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Abstract— We study a simple game-theoretical model of lan-
guage evolution in finite populations. This model is of particular
interest due to a surprising recent result for the infinite pop-
ulation case: under replicator dynamics, the population game
converges to socially inefficient outcomes from a set of initial
conditions with non-zero Lesbegue measure. If finite population
models do not exhibit this feature then support is lent to the
idea that small population sizes are a key ingredient in the
emergence of linguistic coherence. It has been argued elsewhere
that evolution supports efficient languages in finite populations
using the method of comparing fixation probabilities of single
mutant invaders to the inverse of the population size. We instead
analyze an alternative generalization of replicator dynamics
to finite populations that leads to the emergence of linguistic
coherence in an absolute sense. After a long enough period
of time, linguistic coherence is observed with arbitrarily high
probability as a mutation rate parameter is taken to zero. We
also discuss several variations on our model.

I. INTRODUCTION

A. Background

It is difficult to discount the import of language in the

success of our species. Human language allows us to spread

information at speeds that vastly outstrip the pace of biolog-

ical evolution. Thus language can be seen as the technology

that enables evolutionary change on cultural timescales.

Nevertheless, how language first emerged remains somewhat

of a mystery. Compounding the issue is a scarcity of physical

evidence of the earliest speakers [1]. Two novel approaches

to the study of language evolution have emerged in recent

decades: genomics [2] and mathematical modeling (for a

review, see for instance [3]). We concentrate on the latter.

Mathematical modeling of language evolution is especially

useful for checking the internal consistency of proposed

theories. Alternatively, this endeavor is capable of provid-

ing insights into language learning in artificially intelligent

systems [4], [5].

A popular approach to explaining language origins is the

suggestion that the first languages were simple, possibly

gestural [1] linkings from object to symbol. These proto-

languages are the predecessors of modern compositional

languages. The fundamental problem with the emergence

of useful proto-languages is that of cooperation [6]. It is

advantageous for many members of a population to associate

symbols with objects consistently, but how does such a
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convention emerge? Invoking a particular symbol to refer

to an object is only useful after a significant portion of

the population has already adopted such a mapping. Game

theory has proven to be a useful framework for studying

these simple proto-language models [7], [8], [9], [10], [11],

[12], [3].

We mention in passing that the problem we study can also

be interpreted as a model of economic signaling [7], [8], [12],

[13], although we do not explore this possibility here.

B. The Language Game

We consider a simple language game, first proposed in

a substantially similar form in [13], and reformulated more

recently in [9]. Each player’s strategy (or language) is a pair

of matrices (P,Q) ∈ B
m×n×B

n×m ≡ Lm×n, where B
m×n

is the set of binary (having elements from {0, 1}), row-

stochastic m×n matrices and Lm×n is the set of languages.

There are n2m2 languages in Lm×n. We refer to the two

matrices as the speaker and hearer matrices, respectively.

The speaker matrix maps objects to symbols, and the hearer

matrix maps symbols to objects. Every player has the same

set of languages available to them. The utility of player i
with language (Pi, Qi) is

ui((Pi, Qi), (P̄ , Q̄)) ≡
1

2
Tr(PiQ̄) +

1

2
Tr(P̄Qi)

where (P̄ , Q̄) are the average of the speaker and hearer

matrices, respectively, over the entire population. We depart

from the more conventional notation of utilities depending

on the joint strategies to emphasize that individuals interact

with the entire population and do so anonymously. Note that

ui does not depend on i other than through (P i, Qi). The

two terms on the right hand side correspond to speaking and

hearing, respectively. We can rewrite one of these terms as

Tr(PQ) =

n
∑

k=1

m
∑

j=1

PkjQjk

where Pkj is the kj th element of P and similarly for Q.

