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 Abstract – Multi-objective optimization, data-intensive 

analysis and hardware-software co-design are the major 

challenging themes in the concurrent design of high-

performance electromechanical systems. Direct-drive servos 

guarantee superior torque and force densities, efficiency, 

robustness, simplicity and other enabling performance 

quantities. Nano-, micro-, mini- and macro-scale axial and 

radial actuators exist in a great variety, e.g., from living 

organisms to various engineered electromechanical systems. 

Permanent-magnet actuators and servos are widely used in 

aerospace, automotive, biotechnology, energy, medical, power, 

robotic and other applications. The major goal of this paper is 

to report and apply advanced concepts in design and 

implementation of tracking control laws. These control laws 

are designed using the state transformation method applying 

the Hamilton-Jacobi optimization and Lyapunov stability 

theory. We design and evaluate high-performance drives and 

servos. Various servo-systems with radial- and axial-topology 

actuators are demonstrated and characterized by evaluating 

analog and digital tracking control laws. The studied direct-

drive actuators with SmCo permanent-magnet arrays 

guarantee high toque density, high efficiency, reliability, fast 

dynamics, etc. The controllers designed guarantee stability, 

high precision and robustness. The high-frequency PWM 

drivers vary the voltage applied by changing the duty ratio of 

FETs. High-accuracy sensors measure angular velocity and 

displacement. Linear and nonlinear analog control laws 

guarantee superior performance, enabling capabilities, 

minimal complexity, simplicity, noise immunity, etc. The 

analog control laws can be discretized and implemented using 

microcontrollers and DSPs. The studied drives and servos are 

applicable in many applications, including hard drives, high-

precision pointing systems, rotating tables, manipulators, etc. 

This paper examines and solves a spectrum of pertinent 

problems in design and implementation of enabling minimal-

complexity control laws and controllers which guarantee near-

optimal system performance  

 

I. INTRODUCTION 

Various nonlinear analysis, control and optimization 

concepts have being used in design of electromechanical 

systems. In high-performance drives, servos, additional 

factors and considerations emerged due to the strengthening 

of performance requirements, hardware limits, etc. These 

high-performance direct-drive actuators with matching 

sensors and ICs must ensure minimal complexity while 

guaranteeing optimal performance and capabilities.  

Control laws must be designed and implemented with 

the ultimate goal to optimize overall dynamic performance 

(stability, accuracy, settling time, robustness, etc.), improve 

operating characteristics, enhance operating envelopes, etc. 

Design of minimal complexity closed-loop systems is the 

key to attaining desired performance. Though various 

control methods were proposed in [1-5] and references 

therein, their overall applicability, suitability and 

practicality must be examined. Control schemes are 

actuator-specific. Operating principles and control 

algorithms for various classes of electrostatic and 

electromagnetic actuators are fundamentally distinct. 

Design of control laws and their consequent 

implementation have not been sufficiently studied. 

Application of many concepts, which were applied to 

descriptive generic models of dynamic systems, may not 

guarantee the desired performance, specified capabilities, 

required adaptability and overall practicality [6, 7]. For 

example, adaptive, “intelligent” and other control schemes 

require advanced DSPs to ensure real-time decision-

making, reconfiguration, etc. Correspondingly, the overall 

practicality and other factors suggest one to focus on 

practical solutions. As illustrated in Figure 1, the 

dimensionality of actuators may be less than operational 

amplifiers and sensors. Controlling electronics and ASICs 

should be designed to reduce hardware complexity with a 

minimum number of measured variables and feedback. 

 
Figure 1. Mini-motors with ASICs: Actuators are fabricated 

utilizing bulk and surface micromachining technologies [7] 

 

Linear and nonlinear proportional-integral-derivative 

(PID) control laws, linear quadratic algorithms, nonlinear 

compensators and soft-switching sliding mode control 

schemes have been widely used for decades in MIMO 

electromechanical systems, robots, flight/ground/marine 

vehicles, etc. The aforementioned control schemes usually 

ensure near-optimal performance. These control laws are 

designed using the Hamilton-Jacobi theory, Lyapunov 

stability concepts and other methods [6-8]. However, some 

deficiencies may emerge in the design of minimal 

complexity systems with strict performance requirements in 

the expanded operating envelope. The aforementioned 

challenges necessitate design of robust tracking 

proportional-integral control laws with state feedback. We 
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design, demonstrate, test and characterize high-performance 

drives and servos with advanced hardware solutions and 

control schemes. This paper considers two general classes 

of servos which guarantee: 

