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Abstract— New biological structures called fractones, named
in honor of the late Dr. Benoit Mandelbrot due to their fractal-
like appearance, have been discovered by cell biologists. Their
primary purposes are theorized to pertain to the major pro-
cesses of the life cycle of cells, namely cell division, migration,
and differentiation. In this paper, we build a mathematical
model of how fractones interact with the cells and the associated
growth factors to gain insight into the growth process.

I. INTRODUCTION

The process of neurulation and subsequent events of
the brain’s formation involve multiple growth factors that
induce proliferation, differentiation, and migration of cells.
The distribution and activation of these growth factors in
space and time will determine the morphogenic events of
the developing mammalian brain. However, the process or-
ganizing the distribution and availability of growth factors
within the neuroepithelium is not understood. Structures,
termed fractones, directly contact neural stem and progenitor
cells, capture and concentrate said growth factors, and are
associated with cell proliferation [5], [6], [7]. Hence, our
hypothesis is that fractones are the captors that spatially
control the activation of growth factors in a precise location
to generate a morphogenic event, i.e. mitosis.

To validate this hypothesis, we propose to develop and
analyze a mathematical model predicting cell proliferation
from the spatial distribution of fractones in a developing
mouse. Dynamic mathematical modeling, i.e. models that
represents change in rates over time, serves several purposes
[4]. By mimicking the assumed forces resulting in a system
behavior, the dynamic model helps us to understand the
nonlinear dynamics of the system under study. Such an
approach is especially well suited for biological systems
whose complexity renders a purely analytical approach un-
realistic. Moreover, it allows us to overcome the excessively
demanding purely experimental approach to understand a
biological system. Our primary goal in this paper is to
develop a model that contains the crucial features of our
hypothesis and at the same time sufficiently simple to allow
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an understanding of the underlying principles of the observed
system. We propose to model this biological process as a
control system, the control depicting the spatial distribution
of the active fractones. This is a novel approach with respect
to the most common reaction-diffusion models seen in the
literature on morphogenesis, however it is not that surprising.
Indeed, control theory is instrumental to overcome many
challenges faced by scientists to design systems with a
very high degree of complexity and interaction with the
environment [1], [2], [8]. Examples of its applicability in
physical and biological systems are numerous [9], [10].

It is important to notice that due to the specific nature of
morphogenesis and in particular of the cell’s proliferation,
existing techniques in control theory cannot be applied
directly to our problem. The reason comes from the fact
that, in this proposal, the state space of our control system
is dynamic; this is an intrinsic property of biological systems.
In physics, for instance, the state space is static and the equa-
tions of motion are derived from minimizing a Lagrangian.
In engineering, the configuration manifold is fixed and, one
either attempts to determine the evolution of the system while
minimizing a prescribed cost or one tries to design controls
to take into account uncertainties of the system. As a result of
a dynamic state space, existing methods have to be adjusted
to analyze biological systems from the control theory point
of view.

Mathematically, the classical models attempting to de-
scribe morphogenesis are based on reaction-diffusion equa-
tions with the pioneering work of Turing [11]. Although
Turing made a great attempt to mathematically portray mor-
phogenesis, his work is not an adequate model to describe
the system given new discoveries and developments since
the 1950s. With his model, Turing was describing how
reactive chemicals present in a static, living structure interact
in a continuous medium via diffusion (and, surprisngly,
form wave-like patterns). For the system we are describing,
reaction-diffusion equations cannot be used to study the
mechanisms of morphogenesis during development as the
growth factors are non-interacting. Based on the hypothesis
of [5], [6], [7], morphogenesis involves the capture and
activation of growth factors by fractones at specific locations
according to a precise timing. A fundamental problem is
to understand how growth factors control the topology of
cell proliferation and direct the construction of the forming
neural tissue. It has been demonstrated that extra-cellular
matrix (ECM) molecules strongly influence growth factor-
mediated cell proliferation. ECM proteoglycans can capture
and present growth factors to the cell surface receptors to
ultimately trigger the biological response of growth factors.
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This is also a sign that Turing’s model will not suffice, as
there is no mechanism in the reaction-diffusion equations for
structures with this type of action. Moreover, the distribution
of fractones is constantly changing during development, re-
flecting the dynamics of the morphogenic events. Therefore,
the organizing role of fractones in morphogenesis must be
analyzed by an alternative mathematical model.