We interpret this as follows: The internal summation is for a

fixed object k. Only a single Pkj equals one due to the row-

stochasticity. This is the symbol j that the speaker matrix P
associates with object k. If the hearer Q associates symbol

j with object k (i.e. Qjk = 1) then there is a contribution of

one to the utility for object k. The total utility is computed

by summing over the objects and weighting contributions

from speaking and hearing equally. We include (P i, Qi) in

(P̄ , Q̄) in order to streamline the notation, but all of our

results can easily be extended to the case where there are no

self-interactions.
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This model can be augmented to accommodate differ-

ing weights for different symbols and events [8] although

we do not consider this here. Characterization of various

static equilibria for this model are carried out in [10], and

corresponding dynamic models are considered in [9]. A

discussion of robustness with respect to the specified learning

dynamics can be found in [7]. We have up until now left the

computation of (P̄ , Q̄) from the joint strategy intentionally

vague so that the same model can be used in both the infinite

and finite population settings. We first describe the infinite

population case.
1) Infinite Populations: The standard technique for mod-

eling infinite populations is to consider a continuous mass

of players [14]. There are n2m2 languages in Lm×n so we

define the population state space as X = S
n2m2

where S
r

is the r-dimensional simplex. We confer any ordering on

Lm×n so that each element xi of a state x ∈ X gives the

fraction of the population that speaks a particular language. It

follows that the subscripts (Pi, Qi) refer to the i’th language

in Lm×n (not the i’th player) in this setting and similarly

for the utilities ui. We can then compute

(P̄ , Q̄) = (

m2n2

∑

i=1

xiPi,

m2n2

∑

i=1

xiQi),

the average language in the population at large. The standard

evolutionary dynamic for studying games of this type is the

replicator dynamic

ẋi = xi[ui((Pi, Qi), (P̄ , Q̄))− ū((P̄ , Q̄))]

= xi[
1

2
Tr(PiQ̄) +

1

2
Tr(P̄Qi)− Tr(P̄ Q̄)]

for i = 1, ..., n2m2. The term ū((P̄ , Q̄)) = Tr(P̄ Q̄) is

the payout to the average of the population when it plays

against itself. We will use this quantity as our measure of

social welfare. The replicator dynamic is imitative: an unused

strategies is never subsequently taken up. It follows that

each vertex of the simplex is a rest point of the dynamic.

What is surprising about the behavior of this system is

that there are many neutrally stable strategies (sometimes

referred to as weak evolutionarily stable strategies) where

social welfare is not maximized that the system will converge

to from a set of initial conditions with non-zero Lebesgue

measure [12]. This is troubling for proponents of the simple

proto-languages explanation of language origins. The retort

is that small populations, where mutations can impact the

population state, were integral to the formation of the first

proto-languages.
2) Finite Populations: In the finite case, we consider N

players and a population state space X = LN
m×n. For the

population state x ∈ X we let xi = (Pi, Qi) refer to the

language of player i. We can compute

(P̄ , Q̄) = (
1

N

N
∑

i=1

Pi,
1

N

N
∑

i=1

Qi).

We reiterate that in this setting the subscript in xi refers to

the player while in the infinite population setting it refers to

the language.

One issue with analyzing the language game in finite pop-

ulations is that there are many different ways to generalize

replicator dynamics and evolutionarily stable strategies (the

associated static equilibrium concept) to finite populations

(see for instance [15]). One particular approach [6] is to

consider the limit of weak selection where the contribution

of utility to an otherwise uniform reproductive fitness is

taken to zero. For some analytical results associated with this

solution concept, see for instance [16]. This is the approach

taken in [11]. In that model, one player is selected at random

proportional to its fitness and then a second randomly chosen

player adopts the first player’s language. It is shown that, in

the limit of weak selection, population states that maximize

social welfare are the only states for which no mutant

strategy has a fixation probability higher than 1/N . This

analysis is used to argue that evolution directs the system

towards linguistic coherence. However, it is clear that this

particular model as specified will not, in general, converge

to a socially efficient state with high probability. Such would

require analyzing a system that exhibits stronger selection—

this is the idea that is pursued in this paper.