1. Bidirectional 360-degree-of-rotation; 

2. Bidirectional limited-angle displacement. 

 In these drives and servos, many-pole radial- and axial 

topology actuators are used. These high-torque-density 

permanent-magnet actuators are controlled by high-switching-

frequency PWM drivers which change the applied voltage. 

Excellent performance and enabling capabilities are 

achieved by using high-performance actuators, power 

electronic drivers with two- and four-quadrant power 

stages, sensors, and other components. The control laws are 

designed to satisfy the specifications imposed, e.g., 

stability, minimal settling time, high acceleration, accuracy, 

disturbance attenuation, robustness to parameter variations, 

minimal complexity, practicality, etc.  

 Axial topology permanent-magnet actuators are 

documented in Figure 2. Fully integrated direct-drive 

actuators and servos are built, tested and characterized. A 

servo-system with a limited-angle axial-topology actuator is 

depicted in Figure 3. The reference signal is the angular 

displacement. Using the reference θref and actual θr angular 

displacements (measured by the high-accuracy sensor), the 

controller ICs drive the comparator, changing the switching 

activity of output stage FETs. Hence, the voltage ua applied 

to the winding varies [7]. 

 

Stator with 
planar windings

uas

N

N

S

S

Rotor with 
magnets

rω

 
Figure 2. Single-phase axial topology actuator. Images of axial-

topology hard-drive: Rotor (pointer) with planar deposited coils 

above a stator aperture with SmCo permanent magnets [7] 

 

  
Figure 3. Closed-loop servo: Actuator (Pointer) – Sensors –  

PWM Driver (ICs, output stage and other circuitry) - Controller 

 

 Our basic, analytic and experimental developments 

unify nonlinear design, analysis and implementation. We 

report the systematic procedures in the design of tracking 

control laws. Experiments are reported to assess closed-

loop servos evaluating dynamic and steady-state 

performance, as well as overall capabilities. 

II. MODELS OF PERMANENT-MAGNET SERVOMOTORS 

We examine bidirectional 360-degree-of-rotation and 

limited-angle actuators. These radial- and axial topology 

actuators are designed within single-, two- and three-phase 

ac/dc electromagnetics and electric machine configurations. 

High-fidelity mathematical models are developed in [7]. In 

general, the circuitry-electromagnetic and torsional-

mechanical equations of motion are 

dt

d
s

ψ
iru += , Jαααα=ΣT,         (1) 

where u and i are the vector of the applied voltages and 

phase currents (for single- and three-phase actuators, u=ua,  

i=ia and u=[uas ubs ucs]
T
, i=[ias ibs ics]

T
); rs is the phase 

resistance; ψψψψ is the vector of flux linkages; αααα is the angular 

acceleration; ΣT is the net torque; J is the equivalent 

moment of inertia. 

 For the one-dimensional case, assuming that the 

friction torque is Bmωr, the torsional-mechanical dynamics 

Jαααα=ΣT leads to 

 ( )
Lrme

r TBT
Jdt

d
Σ−−= ω

θ 1
2

2

, 

or, ( )
Lrme

r TBT
Jdt

d
Σ−−= ω

ω 1
, 

r

r

dt

d
ω

θ
= ,       (2) 

where Bm is the friction coefficient; Te is the 

electromagnetic torque; ΣTL is the net load, perturbation, 

disturbance and other torques.  

 

2. 1. Direct-Drive Limited-Angle Actuators 

 Consider a bidirectional direct-drive axial topology 

actuator with a segmented array of permanent magnets as 

documented in Figure 2. These high-torque-density 

permanent-magnet actuators exceed performance and 

capabilities achieved by other servo-motors [7]. The 

electromagnetic design and optimization of the 

aforementioned actuators are reported in [7]. 

 The mathematical model is found to perform numerical 

analysis and design of control laws. Depending on the 

magnetization, the magnetic field developed by the magnets 

is approximated as continuous or discontinuous functions. 

