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Abstract— A new formulation of the particle filter for non-
linear filtering is presented, based on concepts from optimal
control, and from the mean-field game theory. The optimal
control is chosen so that the posterior distribution of a particle
matches as closely as possible the posterior distribution of
the true state given the observations: This is achieved by
introducing a cost function, defined by the Kullback-Leibler (K-
L) divergence between the actual posterior, and the posterior
of any particle.

The optimal control input is characterized by a certain Euler-
Lagrange (E-L) equation, and is shown to admit an innovation
error-based feedback structure. For diffusions with continuous
observations, the value of the optimal control solution is ideal:
The two posteriors match exactly, provided they are initialized
with identical priors. The resulting control system is called the
feedback particle filter.

An algorithm is introduced and implemented in two numeri-
cal examples. A numerical comparison of the feedback particle
filter with the bootstrap particle filter is provided.

I. INTRODUCTION

We consider a scalar filtering problem:

dXt = a(Xt)dt +σB dBt , (1a)

dZt = h(Xt)dt +σW dWt , (1b)

where Xt ∈R is the state at time t, Zt ∈R is the observation

process, a( ·), h( ·) are C1 functions, and {Bt}, {Wt} are

mutually independent standard Wiener processes.

The objective of the filtering problem is to estimate the

posterior distribution p∗ of Xt given the history Zt := σ(Zs :

s ≤ t). If a( ·), h( ·) are linear functions, the solution is

given by the finite-dimensional Kalman filter. The theory of

nonlinear filtering is described in the classic monograph [7].

The filter is infinite dimensional since it defines the evolution,

in the space of probability measures, of {p∗( · , t) : t ≥ 0}.

The article [2] surveys numerical methods to approximate

the nonlinear filter. One approach described in this survey is

particle filtering.

The particle filter is a simulation-based algorithm to

approximate the filtering task [3]. The key step is the

construction of N stochastic processes {X i
t : 1 ≤ i ≤ N}:

The value X i
t ∈ R is the state for the ith particle at time

t. For each time t, the empirical distribution formed by, the

“particle population” is used to approximate the posterior

distribution. A common approach in particle filtering is

called sequential importance sampling, where particles are
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generated according to their importance weight at every time

step [1], [3].

The objective of this paper is to introduce an alternative

feedback control-based approach to the construction of a

particle filter for (1a)-(1b). The main result of this paper

is to derive an explicit formula for the optimal control input.

The optimally controlled dynamics of the ith particle have

the following gain feedback form,

dX i
t = a(X i

t )dt +σB dBi
t

+K(X i
t , t)dIi

t +
1

2
σ2

WK(X i
t , t)K

′(X i
t , t)dt

(2)

in which K
′(x, t) = ∂K

∂x
(x, t), where {Bi

t} are mutually inde-

pendent standard Wiener processes, and Ii is similar to the

innovation process that appears in the nonlinear filter,

dIi
t := dZt −

1

2
(h(X i

t )+ ĥt)dt (3)

where ĥt := E[h(X i
t )|Zt ]. In a numerical implementation, we

approximate ĥt ≈ 1
N ∑N

i=1 h(X i
t ) =: ĥ

(N)
t .

The gain function K is shown to be the solution to the

Euler-Lagrange boundary value problem (E-L BVP):

− ∂

∂x

(
1

p(x, t)

∂

∂x
{p(x, t)K(x, t)}

)

=
1

σ2
W

h′(x), (4)

with boundary conditions limx→±∞ p(x, t)K(x, t) = 0, where

p denotes the conditional distribution of X i
t given Zt and

h′(x) = d
dx

h(x). Note that the gain function needs to be

obtained for each value of time t.

The controlled system (2)-(4) is called the feedback par-

ticle filter.

The contributions of this paper are as follows:

• Consistency. We show that the feedback particle filter (2)

is consistent with nonlinear filter in the following sense:

Suppose at time 0, p(x,0) = p∗(x,0) and the gain function

K(x, t) is obtained as the solution to (4). Then, for all t > 0,

p(x, t) = p∗(x, t).

This implies that if the initial conditions {X i
0}N

i=1 are drawn

from initial distribution p∗(x,0) of X0, then, as N → ∞, the

empirical distribution of the particle system approximates the

posterior distribution p∗.

• Algorithms. We propose algorithms for synthesis of the

gain function K(x, t). If a(·) and h(·) are linear and the

density p is Gaussian, then the gain function admits a closed-

form solution in terms of variance alone. The variance is

approximated empirically as a sample covariance.

In the nonlinear case, we approximate the density as a sum

of Gaussian and provide exact and approximate formulae
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Fig. 1. Innovation error-based feedback structure for (a) Kalman filter and (b) nonlinear feedback particle filter.

for the solution of the gain function. With the sum of

Gaussian approximation, each Gaussian models a sub-cluster

of particles {X i
t }.