Specifically, in Section III we propose a model of re-

production in populations in which a randomly selected

individual adopts the language of one of the players that

has the current highest utility. That is, unless a mutation

occurs with probability ǫ in which case a random language

from Lm×n is adopted. We analyze this model in the small

mutation rate limit. The resulting prediction of linguistic

coherence is in the form of stochastic stability, a concept

introduced to study the evolution of social conventions, but

not previously suggested in relation to the language game.

We review stochastic stability in Section II. Since stochastic

stability is sensitive to the manner in which the mutations

are applied [17], we also discuss variations on our model in

order to support the view that our results are not especially

sensitive to specific features of the model (Section IV).

This paper makes three novel contributions: we analyze a

stochastic, finite population model of the language game

exactly for the case of strong selection, we draw a connection

between the study of the evolution of social conventions

and language evolution, and we suggest that non-equilibrium

models like our own are adequate to explain the observed

drift in languages over time.

In the next section, we briefly review the concept of

stochastic stability.

II. STOCHASTIC STABILITY

This introduction to the notion of stochastic stability will

draw heavily from the presentation of Young [18] in the

context of social conventions. We will develop these concepts

here with an eye for brevity. We will consider a Markov

process P 0 on a finite state space Z . We will restrict our

interest to perturbations to this process of a specific form,

defined below.

Definition 2.1: Let P ǫ be a Markov process on Z for each

ǫ ∈ (0, ǭ]. The process P ǫ is a regular perturbed Markov

process if P ǫ is irreducible and aperiodic for every ǫ ∈ (0, ǭ]
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and for each z, z ′ ∈ Z we have

lim
ǫ→0

P ǫ
zz′ = P 0

zz′ ,

and if P ǫ
zz′ > 0 for some ǫ > 0, then

0 < lim
ǫ→0

P ǫ
zz′/ǫr(z,z

′) < ∞

for some r(z, z′) ≥ 0.
The value r(z, z ′) ∈ R is called the resistance of the

transition z → z′. Clearly, r(z, z′) must be uniquely defined

in order to satisfy the condition. Also, P 0
zz′ > 0 if and only

if r(z, z′) = 0. That is, transitions that occur with non-zero

probability under P 0 have zero resistance. Transitions that

never occur can be considered as having infinite resistance

so that r(z, z′) is always defined.

For each ǫ, there is a unique stationary distribution, µ ǫ,

associated with P ǫ (by its irreducibility and aperiodicity).

We can now formally define stochastic stability.

Definition 2.2: A state z is stochastically stable (Young,

1993) if

lim
ǫ→0

µǫ(z) > 0.

It has been shown elsewhere that the above limit exists for

every z so that every regular perturbed Markov process has

at least one stochastically stable state. These states are the

ones that the system spends most time in over the long run

when ǫ is small. It should be noted that the stochastically

stable states correspond to the perturbed process P ǫ. That is,

which states survive in the presence of the perturbations will

depend on how the perturbations are introduced. It is possible

to arrive at different stochastically stable states for the same

process P 0 by applying the perturbations differently. Also,

the stochastically stable states correspond to the limiting case

of ǫ approaching zero, and are not always particularly likely

to be observed when ǫ is not small. Next we will describe

how to compute the stochastically stable states.

A. Resistance Trees

A recurrent class of a Markov process is a set of states

such that from any state in the set one can reach any other

state in the set in finite time with positive probability, and no

state outside the set is accessible from any state inside it. Let

P 0 have K recurrent classes E1, E2, ..., EK . We will define

for every distinct pair of recurrent classes Ei and Ej , i �= j,

a sequence of states ζ = (z1, z2, ..., zq), z1 ∈ Ei, zq ∈ Ej

called an ij-path. The resistance of the path is the sum of

resistances in the sequence, r(ζ) = r(z1, z2) + r(z2, z3) +
... + r(zq−1, zq). We further denote rij = min r(ζ) as the

ij-path with least resistance. rij is always positive because

there cannot be a zero resistance path between two distinct

recurrent classes.

Now, for each recurrent class Ej , construct a tree rooted

at a vertex j corresponding to Ej . That is, a set of K − 1
directed edges such that each Ei, i �= j is represented by

a vertex i and there is a unique directed path from any

vertex different from j to j. The resistance of such a tree

is the sum of the resistances rij on the K − 1 edges.