For limited-angle actuators, which are shown in Figures 2 

and 3, depending on the geometry, structural design, 

magnetization and separations of magnets, one has 

 B(θr)=aθr, |B(θr)|≤Bmax,  

 B(θr)=Bmaxsin
2q−1

(aθr), or B(θr)=Bmaxtanh
2q−1

(aθr),  

where Bmax is the magnetic flux density from the permanent 

magnets as viewed at the coils; a is the magnetization-, 

technology- and size-dependent constant; q is the 

technology-dependent integer, and, usually q=1 or q=2.  

The magnetic coupling between the current loop 

(winding) and segmented permanent magnets leads to the 

electromagnetic torque. The electromagnetic torque can be 

derived using the magnetic dipole moment m, Te=m×B. For 

a straight filament (conductor) in a uniform magnetic field  

F=il×B, F=–iB×∫dl.          (3) 
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We assume optimal electromagnetic and mechanical 

designs. The electromagnetic forces FeL and FeR are 

developed by the right and left filaments. Thus,  

Te=TeL+TeR=R⊥ΣF=R⊥(FeL+FeR),       (4) 

where R⊥ is the perpendicular radius. 

Example 2. 1. Let B(θr)=Bmaxtanh
2q−1

(aθr), q=1, a>>1.  

From tanh(aθR)≈1 and tanh(aθL)≈1 (θR≠0 and θL≠0), 

one finds the expression for the electromagnetic torque 

Te i=TeL+TeR=2R⊥leqNBmaxia, 

where θR and θL are the relative angular displacements of 

the right and left filaments; N is the number turns in 

filaments; leq is the coil effective active length; ia is the 

current in the coil.           � 

The mathematical model is found by using Kirchhoff’s 

and Newton’s second laws [7]. The circuitry-

electromagnetic and torsional-mechanical equations (1) are 

dt

d
iru asa

ψ
+= , ( )

Lrme

r TBT
Jdt

d
Σ−−= ω

θ 1
2

2

.      (5) 

The expression for the induced emf is 

 õ= ⋅ = − ⋅ = − = −∫ ∫
r r r r
E t dl

d

dt
B t ds N

d

dt

d

dt
l s

( ) ( )
Φ ψ

. (6) 

Example 2. 2. Consider a typical magnetization with 

B(θr)=Bmaxtanh(aθr). 

 From õ ∫ ∫−=
out

in

i

i

r

r

ir
rdrdaB

dt

d
N

max

min

)tanh(
max

θ

θ

θθ , one finds 

 õ ( )
rRL

inout aaNB
rr

ωθθ tanhtanh
2

max

22

+
−

−= ,       (7) 

where θL(t)=θL0−θr(t) and θR(t)=θR0+θr(t); θL0=θR0=θrmax. 

From (5), a set of nonlinear differential equations 

which describes the dynamics of a limited-angle axial-

topology actuator is  

( ) ,tanhtanh
2

1
max

22









++

−
−−=

arRL

inout

aa

a

a uaaNB
rr

ir
Ldt

di
ωθθ

( )[ ],tanhtanh
1

max ξωθθ
ω

TTBiaaNBlR
Jdt

d
srmaRLeq

r −−−+= ⊥

r
r

dt

d
ω

θ
= , −θrmax≤θr≤θrmax,       (8) 

where La is the self-inductance; Ts is the restoring force, 

Ts=ks1θr+ks3θr
3
; ks1 and ks3 are the restoring constants 

(spring, permanent magnet and other schemes are used); Tξ 

is the stochastic torque (perturbations and disturbances).    � 

 The winding resistance rs varies due to temperature 

changes. The friction coefficient Bm can vary due to 

mechanical wearing, bending, changes of the operating 

envelope, etc. The equivalent moment of inertia J may vary. 

These parameter variations are accounted [7]. 

 

2. 2. Radial and Axial Topology Actuators 

 The mathematical models of rotational radial- and axial 

topology two- and three-phase actuators are found utilizing 

differential equations (1). The electromagnetic design, 

magnetization and magnet placement define the coupling 

magnetic field B(θr). One derives the resulting expressions 

for the emf õ and electromagnetic torque Te [6, 7].  

