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Abstract— Power-shaping control is an extension of energy-
balancing passivity-based control based on a particular form
of the dynamics, the Brayton-Moser form. One of the main
difficulties in this approach is to write the dynamics in the
suitable form since it requires the solution of a partial differ-
ential equation (PDE) system with an additional sign constraint.
Here a general methodology is described for solving this partial
differential equation system. The set of all solutions to the PDE
system is given as the solution of a linear equation system. A
necessary condition is given so that a solution of the linear
system which meets the sign condition exists. This methodology
is illustrated on a chemical reactor example, where the physical
knowledge of the system is used to find a suitable solution.

I. INTRODUCTION

Power-shaping control [17] has been developed in the past
years as an extension of energy-balancing passivity-based
control [12][18]. In energy-balancing passivity based control,
the controller reshapes the energy function of the system so
that it has a minimum at the desired equilibrium point. The
controller provides the system with a finite amount of energy
so as to drive the system to the desired state. This concept
has been applied to electro-mechanical systems [15][19] and
also to thermodynamic systems where the storage function
is the entropy instead of the energy [1][20]. Nevertheless
energy-balancing passivity-based control cannot be applied
to some systems (namely systems with pervasive dissipation).
To overcome this difficulty the concept of power-shaping
control has been introduced, primary for the stabilization of
nonlinear RLC circuits [17]. Contrary to energy-balancing
passivity-based control, the storage function used for the
control is related to the power and not to the energy.
Power-shaping control has subsequently been applied to the
control of (electro)mechanical systems [9], and also chemical
reaction systems [5][6][7].

The power-shaping control methodology is based on a
particular formulation of the system dynamics, namely the
Brayton-Moser form. This is, as the authors state in [9], one
of the major difficulties of applying this control methodology
since it requires the solution of a partial differential equation
(PDE) system subjected to a sign constraint. Up to now,
no general solution has been found to this problem. In this
framework we propose a general methodology that allows
to build the Brayton-Moser form of the dynamics. First we
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shall briefly recall the context of the Brayton-Moser PDE,
namely power-shaping control (Section II). The main part
of this work shall be presented in Section III where the
solution methodology is explained. Finally in Section IV this
methodology is illustrated by the example of a continuous
stirred tank reactor (CSTR).

II. POWER-SHAPING CONTROL AND BRAYTON-MOSER
FORM

A. Power-shaping control

Let us consider a dynamical system of dimension N with
m inputs. The state of the system is given by the vector
x ∈ RN and the input is given by the vector uc ∈ Rm. The
power-shaping control theory is based on the Brayton-Moser
formulation of the system dynamics [2]. In this formulation
the system dynamics are of the following form :

Q (x)
dx

dt
= ∇P (x) + G (x)uc (1)

where Q : D → RN × RN is a non-singular square matrix
function, P : D → R is a scalar function of class C2,
G : D → RN × Rm is a matrix function and D is an open
subset of RN . Additionally the symmetric part of the matrix
Q (x) is negative semi-definite, i.e.:

Q (x) + Qt (x) � 0. (2)

The function P (x) is called the potential function. In
electrical and mechanical systems, the potential function has
the units of power and is related to the dissipated power in the
system. In electrical (mechanical, resp.) systems it is related
to the so-called content and co-content of the resistances [17]
(Rayleigh dissipation function, resp. [13][14]).

In the power-shaping approach the controller is designed
such as to re-shape the potential function so that it has a
minimum at the desired closed-loop equilibrium. The input
uc (x) is chosen such that in closed loop the system dynamics
are given by the following relation :

Q (x)
dx

dt
= ∇Pd (x) (3)

where Pd : D → R is the re-shaped potential function. If D
fulfills some suitable assumptions, the function Pd (x) can
be used as a Lyapunov function for the closed-loop system,
thanks to the sign constraint (2).
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B. Brayton-Moser form

Originally the Brayton-Moser form of the dynamics has
been developed for electric circuits [2]. Later, it has been
shown that mechanical systems can be written in this form
too [13][14]. However power-shaping control can be applied
to any system that can be put in the form (1). In [9]
conditions for writing a dynamical system in the form (1)
are given.