The stochastic potential γj of the recurrent class Ej is the

minimum resistance among all such trees rooted at j. We

expect the recurrent classes of minimum stochastic potential

to be the most likely when ǫ is small. This result has been

formalized [19] as follows:

Theorem 2.1: Let P ǫ be a regular perturbed Markov

process, and let µǫ be the unique stationary distribution of

P ǫ for each ǫ > 0. Then limǫ→0 µ
ǫ = µ0 exists, and µ0 is a

stationary distribution of P 0. The stochastically stable states

are precisely those states that are contained in the recurrent

class(es) of P 0 having minimum stochastic potential.

Next we derive a bound on the stochastic potential of a state

based on the construction of greedy, or myopic, forests. The

bound will be tight for the models we analyze below.

B. Myopic Forests

In this section we introduce a lower bound on the stochas-

tic potential of a recurrent class based on myopic forests.

In the case that a myopic forest can be constructed that is

itself a resistance tree, the bound is tight and the potential

is the minimum over all resistance trees for that recurrent

class. A tree has minimum resistance when the sum of all

the resistances is minimum. A myopic forest minimizes the

resistance of each outgoing edge individually without any

connectedness constraint1.

Lemma 2.1: Let P ǫ be a regular perturbed Markov pro-

cess with E1, E2, ..., EK the recurrent classes of P 0, then

for any recurrent class j we have

γj ≥
∑

i�=j

min
k �=i

(rik),

and the relationship is satisfied with equality whenever

there exists a myopic forest ({1, ...,K}, {(ik) : k ∈
argmink �=irik}) that is a tree rooted at j.

Next we present our dynamic model.

III. THE DYNAMIC MODEL

The N players play the language game with the following

model of reproduction. At each time t select an agent i
at random according to some distribution F (x) satisfying

Pr [F (x) = i] > 0 ∀i ∈ {1, ..., N}, x ∈ X . Let

xi[t+ 1] =

{

x
k̂
, w.p. 1− ǫ

rand(L), w.p. ǫ,

where k̂ = argmaxkuk((Pk[t], Qk[t]), (P̄ [t], Q̄[t])), and

rand(L) refers to the language given by sampling from the

set of possible languages uniformly. Furthermore let

xj [t+ 1] = xj(t) ∀ j �= i.

In words, we select a random agent and assign him the

language of an individual with a utility that is currently

highest, or with small probability we assign a random

language instead. This dynamic model gives a perturbed

Markov processes Pm×n,N for particular values of m,n,N .

We call a state homogeneous if for some l ∈ Lm×n we

1We omit most proofs from this manuscript. An extented online version
with full proofs can be accessed from the author’s website.
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have x = (l, l, ..., l). Clearly the absorbing states of the

unperturbed process are precisely the homogeneous states.

We next compute the stochastically stable states of this

process, first for the case where m = n and then for m > n
(n > m is then implied by symmetry). Recall that, in the

long run, the process spends an arbitrarily large proportion

of its time in the stochastically stable states as ǫ goes to zero.

A. The m = n Case

We will want to make use of the bound we introduced in

Lemma 3.1. In order to do so we must compute some mini-

mum resistances from homogeneous states. First consider ho-

mogeneous states that maximize linguistic coherence. These

are the states that satisfy Tr(P̄ Q̄) = n. This condition im-

plies that Tr(PiQi) = n ∀i ∈ {1, ..., N}. We call languages

satisfying this condition aligned. We call the homogeneous

states corresponding to aligned languages optimal. The next

lemma characterizes the minimum resistance from optimal

states.