 Example 2. 3. For a single-phase axial-topology 

permanent-magnet motor one may have 

     B(θr)=Bmaxsin
2q−1

(½Nmθr) or B(θr)=Bmaxsgn[sin(½Nmθr)], 

where Nm is the number of magnets. 

 Using the electrical angular displacement θr, for two- 

and three-phase permanent magnet synchronous machines 

with (as and bs) and (as, bs and cs) windings, we have 

 Bas(θr)=Bmaxsin
2q−1

(θr) and Bbs(θr)=Bmaxcos
2q−1

(θr),  

and Bas(θr)=Bmaxsin
2q−1

(θr), Bbs(θr)=Bmaxsin
2q−1

(θr−⅔π), 

 Bcs(θr)=Bmaxsin
2q−1

(θr+⅔π). 

 The resulting electromagnetic design and equations of 

motion are straightforward to carry-out.         � 

 
III. CONTROL OF SERVO-SYSTEMS 

The differential equations (1) are nonlinear. 

Furthermore, for rotational radial- and axial topology two- 

and three-phase actuators, the applied voltages must be 

applied as a function of the rotor angular displacement θr. 

The magnitude of the applied PWM voltage uM is bounded. 

The FETs duty cycle dD is bounded as –1≤dD≤1. Thus, 

umin≤u≤umax. To control the applied voltage, we use the 

signal-level control voltage uc supplied to the comparator 

thereby defining the duty ratio of the FETs [7]. High-

performance drivers with two- and four-quadrant power 

stages and different switching configurations are used to vary 

the applied voltage supplied to the phase windings. 

The transient dynamics of ICs and power electronic 

circuitry are within the nanosecond range. These fast 

dynamics and parameter variations can be accounted as 

bounded uncertainties p∈P. The studied servo is modeled as 

uxpBxpFtx syssyssys ),(),()( +=& , y=Hx
sys

,      (9) 

where x
sys∈X

sys⊂ú
n
 is the state vector; u∈U⊂ú

m
 is the control 

vector; y∈Y⊂ú
b
 is the output vector; F(·,·) and B(·,·) are the 

smooth Lipschitz maps; H∈ú
b×c

 is the output matrix with 

constant coefficients. 

 

3.1. Design of Tracking Proportional-Integral Control Laws 

With State Feedback: Unconstrained Control 

 Consider the following model 

 uBxAtx
syssyssyssys +=)(& , y=Hx

sys
,      (10) 

where A
sys∈ú

n×n
 and B

sys∈ú
n×m

 are the constant-coefficient 

matrices.  

Example 3. 1. For the limited-angle servos, depending 

on permanent magnet magnetization, the governing equations 

of motion are derived. Consider the resulting model (8) 

which corresponds to B(θr)=Bmaxtanh(aθr). To maximize the 

torque, magnets are magnetized such that a>>1. One finds 

õ ≈ – kaωr, 

where ka is the back emf constant.  

From Te=TeL+TeR=R⊥leqNBmax(tanhaθL+tanhaθR)ia, we 

have Te≈2R⊥leqNBmaxia.  

Thus, the equations of motion (8) are simplified to 
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 ( )
araaa

a

a ukir
Ldt

di
+−−= ω

1 , 

 [ ]ξθω
ω

TkBiNBlR
Jdt

d
rsrmaeq

r −−−= ⊥ max
2

1
, 

 
r

r

dt

d
ω

θ
= , −θrmax≤θr≤θrmax. 

 That is, linear differential equations (10) result.           � 

The tracking error vector e∈ú
b
 is  

)()()()()( tHxtNrtytNrte sys−=−= .     (11) 

 To enable stability of the tracking error evolution, we 

define the evolution of de/dt as 

 uHBxHAeIte
syssyssys

E
−−−=)(& ,      (12) 

where IE∈ú
b×b

 is the identity matrix. 