In recent decades, there have been many important ad-

vances in importance sampling based approaches for particle

filtering; cf., [1], [3], [2]. The crucial distinction here is

that there is no resampling of particles. We believe that

the introduction of control in the feedback particle filter has

several useful features/advantages:

Innovation error. The innovation error-based feedback struc-

ture is a key feature of the feedback particle filter (2). The

innovation error is now based on the average value of the

prediction h(X i
t ) of the ith-particle and the prediction ĥt due

to the entire population.

The feedback particle filter thus provides for a general-

ization of the Kalman filter to nonlinear systems, where the

innovation error-based feedback structure of the control is

preserved (see Fig. 1). For the linear case, the optimal gain

function is the Kalman gain. For the nonlinear case, the

Kalman gain is replaced by a nonlinear function of the state.

Variance reduction. We believe that the feedback can help

reduce the high variance that is sometimes observed in the

usual particle filter. Numerical results in Sec V support this

claim — See Fig. 3 for a comparison of the feedback particle

filter and the bootstrap filter for the linear filtering problem.

Applications. Bayesian inference is an important paradigm

used to model functions of certain neural circuits in brain [4].

Compared to techniques that rely on importance sam-

pling, a feedback particle filter may provide a more neuro-

biologically plausible model to implement filtering and in-

ference functions [8].

The biggest limitation of our approach is the need to solve

the BVP at each time-step, that additionally requires one

to approximate the density. We are encouraged however by

the extensive set of tools in feedback control: After all, one

rarely needs to solve the HJB equations in closed-form to

obtain a reasonable feedback control law. Moreover, there

are many approaches in nonlinear and adaptive control to

both approximate control laws as well as learn/adapt these

in online fashion. For feedback particle filter, this is a subject

of continuing research.

The outline of this paper is as follows. In Sec. II, we

begin by reviewing the results of our earlier paper [8] that

introduced the continuous-discrete time filtering problem.

The nonlinear filter is introduced in III, and algorithms

discussed in IV. We conclude with a discussion of some

numerical results in Sec. V.

II. PRELIMINARIES

In this section we briefly summarize the main results of

our earlier paper [8] that dealt with the continuous-discrete

time filtering problem.

For the continuous-discrete time filtering problem, the

equation for dynamics is given by (1a), and the observations

are made only at discrete times {tn}:

Ztn = h(Xtn)+Wtn , (5)

where {Wtn} is i.i.d and drawn from N(0,σ2
W ). We denote

Z �

n := σ{Ztk : k ≤ n}.

The particle model in this case is a hybrid dynamical

system: At time tn, assuming that X i
tn−1

is given, the ith

particle evolves on [tn−1, tn) according to the stochastic

differential equation

dX i
t = a(X i

t )dt +σB dBi
t , tn−1 ≤ t < tn . (6)

At the end of this time-horizon, there is a potential jump that

is determined by the control input U i
tn

:

X i
tn
= X i

t−n
+U i

tn
, (7)

where X i
t−n

denotes the right limit of {X i
t : tn−1 ≤ t < tn}. The

specification (7) defines the initial condition for the process

on the next interval [tn, tn+1).

A. Belief maps

For each n we denote:

1) p∗n and p∗−n : The conditional distribution of Xtn given

Z �

n and Z �

n−1, respectively.

2) pn and p−n : The conditional distribution of X i
tn

given

Z �

n and Z �

n−1, respectively.

These densities evolve according to recursions of the form,

p∗n = P
∗(p∗n−1,Ztn), pn = P(pn−1,Ztn) . (8)

The mappings P∗ and P can be decomposed into two parts.

The first part is identical: The transformation that takes pn−1

to p−n coincides with the mapping from p∗n−1 to p∗−n . In

each case it is defined by the Kolmogorov forward equation

associated with the diffusion on [tn−1, tn).
The second part of the mapping is different: The transfor-

mation that takes p∗−n to p∗n is obtained from Bayes’ rule.

The transformation that takes p−n to pn depends upon the

choice of control U i
tn

in (7).

In [8], we seek a control input U i
tn

that is admissible.

Definition 1 (Admissible Input): The control sequence

{U i
tn

: n ≥ 0} is admissible if there is a sequence of maps

{un(x;zn
0)} such that U i

tn
= un(X

i
tn
,Zt0 , . . . ,Ztn), and,
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(i) E[|U i
tn
|]< ∞, and with probability one,

lim
x→±∞

un(x,Zt0 , . . . ,Ztn)p−n (x) = 0.

(ii) un is twice continuously differentiable as a function

of x.

(iii) 1+u′n(x) is non-zero for all x, where u′(x) = d
dx

u(x).
We suppress the dependency on the observations, writing

U i
tn
= u(x) when X i

t−n
= x.

