non-classical information structures is
tractable. Thus, Proposition 5 transforms Problem 1 to a form
for which a solution technique is known.

The solution proposed in [12] proceeds in the following
steps:

1) Formulate a stochastic control problem from the point
of view of a coordinator that observes the common
data .Z1Wt ;U1Wt�1/. We call this system the coordinated
system.

2) Show that the coordinated system is equivalent to the
original model. That is, any strategy in the coordinated
system is implementable in the original model and vice
versa.

3) Show that by suitable expansion of the state-space,
the coordinator’s problem is a MDP (Markov decision
process). Then, use results from Markov decision the-
ory to find the structure of optimal control strategy
and a dynamic programming decomposition for the
coordinated system.

For completeness, we briefly describe these steps below.
See [12] for complete details.

Step 1: The coordinated system

Consider a coordinated system that consists of a coordina-
tor and the n control stations. The coordinator observes the
common data .Z1Wt ;U1Wt�1/ and chooses function sections
Di

t W X i 7! U i , i D 1; : : : ; n according to

Dt D ht .Z1Wt ;U1Wt�1/ (11)

where Dt WD .D
1
t ; : : : ;D

n
t /. The function ht .�/ is called the

coordination law.
All control stations i , i D 1; : : : ; n, are passive. They use

the prescription Di
t of the coordinator and act as follows:

U i
t D D

i
t .X

i
t / (12)

The system dynamics and the cost remain unchanged. The
system dynamics are given by (2)–(3) and the instantaneous
cost at time t is ct .Zt ;Xt ;Ut /.

The collection h D .h1; : : : ; hT / is called a coordination
strategy. The performance of a coordination strategy is
measured by the expected total cost incurred by that strategy,
which is given by

OJ .h/ D E
h TX

tD1

ct .Zt ;Xt ;Ut /
i

(13)

where the expectation is with respect to a joint measure of
.Z1WT ;X1WT ;U1WT / induced by the choice of the coordination
strategy h.

In the coordinated system, we are interested in the follow-
ing optimal control problem.

Problem 2: Given the distributions PZ , PX i jZ and PW i

of the initial global state, initial local state, and plant distur-
bance of subsystem i , i D 1; : : : ; n, a horizon T , and the
cost functions ct , t D 1; : : : ; T , find a coordination strategy
h that minimizes the total cost given by (13).

Step 2: Equivalence between the two models

Proposition 6: Problem 1 with control stations of the
form (10) is equivalent to Problem 2. Specifically, for any
control strategy g of the form (10) for Problem 1 there is a
coordination strategy h for Problem 2 such that OJ .h/ D J.g/.
Conversely, for any coordination strategy h for Problem 2,
there is a control strategy g for Problem 1 such that J.g/ D
OJ .h/.

Proof: Given a control strategy g of the form (10) for
Problem 1, pick the coordination strategy h according to:

hi
t .z1Wt ;u1Wt�1/.�/ D g

i
t .�; z1Wt ;u1Wt�1/ (14)

where hi
t denotes the i -th component of ht . Then, for any

realization of the primitive random variables Z1, X1, W i
1WT ,

i D 0; 1; : : : ; n, the system variables .Z1WT ;X1WT ;U1WT / have
the same realizations in Problem 1 and Problem 2. Hence,
OJ .h/ D J.g/.

Conversely, given a control strategy h of Problem 2, pick
a control strategy g for Problem 1 according to

gi
t .x

i
t ; z1Wt ;u1Wt�1/ D h

i
t .z1Wt ;u1Wt�1/.x

i
t / (15)

By a similar argument as before, we can show that J.g/ D
OJ .h/.

Step 3: The coordinated system as a MDP

In this section, we show that the optimization problem
at the coordinator is a MDP (Markov decision process).
First, recall the definition of …t given in Definition 1. The
dependence of …t on the control strategy g, or equivalently
the dependence on the coordination strategy h, is only though
the function sections D1Wt�1. Thus, for any x 2 X i , the
component x of …i

t is given by

…i
t .x/ WD P.X

i
t D xjZ1Wt ;U1Wt�1ID1Wt�1/:

Let � i
t denote the realization of …i

t and ………t denote
.…1

t ;…
2
t ; : : : ;…

n
t /.
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Lemma 7: There exists a deterministic function Ft such
that

………tC1 D Ft .………t ; ZtC1;Ut ;Dt / (16)
The proof follows from the law of total probability and Bayes
rule.

Lemma 8: Consider the coordinated system for an arbi-
trary but fixed coordination strategy h. Then

1) The process f.Zt ;………t /, t D 1; : : : ; T g, is a controlled
Markov process with control action Dt , i.e., for any
zt 2 Z , � i

t 2 �.X /, BtC1 � �.X 1/ � � � � � �.X n/,
and any choice d i

t of Di
t , for i D 1; : : : ; n and t D

1; : : : ; T , we have that

P.ZtC1 D ztC1;………tC1 2 BtC1 jZ1Wt D z1Wt ;

………1Wt D ���1Wt ;D1Wt D d1Wt /

D P.ZtC1 D ztC1;………tC1 2 BtC1 jZt D zt ;

………t D ��� t ;Dt D dt / (17)

2) The instantaneous conditional cost simplifies as fol-
lows:

EŒct .Zt ;Xt ;Ut / jZ1Wt D z1Wt ;………1Wt D ���1Wt ;

D1Wt D d1Wt �

D EŒct .Zt ;Xt ;Ut / jZt D zt ;………t D ��� t ;Dt D dt �

(18)
Proof: Part 1) follows from the update equation (2)

for the global state Zt , the behavior (12) of the control
stations in the coordinated system, and the update (16) of
the information state ………t . Part 2) follows from the definition
of ………t and the behavior (12) of the control stations in the
coordinated system.