Using the expanded vector x=[x
sys

  e]
T
, we have 
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sys

syssys
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sys

syssys

+=
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)(

)(
)(

&

&
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The space transformation method [6, 7] uses vectors 

[ ]
u

xz = , z∈ú
n+b+m

 and uv &= , v∈ú
m
     (14) 

We define the variables as 









=

u

x
z , z∈ú

n+b+m
 and uuv += & , v∈ú

m
.    (15) 

The evolution of the control function is governed by 

the following equation 

 vIuIu
UU

+−=& ,       (16) 

where IU∈ú
m×m

 is the identity matrix. 

From (10)-(16), one obtains the system 

 sys

zz

UU

HxyvBzAv
I

z
I

BA
tz =+=








+









−
= ,

0

0
)(& .    (17) 

Design Problem Formulation: Minimize the quadratic 

performance functional  

( )∫ +=

ft

t

z
T

z
T

dtvGvzQzJ

0

,       (18) 

subject to the system dynamics (17).          ~ 

 In (18), Qz∈ú
(n+b+m) × (n+b+m)

, Qz≥0, Gz∈ú
m × m

, Gz>0. 

 The Hamilton-Jacobi principle is applied. The first-order 

necessary condition for optimality ∂H/∂v=0 gives 

KzBGv
T
zz

1−−= .       (19) 

The Riccati equation  

 
ffz

T
zzz

T
zz KtKQKBGKBKAKAK =+−+=− − )(,1&    (20) 

is solved to find the unknown matrix K∈ú
(n+b+m)×(n+b+m)

. 

From (16) and (19), one has 
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From BuAxtx +=)(& , ( ) ( ) ( )AxtxBBBAxtxBu TT −=−=
−− )()(
11
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 Therefore, using (21), one obtains 

( ) ( )

( ) ( )
( ) ).()()()(

)()(

)()(

12111

1

2

1

21

1

2121

txKtxKtxKtxAKK

txBBBKtxABBBKK

AxtxBBBKxKuKxKtu

FFFFf

TT
f

TT
ff

TT
ffff

&&

&

&&

+=+−=

+



 −=

−+=+=

−−

−

    (22) 

From (22) and recalling that 







=

)(

)(
)(

te

tx
tx

sys

, one finds 

an optimal proportional-integral control law with state 

feedback. In particular,  
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For nonlinear systems (9), the proposed procedure can be 

straightforwardly used. One finds the proportional-integral 

control law with state feedback as 

,
][

),(0
)( 11 uI

ux

uxV

I
GuI

z

V
BGtu UT

T

U

zU

T

zz −
∂
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−=−

∂

∂
−= −−

& (24) 

where V(x,u) is the return function. 

 

 Example 3. 2.  

 Consider the so-called force/torque control problem. 

We examine the second-order translational- or rotational 

dynamics of mechanical systems which are modeled as 

 ux
dt

dx
+−=

1

1 , 
1

2 x
dt

dx
= , y=x2.      (25) 

 Here, x1 and x2 are the linear (angular) velocity and 

displacement; u is the control (force or torque).  

 The PID control law  

 u = kpe + ki∫edt + kdde/dt,      (26) 

is synthesized to be 

 u = 100e + 10de/dt, e=r – x2.      (27) 

 Using the state-transformation method, one obtains 
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010000000
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Gz=1. From (23) one has 
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=+= τττ dKKdxKtxKtu

e

x

x

F
e

x

x

FFF 2

1

2

1

2121
)()()( (28) 

 The following feedback matrices are found 

 KF1=[–11.83   0   0] and KF2=[–80.75   –1   –234.78]. 

 Figure 4 reports the simulation results for linear closed-

loop systems (25)-(27) and (25)-(28) if the reference signal 

is r=±1. The evolution of the output y=x2 is of our particular 

interest. Control law (28) ensures better closed-loop system 

performance than compared with PID control (26).  

 In electromechanical, electronic, mechanical and other 

systems, there are limits on control efforts. That is, due to 

mechanical, electromagnetic and other physical limits, 

control u is constrained as umin≤u≤umax.  

 Thus, we have control laws with bounds, and 

 u = kpe + ki∫edt + kdde/dt, umin≤u≤umax,     (29) 

1605



 

 ∫ 







+








= τdKKtu

e

x

x

F
e

x

x

F 2

1

2

1

21
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 For –20≤u≤20, the simulations of system (25) with 

control laws (29) and (30) are documented in Figure 5. 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time, t [sec]

r 
 a

n
d
  

x
2

Output Dynamics, y

(a) PID Control 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time, t [sec]

Output Dynamics, y

(b) Tracking Control 

Figure 4. Output dynamics of the closed-loop systems with: 

(a) Proportional-derivative control law; (b) Tracking control law. 