B. Variational Problem

Our goal is to choose an admissible input u so that

the mapping P approximates the mapping P∗ in (8). In

particular, we assume p−n = p∗−n and seek

un(x) = arg min
u

KL(pn‖p∗n) , (9)

where KL(·) denote the Kullback-Leibler (KL) divergence

between the two distributions. The KL divergence can be

expressed as

KL(pn‖p∗n) =C−
∫

R

p−n (x)
{

ln |1+u′(x)|

+ ln(p−n (x+u(x))pZ|X(Ztn |x+u(x)))
}

dx

(10)

where pZ|X(Ztn |·) = 1√
2πσ2

W

exp
(

− (Ztn−h(·))2

2σ2
W

)

, and C =
∫

R
p−n (x) ln(p−n (x)pZ(Ztn))dx is a constant that does not de-

pend on u; see [8] for the calculation.

The solution to (9) is described in the following:

Proposition 1 (Proposition 1 in [8]): Suppose that the

admissible function u is a minimizer for the optimization

problem (9). Then it is a solution of the following Euler-

Lagrange (E-L) BVP:

d

dx

(
p−n (x)

|1+u
′
(x)|

)

= p−n (x)
∂

∂u

(
ln(p−n (x+u)pZ|X(Ztn |x+u))

)
,

(11)

with boundary conditions limx→±∞ u(x)p−n (x) = 0.

We refer to the minimizer as the optimal control function.

III. CONTINUOUS-TIME FILTERING

Consider now the continuous time filtering problem (1a,

1b) introduced in Section I.

We denote as p∗(x, t) the conditional distribution of Xt

given Zt = σ(Zs : s ≤ t). The evolution of p∗(x, t) is de-

scribed by the Kushner-Stratonovich (K-S) equation:

dp∗ = L
† p∗ dt +

1

σ2
W

(h− ĥt)(dZt − ĥt dt)p∗, (12)

where ĥt =
∫

h(x)p∗(x, t)dx and L † p∗ =− ∂ (p∗a)
∂x

+
σ2

B
2

∂ 2 p∗

∂x2 .

A. Belief state dynamics & control architecture

The model for the particle filter is given by,

dX i
t = a(X i

t )+σB dBi
t +u(X i

t , t)dt +K(X i
t , t)dZt

︸ ︷︷ ︸

dU i
t

, (13)

where X i
t ∈R is the state for the ith particle at time t, and {Bi

t}
are mutually independent standard Wiener processes. We

assume the initial conditions {X i
0}N

i=1 are i.i.d., independent

of {Bi
t}, and drawn from the initial distribution p∗(x,0) of

X0. Both {Bi
t} and {X i

0} are also assumed to be independent

of Xt ,Zt .

As in Sec II, we impose admissibility requirements on the

control input U i
t in (13):

Definition 2 (Admissible Input): The control input U i
t is

admissible if the random variables u(x, t) and K(x, t) are

Zt = σ(Zs : s ≤ t) measurable for each t. Moreover, each

t,

(i) E[|u(X i
t , t)|+ |K(X i

t , t)|2] < ∞, and with probability

one,

lim
x→±∞

u(x, t)p(x, t) = 0, (14a)

lim
x→±∞

K(x, t)p(x, t) = 0. (14b)

where p is the posterior distribution of X i
t given Zt .

(ii) u : R2 → R, K : R2 → R are twice continuously

differentiable in their first arguments.

Recall that are two types of conditional distributions of

interest in our analysis:

1) p(x, t): Defines the conditional dist. of X i
t given Zt .

2) p∗(x, t): Defines the conditional dist. of Xt given Zt .

The functions {u(x, t),K(x, t)} represent the continuous time-

counterparts of the optimal control function un(x) (see (9)).

We say that these functions are optimal if p ≡ p∗. That

is, given p∗(·,0) = p(·,0), our goal is to choose {u,K} in

the feedback particle filter so that the evolution equations of

these conditional distributions coincide (see (12) and (15)).

The evolution equation for the belief state is described in

the next result. Its proof appears in Appendix A.

Proposition 2: Consider the process X i
t that evolves ac-

cording to the particle filter model (13). The conditional

distribution of X i
t given the filtration Zt , p(x, t), satisfies the

forward equation

dp = L
† pdt − ∂

∂x
(Kp) dZt

− ∂

∂x
(up) dt +σ2

W

1

2

∂ 2

∂x2

(
pK2

)
dt.

(15)

B. Consistency with the nonlinear filter

The main result of this section is the construction of an

optimal pair {u,K} under the following general assumption:

Assumption A1 The conditional distributions (p∗, p) are

C2, with p∗(x, t)> 0 and p(x, t)> 0, for all x∈R, t > 0.