Let us assume that the system dynamics are given by the
following relation :

dx

dt
= f (x) + g (x) uc (4)

where f : D → RN is a vector function, g : D → RN ×Rm

is a matrix function and D is an open simply connected
subset of RN . The system (4) can be written in the form (1)
if there exists a non-singular matrix function Q (x) fulfilling
(2) and that solves the following PDE system1[9] :

∇ (Q (x) f (x)) = ∇t (Q (x) f (x)) , (5)

where M t denotes the transpose of a matrix M . P (x) is
then a solution of the following PDE system:

∇P (x) = Q (x) f (x) (6)

and the function G (x) is given by G (x) = Q (x) g (x).
Condition (5) means that the Hessian matrix of the potential
function P (x) is symmetric. By Schwarz-Young theorem,
this condition is necessary for P (x) to be twice differen-
tiable.

III. SOLUTION METHODOLOGY

According to the previous section, the power-shaping
control approach can be applied to any dynamical system
provided that a solution to the Brayton-Moser PDE (5)
satisfying the sign constraint (2) can be found. This condition
is the main limitation for applying the power-shaping control
approach. In this section a general methodology is described
for finding a solution to this problem.

A. Solution to the PDE system

Let us consider a dynamical system whose dynamics are
given by (4). The PDE system to solve is given by (5). In
the following proposition, the existence of a solution to (5)
is established by a constructive proof.

Proposition 1. If f (x) is twice continuously differentiable,
then a solution Q (x) to (5) always exists such that (6) holds
for a suitable a priori choice of potential function P (x).

Proof: Let us denote by qij the element in position (i, j)
of the unknown matrix Q (x) = (qij (x)). Let us also define

1This condition is equivalent to the existence of the potential function
P (x).

the vector z (x) whose components are given as follows (1 ≤
i, j ≤ N ) :

z(x) =



z1 (x)
z2 (x)

...
zN (x)

zN+1 (x)
...

z(i−1)N+j (x)
...

zN2 (x)


=



q11 (x)
q12 (x)

...
q1N (x)
q21 (x)

...
qij (x)

...
qNN (x)


Consider the set E of the equilibria of the unforced system :

E = {x̄ ∈ D|f (x̄) = 0} (7)

Let us choose a twice continuously differentiable scalar
function P (x) defined on D and such that

∇P (x̄) = 0 for all x̄ ∈ E (8)

It is always possible to find a function P (x) that fulfills this

condition, for example P (x) = ||f (x) ||22 =
N∑

k=1

(fk (x))2

(which is of class C2, since so is f (x)).
Now consider the following linear algebraic system :

A(x)z(x) =


∂P
∂x1

...
∂P
∂xN

 (9)

with

A(x) =


f1 (x) f2 (x) · · · fN (x) 0 · · · 0

0 f t (x) · · · 0
...

...
. . .

...
0 0 · · · f t (x)


This system matrix rank is equal to N if x 6∈ E and to 0 if
x ∈ E. Hence Im (A (x)) = RN if x 6∈ E, and Im (A (x)) =
{0} if x ∈ E. For any fixed x, (9) has an infinite number of
solutions if and only if ∇P (x) ∈ Im (A (x)). In the other
cases (9) has no solution. The way ∇P (x) has been chosen
(i.e. such that (8) holds) obviously ensures that ∇P (x) ∈
Im (A (x)). Consequently there exists an infinite number of
solutions to (9).

On the other hand the Brayton-Moser PDE system (5) can
be written as follows :

N∑
k=1

∂ (qikfk)
∂xj

=
N∑

k=1

∂ (qjkfk)
∂xi

, 1 ≤ i, j ≤ N. (10)

The solutions of (9) fulfill the following relation :

N∑
k=1

fkz(i−1)N+k =
N∑

k=1

fkqik =
∂P

∂xi
, 1 ≤ i ≤ N, (11)
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i.e. (6) holds. Thanks to the fact that P (x) has been chosen
of class C2, it follows from (10) and (11):

N∑
k=1

∂ (qikfk)
∂xj

=
∂

∂xj

(
∂P

∂xi

)
=

∂2P

∂xi∂xj

Hence the solutions of (9) fulfill (10) and therefore yield a
solution of the Brayton-Moser PDE system (5). Since there
exist an infinite number of solutions to (9), there exists also
an infinite number of solutions to (5). �

The proof of the proposition above gives a way to para-
metrize all the solutions of (5). Indeed once a function
P (x) has been chosen, a solution of the undetermined linear
system (9) is a solution of (5). Hence the set of solutions
of (5) can be written as the sum of the general solution
of the homogeneous system A (x) z (x) = 0 (i.e. z (x) ∈
ker A (x)) and a particular solution of the non-homogeneous
system (9). Without loss of generality, let us assume that
f1 (x) 6= 0 (for x 6∈ E). Then a basis for ker A (x) is given
by the vectors e(j−1)N+i with j = 1, ..., N and i = 2, ..., N :

e(j−1)N+i (x) = 0 · · · 0︸ ︷︷ ︸
(j−1)N times

− fi (x)

f1 (x)
0 · · · 0︸ ︷︷ ︸

(i−2)times

1 0 · · · 0︸ ︷︷ ︸
(N−i+N(N−j))times

t

(12)

and a particular solution of (9) is given by:

z (x) =

∂P

∂x1

1

f1 (x)
0 · · · 0︸ ︷︷ ︸

(N−1)times

∂P

∂xi

1

f1 (x)
0 · · · 0︸ ︷︷ ︸

(N−1)times

· · · ∂P

∂xN

1

f1 (x)
0 · · · 0︸ ︷︷ ︸

(N−1)times

t

(13)

The next proposition shows that all the solutions of (5)
are of the form suggested in the proof of Proposition 1.

Proposition 2. If D is an open simply connected subset of
RN , all the solutions Q (x) of (5) are such that there exists
a function P (x) that fulfills (9).

Proof: Let us consider a solution Q (x) of (5). Let

us define the vector v as follows: vi =
N∑

j=1

qijfj (x). Since

Q (x) is a solution of (5), the following relations hold :
∂vi

∂xj
= ∂vj

∂xi
, 1 ≤ i, j ≤ N . Let us define the following

1-form:

w =
N∑

i=1

vidxi (14)

Observe that the exterior derivative dw of w is identically
zero. Following Poincaré’s theorem since D is an open
simply connected subset of RN and w a differential form
which is closed (since dw = 0 on D), w is an exact form2.

2see [16], Lemma 7.9, page 183.

As a consequence there exists a 0-form θ = P (x) such that
the following relation is fulfilled:

w = dθ =
N∑

i=1

∂P

∂xi
dxi. (15)

Equating (14) and (15) allows to write the following relation:

vi (x) =
∂P

∂xi
=

N∑
j=1

qij (x) fj (x) 1 ≤ i ≤ N, (16)

which is indeed the linear system (6) or equivalently (9). It
is obvious from (16) that P (x) is such that ∇P (x̄) = 0
for all x ∈ E (with E defined by (7)) since f (x̄) = 0. �

An additional requirement is that Q (x) is not singular.
The following proposition gives a necessary condition on
P (x). This result is a straightforward consequence of
Proposition 2.

Proposition 3. Any solution Q (x) of (5) built using the
methodology proposed in the proof of Proposition 1 is
non-singular only if ∇P (x̄) = 0 for all x̄ ∈ E and
∇P (x) 6= 0 for all x ∈ D, x 6∈ E (with E defined by (7)).

B. Sign constraint

The methodology presented above allows to build a
solution of (5). However, in order to be suitable for control
design, the matrix Q (x) of the Brayton-Moser form
must also fulfill the sign condition (2). A first approach
could be to build an arbitrary solution to (5) as suggested
above and then to use the methodology presented in [9]
to build other solutions departing from the first one, and
find one that fulfills the sign condition. However this can
rapidly become tedious with increasing system size, all the
more so since we do not even know if such a solution exists.

In the following proposition, whose proof is
straightforward, a necessary condition on P (x) is
given such that there exists a solution of the linear system
(9) that fulfills the sign condition (2).

Proposition 4. The algebraic system (9) can have solutions
which fulfill (2) only if P (x) is non-increasing along the
trajectories of the unforced system (4).

Remark. As indicated above, any solution Q (x) of (6) (or
equivalently of (9)) has the form Q (x) = Qp (x) + Qh (x),
where Qp (x) is a particular solution and Qh (x) is any
solution of the homogeneous equation Qh (x) f (x) = 0.
Observe that, for all x 6∈ E, ∆ (x) = span {f (x)} ⊂ RN

is a one-dimensional nonsingular distribution, where ∆ (x)
is involutive. It follows by Frobenius theorem3 that ∆ (x)
is completely integrable, i.e. there exist scalar functions

3see [11] page 23.
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λ1, . . . , λN−1 whose differentials span the annihilator of
∆ (x). Hence Qh (x) can be parametrized as follows:

Qh (x) = Qc · ∇L (x)

where

∇L (x) =

 ∇λ1

...
∇λN−1


and Qc ∈ RN×(N−1) is a constant parameter matrix. Then
the sign constraint (2) is equivalent to the linear matrix
inequality : Qc∇L + (∇L)t

Qt
c + Qp + Qt

p ≤ 0.