Fig. 1. Characterization of fractones in the mouse neuroepithelium during
brain morphogenesis. The neuroepithelial cells (red) proliferate next to
fractones (green punctae).

II. MATHEMATICAL MODEL

A. Configuration and State Space

Let R be a compact connected subset of the 2-dimensional
Euclidean space that we call the ambient space. For simplic-
ity, we assume in this paper that R is fixed and we identify R
to a square. For our model, R is discretized uniformly and we
call a square of our discretization a unit. In the sequel, each
unit will be identified to an integer pair (i, j). The origin of
the unit of the discretization is chosen arbitrarily and will be
identified to (0, 0). Note that the discretization is chosen with
a precision to be chosen by the user (eventually it will be
determined by the experimental biological maps). The three
important spaces to take into account into our dynamical
system are: the space filled with cells, the space in which
the growth factors diffuse and finally the space filled with
the fractones.

Definition We define Cell(t) to be the configuration of cells
at a given time t and we call it the cell space. This forms
a closed subset of R. The complement of Cell(t) in R is
denoted by Diff(t) and is called the diffusion space at time
t. At each time t, the diffusion space is divided into two parts,
the free diffusion space, Free(t), and the fractone space,
Fract(t). The data of Cell(t), Free(t) and Fract(t) forms
what we call the Configuration space at time t, and we
denote it by Conf(t). Note that R(t) = Cell(t) ∪ Diff(t)
and Diff(t) = Fract(t) ∪ Free(t).

To the discretization of the initial configuration of cells, i.e.
Cell(0), we associate a collection of indices (i, j) where each

index is represented by an integer. Each pair of indices repre-
sent a unit of our discretization. Similarly Free(0), Fract(0)
(and therefore Diff(0)) are represented by collections of
indices.

From our definitions, the configuration space at time t is a
topological space identified to R2 with holes (the cells). Note
that, for the diffusion of growth factor, the holes should rather
be seen as obstacles since the cells prevent the diffusion.
The fractones do not prevent the diffusion but perturb it by
acting as captors. This will be described more precisely in
the next section. The morphogenic events will start from
an initial configuration of cells and fractones embedded in
the ambient space R. Growth factors diffuse freely in the
diffusion space Free(t) and are under pertubed diffusion in
Fract(t). We make a few assumptions to mathematically
describe those objects. We assume the space between the
cells account for 20% of the total space occupied by the
cells. This is reflected in our discretization by representing
a cell as a square composed of 81 units (i.e. a 9 by 9
square), while the “in-between cells” space is represented
by single unit-rows and unit-columns. For instance, a cell
configuration of four cells (two horizontal and two vertical)
and no fractone lead to Diff(0) = I0 × J0 where I0 =
J0 = {0, 1, . . . , 44} \ ({13, . . . , 21} ∪ {23, . . . , 31}). Here,
the size of the space, 45×45, was chosen arbitrarily. We also
assume the cells to be vertically and horizontally aligned, and
finally that the fractones are represented as one unit of our
discretization. Notice that at this stage of the work, these are
arbitrary choices, and it will be straightforward to relax these
assumptions to reflect the observations from the experimental
maps.

Since cells are constantly forming and fractones moving,
the diffusion space evolves constantly, however, it will al-
ways be formed by the product of unions of subsets of Z.
We introduce Diff(t) = It × Jt ⊂ Z × Z, where It, Jt

are both unions of finite subsets of Z. Note that with this
equality, we identify the diffusion space to its discretization
and that will be the case in all that follows. Indeed, there is
a one-to-one correspondance between both. The same holds
for the cell space. The dimension of the diffusion space at
time t (resp. of the cell space) is defined as the number of
indices (i, j) such that (i, j) ∈ Diff(t) (resp. Cell(t)).

In our proposed model, the morphogenic events will be
governed by a control system defined on a state space. The
state space is defined at each time t as the concentration
of growth factors in each unit of our discretization of the
diffusion space Diff(t). We denote the state space by M(t).
More precisely, to each unit (i, j) ∈ Diff(t), and at each
time t, we associate a concentration of growth factor that
we denote by Xi,j(t). The state space M(t) at time t is then
Rn

+, where n = dim(Diff(t)) ≥ 0. As will be seen later,
the rate of change in the concentration of growth factor is
described using classical diffusion equations.