0 1 2 3 4 5 6 7 8 9 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time, t [sec]

r 
 a

n
d
  

x
2

Output Dynamics, y

(a) PID Control, –20≤u≤20 

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time, t [sec]

Output Dynamics, y

     (b) Tracking Control, –20≤u≤20 
Figure 5. Output dynamics of the closed-loop systems with control 

bounds –20≤u≤20: (a) Proportional-derivative control law; (b) 

Tracking control law. 

 

 If the amplitude of the reference signal r(t) increases, 

the closed-loop system with a bounded PID control law 

(29) becomes unstable. In contrast, the tracking control law 

with state feedback (30) guarantees stability and robustness 

in the expanded envelopes XE despite control bounds.       �    

 

3.2. Constrained Control 

 The control law is bounded as umin≤u≤umax. To design the 

admissible control laws, we minimize [6-10] 

 ( )[ ] ,)(
0

1
dtGduuQxxJ

ft
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TT
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−Φ+=      (31) 

where Φ(·):ú
n+b→ú

m
 is the bounded, integrable, one-to-one, 

real-analytic globally Lipschitz continuous function, 

Φ∈U⊂ú
m
. 

 Minimizing (31), for linear and nonlinear systems with 

umin≤u≤umax, u∈U, we have 
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 Using the first-order necessary condition for optimality, 

an admissible control law is found to be [6-10] 

 








∂

∂
Φ−= −

x

V
BGtu

T1)( , u∈U.       (34) 

 The solution of the Hamilton-Jacobi equation is 

approximated by the quadratic or non-quadratic return 

function. One obtains control laws with linear and nonlinear 

switching surfaces, respectively. The admissible control law 

(34) is bounded. The second-order necessary condition for 

optimality is satisfied. However, the sufficient conditions 

must be examined. The admissibility concept is applied [8].  

 Applying the state transformation method an using the 

quadratic return function, one obtains 

 ( )∫+Φ= ττ dxKtxKtu
FF

)()()(
21

, u∈U.      (35) 

 Theorem 3. 1. A closed-loop system with a bounded 

control law u∈U (35) is robustly stable in X(X0,U,P), and, 

robust tracking is guaranteed in the convex and compact set 

E(E0,Y,R), if for the reference input r∈R and uncertainties 

(parameter variations, unmodeled dynamics, etc.) p∈P, there 

exists a Ck (k$1) positive-definite function V(e,x), such that 

for a closed-loop system (9)-(35) 

 V(e,x)>0 and 0
),(

≤
dt

xedV
    (36) ~ 

 If the criteria imposed on the Lyapunov pair (36) are 

guaranteed for all x0∈X0, e0∈E0, u∈U, r∈R and p∈P, the 

closed-loop system is robustly stable in X(X0,U,P) and robust 

tracking is guaranteed in E(E0,Y,R). By explicitly deriving the 

total derivative for V(e,x), the unknown feedback gains can be 

found to satisfy the sufficient conditions for stability. In 

particular, inequality 0
),(

≤
dt

xedV
 should be solved.  

 

3.3. Implementation of Control Laws 

 The designed analog control laws can be 

straightforwardly implemented using operational amplifiers. 

Furthermore, arbitrary complexity filters can be implemented 

using operational amplifiers. If needed, microcontrollers can 

be used. Analog controllers are discretized using the 

sampling period Ts. For example, the feedback gains kdp and 

kdi of the digital control law are found using the proportional, 

integral, and derivative coefficients of the analog PID 

control law as well as Ts. We have   kdp=kp–½kdi and 

kdi=Tski. The controller can be realized as 

( ) ( ) ( ) ( )[ ]∑ =
+−+=

k

i sssisps
iTeTieTkkTekkTu

12

1
)1( . 

 The proportional-integral controllers with the state 

feedbacks are implemented in the similar way. 