IV. APPLICATION

A. Dynamical model of the CSTR
Let us consider a liquid-phase continuous stirred tank

reactor (CSTR) with constant volume V containing two
species A and B and in which a reversible reaction A 
 νB
takes place. The reactor is cooled/heated by a surrounding
jacket. As it has been shown in [8] the dynamics of such a
system are given by the following equations:

dnA

dt
=

F

V

(
Cin

A V − nA

)
− r (T, nA, nB)V

dnB

dt
=

F

V

(
Cin

B V − nB

)
+ νr (T, nA, nB) V

dU

dt
=

F

V

(
hinV −H

)
+ Q̇

(17)

with ni the quantity of species i (i = A,B), U the internal
energy of the mixture, F the volumetric flow rate, V is the
liquid volume, Cin

i is the concentration of i in the inlet
flow, r is the reaction rate, hin is the volumetric enthalpy
of the inlet flow, T the temperature, H the enthalpy of the
mixture and Q̇ the heat transferred into the reacting mixture.
H and T are functions of nA, nB and U depending on
the thermodynamic model of the liquid (e.g. an ideal liquid
mixture):

H = Ĥ (nA, nB , U) , T = T̂ (nA, nB , U)

The reaction rate function is assumed to be a twice contin-
uously differentiable function such that :
• r

(
T̂ (nA, nB , U) , nA, nB

)
≤ 0 if nA = 0

• r
(
T̂ (nA, nB , U) , nA, nB

)
≥ 0 if nB = 0

The aim is to control the reactor temperature T by acting
on the heat transfer Q̇. Using the notations of (4) we have :

f (nA, nB , U) =

−r̂ (nA, nB , U)V
νr̂ (nA, nB , U) V

0


g (nA, nB , U) =

 Cin
A V − nA 0

Cin
B V − nB 0

V hin − Ĥ (nA, nB , U) 1


with r̂ (nA, nB , U) = r

(
T̂ (nA, nB , U) , nA, nB

)
and uc =[

F
V Q̇

]t
. The sign conditions above on the reaction rate r

guarantee that the function f : [0,∞)3 → R3 is essen-
tially nonnegative. Hence by [4] (Theorem 1), with x =
(nA, nB , U)t, the nonnegative orthant [0,∞)3 is an invariant
set with respect to the unforced system ẋ = f (x).

B. Solution of the Brayton-Moser PDE

1) Potential function candidate: Following the
methodology proposed in Section III the first step
consists in choosing a suitable function P (x). According
to Proposition 4 this function has to be decreasing along
the system trajectories. One may believe that a priori
the opposite of the entropy function could be a suitable
potential function candidate. Indeed the unforced system is
an isolated system and, according to the second principle of
thermodynamics, in such systems the entropy is increasing.
However the gradient of the entropy is not equal to zero at
the equilibria of an isolated system. Originally in the power-
shaping approach the potential function has power units.
By analogy, we shall consider here the entropy production
as a potential function candidate, i.e. P (x) = σS . Indeed
for isolated systems, the entropy production is zero at the
equilibrium and hence the entropy production has a local
minimum. In [10] a general evolution criterion is given
for all macroscopic systems submitted to time independent
boundary conditions. For some thermodynamic systems, this
criterion implies that the entropy production is decreasing
along the trajectories.

For an isolated system the entropy production is equal to
the entropy variation:

σS =
dS

dt
=

(
∂Ŝ

∂x

)t
dx

dt
=
(µA

T
− ν

µB

T

)
r̂ (nA, nB , U) V

where Ŝ (nA, nB , U) is the entropy as a function (which
is assumed to be of class C2) of nA, nB , U and µi is the
chemical potential of species i. Indeed from thermodynamic
theory we have ∂Ŝ

∂x =
(
−µA

T ,−µB

T , 1
T

)t
[3]. The following

conditions will be assumed to hold throughout.

Assumption 1. The reaction kinetics are such that
Λr̂ (nA, nB , U) ≥ 0 where Λ = µA

T − ν µB

T =
− (1 − ν 0) ∂Ŝ

∂x is the reaction affinity, and Λ = 0 if and
only if

r̂ (nA, nB , U) = 0.