Algorithm 1 Repair(P,Q)

1: Q̂0 ← P
T

2: K2 ← {k ∈ {1, ..., n} :
∑

j Q̂
0
kj ≥ 2}

3: K̂2 ← {k ∈ K2 :
∑

j Q̂
0
kjQkj = 1}

4: let qk = (qk1 , ..., q
k
m) = ex s.t. Q̂0

kx = 1 for each k ∈
K2 − K̂2

5: Q̂1
ij ←











Q̂0
ij , i /∈ K2

Qij , i ∈ K̂2

qij , i ∈ K2 − K̂2

6: let Q′ be any binary, row stochastic, and column sub-

stochastic n×m matrix satisfying Q′
ij ≥ Q̂1

ij ∀ i, j
7: let P ′ be any binary, row stochastic m × n matrix

satisfying P ′
ij ≥ Q′

ji ∀ i, j
8: return (P ′, Q′)

Lemma 3.1: When m = n the minimum resistance from

an optimal state to any other state is ⌈N/2⌉ and this is

achieved by any other optimal state.

Proof: Suppose a majority of agents speak optimal

language l0 in state x. Furthermore, suppose there are K
other languages in x, referred to as lk, k ∈ {1, 2, ...,K}.

Note that previously we used lk to refer to the language of

agent k. Let mk be the number of agents speaking lk in x.

Suppose agent i speaks l0 = (P0, Q0) and agent j speaks

lr = (Pr , Qr), r �= 0. Let eP (resp., eQ) be the number

of rows that P0 and Pr (resp., Q0 and Qr) differ in. Now

compute ui((P0, Q0), (P̄ , Q̄))− uj((Pr , Qr), (P̄ , Q̄))

=
1

2
Tr(P0

1

N

K
∑

k=0

mkQk) +
1

2
Tr(

1

N

K
∑

k=0

mkPkQ0)

−
1

2
Tr(Pr

1

N

K
∑

k=0

mkQk)−
1

2
Tr(

1

N

K
∑

k=0

mkPkQr)

=
1

2
Tr((P0 − Pr)

1

N

K
∑

k=0

mkQk)

+
1

2
Tr(

1

N

K
∑

k=0

mkPk(Q0 −Qr))

=
1

2
Tr((P0 − Pr)

1

N
m0Q0) +

1

2
Tr(

1

N
m0P0(Q0 −Qr))

+
1

2
Tr((P0 − Pr)

1

N

K
∑

k=1

mkQk)

+
1

2
Tr(

1

N

K
∑

k=1

mkPk(Q0 −Qr))

≥
1

2

1

N
ePm0 +

1

2

1

N
eQm0 −

1

2

1

N
eP

K
∑

k=1

mk

−
1

2

1

N
eQ

K
∑

k=1

mk

=
1

2

1

N
(eP + eQ)(m0 −

K
∑

k=1

mk) > 0

The second-to-last inequality follows from the fact that

|Tr((A − B)C)| is always less than the number of mis-

matched rows among A,B when A,B,C ∈ B
m×n. The last

inequality follows from the assumption that a majority of

individuals speak l0. Since l0 speakers have the highest utility

as long as they have a majority, we require enough mutations

to institute a new majority aligned language, which is ⌈N/2⌉
starting from the state homogeneous in l0. Afterwards, the

state can become homogeneous in the new language without

resistance.

From states that are not optimal we can always reach some

optimal state with resistance equal to one. The optimal state

we can reach depends on the state that we start from. This is

because any language that is not aligned has a corresponding

aligned language that, when introduced via mutation, has

utility as least as high as the incumbent. We use the Repair

algorithm to find this language. We will use this algorithm

for the m �= n case as well, so we assume w.l.o.g. below that

m ≥ n. The idea of Repair is to construct a new Q-matrix

that is close to P
T

. This is because Tr(PP
T

) = m, so P
T

is always “close” to a good hearer matrix with respect to

P -speakers. We say “close” because P
T

will not, in general,

be row stochastic. We begin by massaging Q̂0 = P
T

into

a row sub-stochastic matrix Q̂1 (lines 1-5). The rows of Q̂0

that sum to 1 are left unchanged. We distinguish two cases

for when a row of Q̂0 sums to more than 1. That is, rows
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that give a positive dot product with their corresponding row