 

IV. CONTROL OF A HIGH-PERFORMANCE SERVO 

 We study pointing systems and hard drives. The 

requirements are to guarantee accurate and fast tracking and 

repositioning, eliminate steady-state positioning error 

(tracking error), attenuate disturbances, minimize the 

settling time, ensure robustness to parameter variations, etc. 

The specific features are the random disturbances due to 

non-uniformity, kinematics deviations, etc. Figure 3 

illustrates the servo configuration and hardware test bed. 
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 The actuator parameters are: ra=7 ohm, La=1×10
–4

 H, 

Bmax=0.7 T, a=50, N=100; R⊥=0.02 m, leq=0.01 m, 

Bm=5×10
–8

 N-m-sec/rad and J=23×10
–7

 kg-m
2
.  

 Using the tracking error e(t), PID and proportional-

integral with state feedback control laws are designed, 

examined and tested. The angular displacement θr is 

measured by a high-accuracy sensor. The third-order notch 

filter attenuates the high-frequency noise.  

 Using the pole-placement approach, as well as 

Lyapunov theory, the feedback coefficients kp and ki of (26) 

are found. In general, the pole-placement concept may not 

ensure the desired eigenvalues despite coherent attempts to 

assign the adequate characteristic eigenvalues due to the 

control bounds. Using the quadratic function 

 V(e,x)=½(ia
2
+ωr

2
+θr

2
+e

2
), V(e,x)>0,  

for the closed-loop system we apply the following inequality  

 2),(
eq

dt

xedV
e−≤ , qe=1.  

 The sufficient conditions are used to study the stability 

of the closed-loop system in X(X0,U,P) and E(E0,Y,R). The 

PID control law (26) was experimentally verified. It is found 

that the assigned poles are not guaranteed due to the 

saturation and nonlinearities even for small r∈R. 

Furthermore, the system is sensitive to parameter variations 

and noise. The analog PI control algorithm is discretized 

and implemented using a microcontroller. It is found that 

digital controllers do not provide advantages, and that 

analog control schemes are the preferable solutions. 

 We tested a direct-drive servo with and without a 

restoring spring which is commonly used to ensure 

mechanical damping. The results are reported without the 

restoring spring. The output dynamics with different 

feedback gains kp and ki were observed. The reference is 

θref=0.349 rad or θr=20.2
o
. As evident from Figure 6, the PI 

controller does not ensure the desired performance, such as, 

specified tracking accuracy, repositioning time, etc.  

 The desired tracking accuracy and other required 

performance quantities are achieved using the proportional-

integral control with state feedback (23). We use the 

expanded state vectors, and 

 x
sys

=[ia  ωr  θr]
T
, x=[x

sys
  e]

T
, z=[x  u]

T
. 

 Solving (20), from (22), the feedback matrices KF1 and 

KF2 are obtained. The control law (23) is implemented using 

analog ICs. The output dynamics are shown in Figures 6 for 

two different designs cases. In particular, changes of Qz and 

Gz result in different KF1 and KF2. The settling time and 

overshoot were minimized. A closed-loop servo-system 

operates at very high efficiency. High electromagnetic torque 

is developed to accurately reposition the pointer within 

minimum time. We conclude that optimal or near-optimal 

performance and capabilities are achieved 

 

 

refθ

rθ

refθ

rθ
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Figure 6. Output dynamics of the closed-loop servo with the 

bounded PI and proportional-integral controller with state feedback 

 

V. CONCLUSIONS 

 High-performance electromechanical systems, which 

are comprised from permanent-magnet actuators, sensors, 

PWM drivers and ICs, were studied. The major goal of this 

paper was to solve the motion control problem performing 

analysis and design of minimal complexity systems. 

Mathematical models were developed and used to design 

unbounded and bounded control laws. These control laws 

were implemented using operational amplifiers, ASICs and 

microcontrollers. Closed-loop system performance and 

capabilities (stability, accuracy, settling time and other) were 

examined. Near-optimal performance and exceptional 

capabilities were achieved and demonstrated. The reported 

results in the design of servo-systems are directly applied to 

other high-performance systems allowing one to achieve a 

spectrum of requirements and specifications commonly 

imposed on servo-drives and servomechanisms. 
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