B. Diffusion of Growth Factors in Diff(t)

For simplicity, we assume the diffusion of a unique type
of growth factor and equal sensitivity of the fractones with

4420



respect to that growth factor. However, our model will be
developed such that expanding to several types of growth
factors and varying fractone sensitivity to respective growth
factors can be added in a straightforward way.

Assume at first that there are no cells and no fractones.
Therefore, the growth factors diffuse freely in the ambient
space R. We denote by ν the diffusion parameter associ-
ated to the considered growth factor, and we define ∆ =
{(0, 1), (0,−1), (1, 0), (−1, 0)}. The pure dissipation is then
described by Ẋ(t) = F 0(X(t)) where the components of
X(t) are given by Xi,j(t) which represents the quantity of
growth factor in unit (i, j) at time t, and, assuming diffusion
occurs between a unit (i, j) and its four neighbors, we have:

Ẋi,j(t) = ν ·
∑

(k, l)∈∆

(Xi+k,j+l(t)−Xi,j(t)) for (i, j) ∈ R.

Assume now that a cell forms in the ambient space.
The cell therefore becomes an obstacle to the diffusion
process. Mathematically, rather than looking at a cell as
an obstacle, we identify the cell to a hole in a topological
space. The hole, depicting the location of the cell, ensures
that the diffusion of the growth factor takes place in the
diffusion space only. By doing so, we do not have to perturb
the diffusion process, instead we continuously modify the
topological space in which the diffusion process takes place.
Notice that, since several cells might be forming at the same
time, the topological changes in the configuration space will
reflect all the created holes. We then have:

Ẋi,j(t) = ν·
∑

(k, l)∈∆
(i+k,j+l)∈Diff(t)

(Xi+k,j+l(t)−Xi,j(t)) for (i, j) ∈ Diff(t).

(1)
Finally, we need to model how fractones perturb the

diffusion. As mentioned before, a fractone is represented
as a one unit (i, j) of our discretization. The hypothesis is
that the fractones store the quantity of growth factors that
they capture, and that this quantity becomes unavailable to
the diffusion process. To reflect the biological hypothesis
that fractones are produced and then disappear, we introduce
the following definitions. To each unit (i, j) we associate
what we call a passive fractone. A passive fractone at time
t belongs to Free(t). An active fractone at time t is defined
as a unit that belongs to the set Fract(t). An active fractone
is one that acts as a captor for the diffusion process. The
biological translation of this definition goes as follow. A
passive fractone corresponds to the situation such that either
no fractone is associated to the unit or one is currently
produced but is not yet part of the biological process. In
other words, in our representation it can be seen that Free(t)
is the set of passive fractones at time t. An active fractone
is one that acts as a captor for the diffusion process.

Assume now that there is an active fractone (i, j). Then
there is perturbation to the diffusion process as follows. We
introduce a control function u(t) = (ui,j(t)) ∈ {0, 1}It×Jt

defined on a time interval [0, T ], with T representing the
duration of the cascade of morphogenic events under study.
When a fractone is active at time t, the component ui,j(t) of

the control is set to one while it is set to zero for a passive
fractone. The active fractone store the current quantity of
growth factors available in unit (i, j) and acts as a captor for
the diffusion process. In other words, diffusion from an unit
(i, j) ∈ Fract(t) to its neighbors is prevented. To represent
this perturbed-diffusion process, we define a control system:

Ẋ(t) = F 0(X(t)) +
∑

(i,j)∈Diff(t)

F (i,j)(X(t)) · u(i,j)(t) (2)

where X(t) is the state variable and denotes the concentra-
tion of growth factor in the diffusion space Diff(t) = It×Jt

at time t, the drift vector field F 0 is given by the right-hand
side of (1) and represents the regular diffusion of growth
factors taking place in the free diffusion space, and finally the
control vector fields perturb the regular diffusion to account
for the possible presence of active fractones. An admissible
control is a mesureable function u : [0, T ] → {0, 1}n(t)

where T represents the duration of the morphogenic event
under study, and n(t) is the number of pairs included in
It × Jt. More precisely, we have under the assumption that
(i, j) is an active fractone:

F
(i,j)
i,j (X(t)) = ν ·

∑
(k, l)∈∆

(i+k,j+l)∈Diff(t)

Xi,j(t)

F
(i,j)
i+k,j+l(X(t)) = −ν ·Xi,j(t), for (k, l)∈∆

(i+k,j+l)∈Diff(t)

These equations reflect the fact that the quantity of growth
factor in an active fractone become invisible to the diffusion
process. Once the stored quantity reaches a given threshold,
the fractone signals to the cells that mitosis can occur. In
Fig. 2, we represent a simulation of the perturbed-diffusion
process when cells and fractones exist in the ambient space.
The initial distribution of growth factor is a single source
(not to scale) as seen in the initial image in the upper corner
above the cell, while the fractone is located near the bottom
corner in green. The growth factors diffuse through the free
space to eventually be captured by the fractone in the last
image.

C. Mitosis

The motivation behind the introduction of fractones as
controllers comes from the hypothesis that their spatial
distribution is one of the major components that determines
the morphogenic events. More precisely, the fractones give
the order to the cells to undergo mitosis once a given
threshold of growth factor has been reached. To translate
this mathematically, we can equivalently state that the spatial
distribution of fractones and the diffusion process of growth
factors regulate the appearance and the location of holes in
our topological space, namely the configuration space. A
natural question arises: when a cell undergoes mitosis, how
does the existing mass of cells deform? At this stage, we
will limit ourselves to simple assumptions to avoid making
the problem unnecessarily complex.

Based on our representation of the cell space, from here
forth we identify a cell C to a unit of our discretization.
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Fig. 2. Diffusion from a high concentration source through the free space,
around a cell (in red), towards a fractone (in green). Here, the height of the
column above each unit represents the amount of growth factor.

Indeed, since we assume our cells to be squares of 9 × 9
units of our discretization and to be vertically and hori-
zontally aligned, a cell C is completely determined by its
middle unit (a, b). We write C = (a, b). The following
assumptions that regulate the deformation of the existing
mass of cells once mitosis occurs is arbitrary and can be
modified easily. For simplicity in this paper we assume the
fractones can be located only at the vertices of the cells.
Note that this assumption can easily be relaxed. First, we
introduce the following notion of distance. Let a = (a1, a2)
and b = (b1, b2) be two units such that a1 = b1 mod 10
and a2 = b2 mod 10. The geometric distance is defined
by: dG(a, b) =

√
|a1 − b1|2 + |a2 − b2|2. The geometric

distance helps to determine a hierarchy between units, it is
based on the assumption that the mass of cells is optimizing
its shape by prioritizing compactness. Clearly, we have that
dG(a, b) ∈

{
10
√
n2 +m2 | n,m ∈ Z.

}
. Notice that, given

unit (a, b), the closest units that are multiples of 10 from
(a, b) are at a distance 1, and there are 4 of them. The
next closest units are at a distance

√
2, and there are also

4 of them. The table below details the possible distances,
and only one half of one quadrant is displayed since it is
symmetrical with respect to the other quadrants, and the table
is symmetrical about its diagonal. The pattern is very clear.
For any given distance d from a cell centered at (a, b) to
a location for a new cell to be placed, there are either: 12
possible locations if d is an integer that is the hypoteneuse
of a Pythagorean triple; 8 possible locations if d is not along
a diagonal or an axis in Table I; or 4 possible locations if d
is on a diagonal or an axis, and is not the hypoteneuse of a
Pythagorean triple.

The algorithm for the deformation of Cell(t) once mitosis
occurs as follows. We identify the active fractone to unit
(i, j). To this fractone, there are at most 4 cells that are
connected, and those are described simply by their center
unit: C1 = (i + 5, j − 5), C2 = (i − 5, j − 5), C3 =
(i − 5, j + 5), C4 = (i + 5, j + 5). At a given time t, the

TABLE I
DISTANCE DISTRIBUTION FOR THE DEFORMATION OF THE MASS OF

CELL AS MEASURED FROM ANY CELL UNDERGOING MITOSIS.