in Q (lines 2-3) and those that do not. This is because we

will eventually obtain our speaker matrix P ′ from our hearer

matrix Q′ so we must anticipate how well this matrix speaks

to Q. Any of the 1’s in a row of Q̂0 suffice to correctly

associate the corresponding symbol received via P , however,

at most one of these 1’s is in the same position as the 1 in

the corresponding row of Q. Therefore, when it is possible

to satisfy both interests we do so. The matrix Q̂1 is then

row sub-stochastic— it may still contain zero rows. In line 6

we add 1’s to these zero rows to get a proper hearer matrix

Q′ that is column sub-stochastic. Since Q′ is column sub-

stochastic its transpose is row sub-stochastic so line 7 merely

adds 1’s to zero rows in order to get a row stochastic P ′.

Example: Repair

(P,Q) =









0 1 0
0 1 0
1 0 0



 ,





1 0 0
0 1 0
0 1 0







 ,

⇒ Repair(P,Q) =









0 0 1
0 1 0
1 0 0



 ,





0 0 1
0 1 0
1 0 0







 . §

The next two lemmas establish the behavior of Repair.

Lemma 3.2: (P ′, Q′) =Repair(P,Q) is an aligned lan-

guage for any (P,Q).
Lemma 3.3: Every suboptimal homogeneous state can

reach an optimal state with resistance one.

We can now give the main result for the m = n case.

Theorem 3.1: For any N ≥ 3 and any m ≥ 2 the

stochastically stable states of the process Pm×m,N are the

optimal states.

Next, we develop a similar result for the case of m > n.

B. The m > n Case

We will again utilize Lemma 3.1. The minimum resistance

targets from sub-optimal states are the same as in the m = n
case. However, the minimum resistance targets from optimal

states are different in this case.

Lemma 3.4: The minimum resistance between an optimal

state and any other state is 1, and this is achieved by an

optimal language.

Every homogeneous (absorbing) optimal state can tran-

sition to some other homogeneous optimal states with re-

sistance 1. Are there any optimal states that cannot be

reached via a sequence of transitions through optimal states,

each having resistance 1? We answer this question in the

affirmative with a constructive algorithm called Path, whose

details are ommited from this manuscript.

Lemma 3.5: The Path algorithm takes two aligned lan-

guages, one initial and one final, and returns a sequence

of aligned languages linking the associated initial and final

optimal states via transitions of resistance 1.

We can now state our main result for the m > n case.

Theorem 3.2: For any N ≥ 3 and any m > n ≥ 2 the

stochastically stable states of the process Pm×n,N are the

optimal states.

In the next section, we show that the results of Theorems

3.1 and 3.2 also apply to several different variations on the

reproduction dynamics.

IV. OTHER DYNAMIC MODELS

The reproduction dynamics of Pm×n,N rely on an impor-

tant assumption: only the individuals with the highest utility

are able to spread their language to others (other than via

mutation). Thus, the dynamic can be considered strongly

selective. In this section we introduce three variations on the

reproduction dynamics that relax this assumption. These are

twice-perturbed dynamics, pairwise competition dynamics,

and pairwise competition on a fixed competition graph. In

each case we argue informally that the dynamics give the

same set of stochastically stable states.

A. Twice-perturbed Dynamics

In a more realistic model we should expect to see lan-

guages not giving the highest utility reproducing themselves

some of the time. We can model this phenomenon as a

second perturbation to the process. At time t, select a

language

(P ′, Q′) =

{

x
k̂
[t], w.p. 1− ρǫ

xrand({1,...,N})[t], w.p. ρǫ

where k̂ = argmaxkuk((Pk[t], Qk[t]), (P̄ [t], Q̄[t])). Then

select an agent i according to F as before. Let

xi[t+ 1] =

{

(P ′, Q′), w.p. 1− ǫ

rand(L), w.p. ǫ,

and let

xj [t+ 1] = xj [t] ∀ j �= i,

where ρ ∈ (0, 1/ǫ). In our original dynamics, the perturba-

tions corresponded to mutations. We now have an additional

perturbation that corresponds to less fit languages reproduc-

ing. This new perturbation can occur with any probability

proportional to ǫ. It is easy to verify that these two processes

have the exact same set of stochastically stable states. This

is because mutation alone still gives a probability of less

fit languages reproducing that is proportional to ǫ. Next, we

consider a dynamic that relaxes the strength of selection in

a different manner.