Assumption 2. The reaction kinetics r (T, nA, nB) are such
that dσS

dt ≤ 0 along the system trajectories with dσS

dt = 0
only if r (T, nA, nB) = 0.

Assumption 3. The limits

lim
r̂→0

∂σS

∂nA

1
r̂V

and lim
r̂→0

∂σS

∂nB

1
r̂V

are defined and finite.

2785



Assumption 1 is necessary to ensure that the second
principle of thermodynamics is fulfilled, namely that the
entropy production is always non-negative. It means that
the reaction always evolves in the direction of decreasing
affinity.
It can be shown that assumption 2 is additionnaly required
to ensure that the entropy production is decreasing along
the system trajectories and can therefore be used for the
function P (x).
The assumptions above can be satisfied for instance by the
classical mass action balance kinetics with Arrhenius type
dependence [21].

2) Computation of Q (x): The linear system (9) reads as
follows:

[νq12 (nA, nB , U)− q11 (nA, nB , U)] r̂V =
∂σS

∂nA

[νq22 (nA, nB , U)− q21 (nA, nB , U)] r̂V =
∂σS

∂nB

[νq32 (nA, nB , U)− q31 (nA, nB , U)] r̂V =
∂σS

∂U

(18)

whose solutions lead to the following form of the matrix
Q (x) (using Assumption 3):

Q (nA, nB , U) =

νq12 − ∂σS

∂nA

1
r̂V q12 q13

νq22 − ∂σS

∂nB

1
r̂V q22 q23

νq32 − ∂σS

∂U
1

r̂V q32 q33


where the dependence with respect to (nA, nB , U) of r̂
and qij has been omitted for the sake of simplicity of the
notations. The form above of matrix Q is obtained using (12)
and (13). Indeed the general solution of the homogeneous
system is given by:

Qh (nA, nB , U) =

νq12 q12 q13

νq22 q22 q23

νq32 q32 q33


and a particular solution is obtained by using (13):

Qp (nA, nB , U) =

− ∂σS

∂nA

1
r̂V 0 0

− ∂σS

∂nB

1
r̂V 0 0

−∂σS

∂U
1

r̂V 0 0


Let us now restrict ourselves to some of the solutions of

(18) by setting

q13 = q23 = q32 = 0.

The remaining unknowns q12, q22 and q33 shall be deter-
mined so as to meet the sign constraint (2). Since it is
assumed that σS is strictly decreasing along the system
trajectories, (2) can be forced to be negative definite. Using
the principal minors the sign constraint is hence equivalent

to the following three inequalities:

0 >
(
νq12 −

∂σS

∂nA

1

r̂V

)
(19a)

0 < 4
(
νq12 −

∂σS

∂nA

1

r̂V

)
q22 −

(
q12 + νq22 −

∂σS

∂nB

1

r̂V

)2

(19b)

0 > q33

[
4
(
νq12 −

∂σS

∂nA

1

r̂V

)
q22 −

(
q12 + νq22 −

∂σS

∂nB

1

r̂V

)2
]

− q22

(
∂σS

∂U

1

r̂V

)2

. (19c)

By using Assumption 2, it can be shown that a solution
of the Brayton-Moser PDE (5) subject to the sign constraint
(2) is given by the following expression for Q (x):

Q (nA, nB , U) =


γ ∂σS

∂nB

1
r̂V 0

4α
ν γ − ∂σS

∂nB

1
r̂V

4α
ν2 γ 0

−∂σS

∂U
1

r̂V 0 β

(
∂σS
∂U

1
r̂V

)2
4(1−α)γ


where 0 < α < 1 and β > 1 are scalar constants and
γ = ν ∂σS

∂nB

1
r̂V − ∂σS

∂nA

1
r̂V .

V. CONCLUDING REMARKS

A general methodology has been developed for solving
the partial differential equation system that allows to write
the system dynamics in the Brayton-Moser form. This
methodology allows to find the set of solutions of the
Brayton-Moser PDE system without taking into account
the sign condition. In order to find a solution that satisfies
the sign constraint, it is necessary to know a function that
is decreasing along the system trajectories, which is far
from being easy in any case. Nevertheless physical intuition
can help, which leads to potential functions with physical
meaning. It is also possible to solve the Brayton-Moser
PDE system with the sign condition without choosing the
a priori potential function candidate, as it has been done
in [5]. The potential function results afterwards. However
no general methodology has been found yet for doing
this, and it becomes quite tedious when the dimension
or the complexity of the nonlinearity increase. Future
developments should investigate in this direction.