0 1 2 3 4 5 6

1
√

2

2
√

5
√

8

3
√

10
√

13
√

18

4
√

17
√

20
√

25
√

32

5
√

26
√

29
√

34
√

41
√

50

6
√

37
√

40
√

45
√

52
√

61
√

72

active fractone reaches the threshold for the concentration
of growth factor. If Ci ∈ Cell(t), the cell Ci duplicates.
Consider, for simplicity, a single cell undergoing mitosis. The
deformation algorithm is defined as to preferentially deform
the current mass of cells in the direction of empty space
in a clockwise orientation as starting from angle zero (as
referenced by an axis superimposed on the center of the
“mother” cell). More precisely, it looks incrementally for
the closest unit to (i, j) that belongs in Free(t). Once such
a unit is detected, the deformation occurs. Units at a same
distance from (i, j) are selected in the following order. We
define i` − i0 and j` − j0, for all `, where ` represents the
number of possible locations at a given distance and (i0, j0)
represents the center of the cell undergoing mitosis. The
algorithm looks first for a unit in Free(t) such that j`−j0 ≤ 0
and chooses preferentially the max {i`}. If no such unit is
found, The algorithm searches for a unit in Free(t) such that
j` − j0 > 0, and chooses preferentially the min {i`}.

D. Problem Formulation

Morphogenic events are modeled as an affine control
system of the form ẋ(t) = F 0(x(t)) +

∑n
i=1 ui(t) ·

F i(x(t)), x(t) ∈ M(t) where the state space M(t) ⊂
Rdim(Diff(t)) varies with time, and such that u(·) is an
admissible control. Notice that the initial and final conditions
of our system are not given in terms of M(0) and M(T ) but
in terms of Cell(0), Fract(0) and Cell(T ), Fract(T ). Notice
that the dimension of M(t) is arbitrary since it depends on
our discretization.
The biological statement of the problem is now:
Given an initial and final configuration of cells in a pre-
scribed ambient space, determine an initial concentration
of growth factors and a dynamic spatial distribution of
fractones such that the mass of cells transforms from its
initial configuration to its final configuration.
Restated in mathematical terms, we have:
Given Cell(0) and Cell(T ), subspaces of R, determine X(0)
and an admissible control u(·) such that Cell(0) transforms
into Cell(T ) under the evolution of system (2) and the rules
for mitosis described in Sec. II-C.

Due to the morphogenic nature of the system under study
that implies a dynamic state space, this problem opens a
completely new area in the field of control theory. New
methods have to be developed to answer such questions, and
these type of problems are highly non-trivial.

Given our deformation algorithm existence of a solution is
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not always guarantee, neither is uniquness provided that a so-
lution exists. In a forthcoming work we introduce the notion
of Hausdorff distance between two final configurations and
restate the problem in terms of reaching a final configuration
at the shortest distance from the desired one. Non-uniqueness
also suggests the existence of efficient controls. A future
work will be to determine a criteria to be used for optimality
based on the experimental observations collected in the lab
through the fractone’s maps.

III. SIMULATIONS

Based on the algorithm in Sec. II-C, we present some
simulations that show the evolution of a typical cellular
system. In Fig. 3, we start with a single cell and an associated
fractone. In this simulation, we chose a highly concentrated
source near the fractone for our initial GF distribution such
that mitosis would occur on a short time scale. Choosing
a different initial distribution, however, would still produce
similar images since there is only a single fractone that would
eventually capture the growth factor via diffusion. Also, one
can see how the mass of cells deforms according to our
algorithm such that it attempts to maintain compactness. In
Fig. 4, we represent an initial configuration of cells and
fractones, and the resulting simulated configuration predicted
by our algorithm. Each individual cell will produce neighbor
cells until the mass of cells deforms in such a way that
the lone fractone interacts with it. At that point, the lone
fractone will have accumulated a significant amount of GF
so that, once the mass of cells reaches it, the fractone will
signal mitosis several times on a short time interval. It should
be noted that in Fig. 3 and Fig. 4, a fractone is associated
initially with one cell. However, in Fig. 3, the fractone is only
associated with 2 cells throughout the simulation versus in
Fig. 4 where each fractone is eventually associated with its
4 neighboring cells. This is an arbitrary choice that is easily
modified in the computer code.

Fig. 3. Cellular evolution starting from one cell and one associated static
fractone.

Fig. 4. Complex cellular evolution with multiple cells and multiple static
fractones.
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