B. Pairwise Competition Dynamics

Another way to arrive at a weaker form of selection

is to suppose that rivalries determine which individuals

get the opportunity to reproduce themselves. Thus an in-

dividual whose utility is not greater than all others may

still spread his language by overtaking a rival with an

even smaller utility. At time t, select two players i and j
with i �= j according to a random process over the pairs

F (x[t]) that is bounded away from zero. Assume with-

out loss of generality that ui((Pi[t], Qi[t]), (P̄ [t], Q̄[t])) ≥
uj((Pj [t], Qj [t]), (P̄ [t], Q̄[t])). Let

xj [t+ 1] =

{

xi[t], w.p. 1− ǫ

rand(L), w.p. ǫ,
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and let

xk[t+ 1] = xk(t) ∀ k �= j.

We still compute utilities in the same manner as before.

These dynamics can be interpreted as having agents compete

over reproductive resources (food, mates, nesting sites, etc.)

locally, but with their fitnesses determined from global

considerations. Clearly, an agent not speaking the most fit

language will often overtake an agent speaking an even less

fit agent in this model. It is straightforward to demonstrate

that these dynamics give the same resistances as our original

reproduction model. Hence they have the same stochastically

stable states.

An important feature of pairwise competition is that in

the long-run, every player competes with every other player

infinitely often. In the next section we consider the opposite-

extreme case where the competition graph is fixed for all t.

C. Pairwise Competition Dynamics on a Fixed Graph

Suppose there is a connected graph G = ({1, ..., N}, E)
describing rivalries amongst the players. Now consider a

modified version of pairwise competition dynamics where

at each time t we select an edge from E, giving us our

two players i and j. Assume that the edges are selected

according to any process that gives a probability of selecting

a particular edge that is bounded away from zero. Here too,

the resistances, and hence the stochastically stable states will

be the same as in our original model. The key to seeing

this is to note that whenever the state is not homogeneous

there is at least one edge at which the players speak different

languages. Since pairwise competition only changes the state

when two such agents compete, the dynamics have the same

qualitative behavior in the long run.

V. DISCUSSION

We analyzed this process separately for the cases where

the number of objects and symbols agree and disagree. In

the more natural setting where the number of objects and

symbols disagree we showed that we could transit between

any two optimal states through a sequence of optimal states

requiring only one mutation per transition. This (along with

the non-equilibrium nature of the process) concords with

the observed phenomenon of drift in languages. That is,

languages seem to change over time (see for instance, [20])

in a manner that is neutral with respect to the expressiveness

of the language. The presence of synonyms and homonyms,

exploited in our Path algorithm, seems a reasonable mech-

anism for this action.

A. Future Directions

We considered only the situation where mutations select

from the entire set of possible languages. It is more natural

to consider point mutations. That is, when a mutation occurs

the mutating individual modifies only a single row of one of

the matrices he would have adopted without mutation. This

case requires some additional arguments that we present in

an upcoming paper.

A second feature of the model that can be generalized is

the form of the utility. Although we considered more local

interaction frameworks in the form of pairwise competition

and pairwise competition on a graph, we still computed

the utility in a manner reflecting a global interaction. It is

possible to instead compute each agents utility based on

their ability to communicate with some subset of the total

population. This subset could come from either some fixed,

exogenous graph or some endogenous considerations. An

interesting question that emerges when considering these

circumstances is the problem of linguistic diversity. What

conditions are needed for heterogeneous states to persist

in the population with non-vanishing frequency? Can we

quantify network effects on social welfare? These are among

the interesting questions that can be studied by considering

generalizations to the utility functions of this game that move

away from the “everyone talks to everyone” paradigm. These

extensions are being pursued by the authors.
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