ACKNOWLEDGMENTS

This paper presents research results of the Belgian
Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction
Poles Programme, initiated by the Belgian State, Science
Policy Office. The scientific responsibility rests with its
authors. Audrey Favache was a fellow student of the Belgian
Fonds National de la Recherche Scientifique (FNRS).

2786



REFERENCES

[1] A.A. Alonso, B.E. Ydstie, and J.R. Banga. From irreversible thermo-
dynamics to a robust control theory for distributed process systems.
Journal of Process Control, 12:507–517, 2002.

[2] R.K. Brayton and J.K. Moser. A theory of nonlinear networks I & II.
Quaterly of Applied Mathematics, 22:1–33 & 81–104, 1964.

[3] H.B. Callen. Thermodynamics and an Introduction to Thermostatics.
John Wiley & Sons, New York, 2nd edition, 1985.

[4] V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein.
Modeling and analysis of mass-action kinetics. IEEE Control Systems
Magazine, 29:60–78, 2009.

[5] A. Favache. Thermodynamics and Process Control. PhD thesis,
Université catholique de Louvain, Belgium, 2009.

[6] A. Favache and D.Dochain. Analysis and control of the exothermic
continuous stirred tank reactor: the power-shaping approach. In Proc.
48th IEEE Conference on Decision and Control, pages 1866–1871,
Shanghai (China), 2009.

[7] A. Favache and D.Dochain. Power-shaping control of an exothermic
continuous stirred tank reactor (CSTR). In Proc. International Sympo-
sium on Advanced Control of Chemical Processes (ADCHEM), pages
101–110, Koç (Turkey), 2009.

[8] Audrey Favache and Denis Dochain. Thermodynamics and chemical
systems stability: The CSTR case study revisited. Journal of Process
Control, 19(3):371–379, 2009.

[9] E. GarcÃa-Canseco, D. Jeltsema, R. Ortega, and J.M.A. Scherpen.
Power-based control of physical systems. Automatica, 46(1):127–132,
2010.

[10] P. Glansdorff and I. Prigogine. On a general evolution criterion in
macroscopic physics. Physica, 30:351–374, 1964.

[11] A. Isidori. Nonlinear Control Systems. Springer Verlag, London, 3rd

edition, 1995.
[12] D. Jeltsema, R. Ortega, and J.M.A. Scherpen. An energy-balancing

perspective of interconnection and damping assignment control of
nonlinear systems. Automatica, 40(9):1643–1646, 2004.

[13] D. Jeltsema and J.M.A. Scherpen. On mechanical mixed potential,
content and co-content. In Proc. European Control Conference, pages
73–78, 2003.

[14] D. Jeltsema and J.M.A. Scherpen. A power-based description of
standard mechanical systems. Systems & Control Letters, 56(5):349–
356, 2007.

[15] B.M. Maschke, R. Ortega, and A.J. van der Schaft. Energy-based
Lyapunov functions for forced Hamiltonian systems with dissipation.
IEEE Transactions on Automatic Control, 45(8):1498–1502, 2000.

[16] B. O’Neill. Elementary Differential Geometry. Academic Press, New
York, 1997.

[17] R. Ortega, D. Jeltsema, and J.M.A. Scherpen. Power shaping: A
new paradigm for stabilization of nonlinear RLC-circuits. IEEE
Transactions on Automatic Control, 48(10):1762–1767, 2003.

[18] R. Ortega, A.J. van der Schaft, I. Mareels, and B. Maschke. Putting
energy back in control. IEEE Control Systems Magazine, 21(2):18–33,
2001.

[19] R. Ortega, A.J. van der Schaft, B.M. Maschke, and G.Escobar. Inter-
connection and damping assignment: passivity-based control of port-
controlled Hamiltonian systems. Automatica, 38(4):585–596, 2002.

[20] I. Otero-Muras, G. Szederkényi, A.A. Alonso, and K.M. Hangos.
Dynamic analysis and control of chemical and biochemical reaction
networks. In Proc. International Symposium on Advanced Control of
Chemical Processes, pages 165–170, Gramado (Brazil), April 2006.

[21] R. Perry and D. Green. Perry’s Chemical Engineers’ Handbook.
McGraw-Hill, New York, 7th edition, 1997.

2787