Lemma 8 shows that the choice of optimal function sec-
tions Dt is a Markov decision process with state .Zt ;………t /.
Thus, using Markov decision theory [13], we get the follow-
ing:

Proposition 9: In Problem 2, restricting attention to coor-
dination strategies of the form

Dt D ht .Zt ;………t / (19)

is without loss of optimality. Due to the equivalence with
Problem 1 (see Proposition 6), we get that in Problem 1,
restricting attention to control strategies of the form

U i
t D g

i
t .X

i
t ; Zt ;………t / (20)

is without loss of optimality.
The second part of Proposition 9 proves Theorem 1.

III. PROOF OF DYNAMIC PROGRAMMING
DECOMPOSITION

Lemma 8 shows that the choice of optimal function sec-
tions Dt is a Markov decision process with state .Zt ;………t /.
Thus, using Markov decision theory [13], we get the follow-
ing dynamic programming decomposition

Proposition 10: Define Vt W Z ��.X 1/� � � � ��.X n/ 7!

R as follows: for any z 2 Z and � i 2 �.X i /, define

VT .z; ���/ D min
d
E
h
ct .XT ;UT /

ˇ̌̌
ZT D z;

………T D ���;DT D d
i

(21)

and for t D T � 1; T � 2; : : : ; 1,

Vt .z; ���/ D min
d
E
h
ct .Zt ;Xt ;Ut /

C VtC1.Ft .���;ZtC1;Ut ;d/
ˇ̌̌
Zt D z;………t D ���;Dt D d

i
(22)

where Ft is defined as in Lemma 7. The arg min at each
stage in (21) and (22) gives the optimal coordination strategy
ht .���/.

Theorem 2 follows from the equivalence of Proposition 6
and Proposition 10.

IV. EXTENSION TO INFINITE HORIZON

The results of Theorems 1 and 2 can be easily extended
to infinite horizon expected discounted cost setup: Assuming
that the plant function ft and the instantaneous cost ct

are time-invariant, choose a strategy g WD .g1; g2; : : : ; / to
minimize

1X
tD1

ˇt�1c.Xt ;Ut /

where ˇ 2 .0; 1/.
The results of Theorems 1 and 2 rely on Proposi-

tion 6—the equivalence between the original and coordinated
systems—which remains valid even for infinite horizon.
The process f.Zt ;………t /; t D 1; 2; : : : g remains a controlled
Markov process. So, the results of Propositions 9 and 10
extend to infinite horizon setup in the standard manner. These
extensions can then be translated back to the original system
along the lines of the translations presented in this paper for
finite horizon system. This process will yield the following
dynamic programming decomposition for infinite horizon:
The choice of the function section dt as a function of ��� t

does not depend on time as is given by the solution to the
following fixed point equation: for any ��� 2 �.X 1�� � ��X n/

V .���/ D min
d
E
h
c.X;U/

C ˇV.F.���;d;U//
ˇ̌̌
……… D ���;D D d

i
where F.�/ is the time-homogeneous version of Ft .�/.

V. CONCLUSION

We investigate the optimal decentralized control of cou-
pled subsystems with control sharing. The evolution of each
subsystem is controlled by the action of all control stations;
each control station observes the state of its subsystem
and the one-step delayed state of all control stations. The
subsystems are further coupled by the cost.

First, we show that each control station can discard the
past values of the state of its subsystem. Next, we consider a
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coordinated system in which a coordinator observes the one-
step delayed actions of all control stations and prescribes a
partially evaluated section of the control law to each control
station. The control stations use this prescription to compute
the corresponding control action. The coordinated system is
a centralized system. We show that the original and the coor-
dinated systems are equivalent. We analyze the coordinated
system using standard tools from Markov decision theory and
translate the results back to the original system by exploiting
the equivalence between the two systems.

APPENDIX I
PROOF OF LEMMA 3

For simplicity of notation, we use P.z1Wt ; x1Wt ;u1Wt / to
denote P.Z1Wt D z1Wt ;X1Wt D x1Wt ;U1Wt D u1Wt / and a similar
notation for conditional probability. Define

˛i
t WD P.u

i
t j z1Wt ; x

i
1Wt ;u1Wt�1/;

ˇi
t WD P.x

i
t j zt�1; x

i
t�1;ut�1/;

 i
t WD P.zt j zt�1;ut�1/

and

Ai
t WD

tY
sD1

˛i
s; B i

t WD

tY
sD1

ˇi
s; �t WD

tY
sD1

s :

From law of total probability it follows that:

P.z1Wt ; x1Wt ;u1Wt / D

� nY
iD1

Ai
tB

i
t

�
�t :

Summing over all realizations of x1Wt and observing that
Ai

t and B i
t depends only on .z1Wt ; x

i
1Wt ;u1Wt /, we get

P.z1Wt ;u1Wt / D
X
x1

1Wt

X
x2

1Wt

� � �

X
xn

1Wt

� nY
iD1

Ai
tB

i
t

�
�t

D

 
nY

iD1

�X
xi

1Wt

Ai
tB

i
t

�!
�t :

Thus, using Bayes rule we get

P.x1Wt j z1Wt ;u1Wt / D

nY
iD1

Ai
tB

i
t�P

xi
1Wt
Ai

tB
i
t

� (23)

Summing both sides over xi
1Wt , i ¤ j , we get

P.x
j
1Wt j z1Wt ;u1Wt / D

A
j
t B

j
t�P

x
j
1Wt

A
j
t B

j
t

� (24)

The result follows from combining (23) and (24).
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