We henceforth choose {u,K} as the solution to a certain

E-L BVP based on p: The function K as the solution to

− ∂

∂x

(
1

p(x, t)

∂

∂x
{p(x, t)K(x, t)}

)

=
1

σ2
W

h′(x), (16)

with boundary condition (14b). The function u(·, t) : R→ R

is obtained as:

u(x, t) = K(x, t)

(

−1

2
(h(x)+ ĥt)+

1

2
σ2

WK
′(x, t)

)

, (17)
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where ĥt =
∫

h(x)p(x, t)dx. We assume moreover that the

boundary conditions given in (14a) also hold, so that {u,K}
is admissible. The BVP is motivated by the continuous-time

limit of (11), obtained on letting tn+1 − tn go to zero; the

calculations appear in Appendix B.

Existence and uniqueness of {u,K} is obtained in the

following proposition — Its proof is given in Appendix B.

Proposition 3: Consider the BVP (16), subject to As-

sumption A1. Then,

1) There exists a unique solution K, subject to the bound-

ary condition (14b).

2) The solution satisfies K(x, t) ≥ 0 for all x, t, provided

h′(x)≥ 0 for all x.

The following theorem shows that the two evolution

equations (12) and (15) are identical. The proof appears in

Appendix C.

Theorem 1: Consider the two evolution equations for p

and p∗, defined according to the solution of the forward

equation (15) and the K-S equation (12), respectively. Sup-

pose that the control functions u(x, t) and K(x, t) are obtained

according to (16) and (17), respectively. Then, provided

p(x,0) = p∗(x,0), we have for all t ≥ 0,

p(x, t) = p∗(x, t)

C. Linear Gaussian case

We provide here a special case for linear system:

dXt = α Xt dt +σB dBt , (18a)

dZt = γ Xt dt +σW dWt , (18b)

where α , γ are real numbers. We assume the initial distribu-

tion p∗(x,0) is Gaussian with mean µ0 and variance Σ0.

The following lemma provides the solution of the optimal

control functions u(x, t),K(x, t) in the linear Gaussian case.

Lemma 1: Consider the linear observation equation (18b).

Suppose p(x, t) = 1√
2πΣt

exp(− (x−µt )
2

2Σt
) is assumed to be

Gaussian with mean µt and variance Σt . Then the solution

of E-L BVP (4) is given by:

K(x, t) =
γΣt

σ2
W

, u(x, t) =− γ2Σt

2σ2
W

(x+µt) (19)

The formulae (19) are verified by direct substitution in the

ODE (4) where the distribution p is Gaussian.

The optimal control yields the following form for the

particle filter in this linear Gaussian model:

dX i
t = α X i

t dt +σB dBi
t +

γΣt

σ2
W

(

dZt − γ
X i

t +µt

2
dt

)

. (20)

Now we show that p = p∗ in this case. That is, the con-

ditional distributions of X and X i coincide, and are defined

by the well-known dynamic equations that characterize the

mean and the variance of the continuous-time Kalman filter.

Theorem 2: Consider the linear Gaussian filtering prob-

lem defined by the state-observation equations (18a,18b). In

this case the posterior distributions of X and X i are Gaussian,

whose conditional mean and covariance are given by the

respective SDE and the ODE,

dµt = αµt dt +
γΣt

σ2
W

(

dZt − γµt dt
)

d

dt
Σt = 2αΣt +σ2

B −
γ2Σ2

t

σ2
W

The result is verified by substituting p(x, t) =
1√

2πΣt
exp(− (x−µt )

2

2Σt
) in the forward equation (15). The

details are omitted on account of space, and because the

result is a special case of Theorem 1.

Notice that particle system (20) is not practical since it

requires computation of the conditional mean and variance

{µt ,Σt}. In practice {µt ,Σt} are approximated as sample

means and sample covariances from the ensemble {X i
t }N

i=1:

µt ≈ µ
(N)
t :=

1

N

N

∑
i=1

X i
t ,

Σt ≈ Σ
(N)
t :=

1

N −1

N

∑
i=1

(X i
t −µ

(N)
t )2.

The resulting equation (20) for the ith particle is given by

dX i
t = α X i

t dt +σB dBi
t +

γΣ
(N)
t

σ2
W

(

dZt − γ
X i

t +µ
(N)
t

2
dt

)

.

(21)

It is very similar to the mean-field “synchronization-type”

control laws and oblivious equilibria constructions as in [6],

[9]. As N → ∞, the empirical distribution of the particle

system approximates the posterior distribution p∗(x, t) (by

Theorem 2).

IV. SYNTHESIS OF THE GAIN FUNCTION K(x, t)

Implementation of the nonlinear filter (2) requires solution

of the E-L BVP (4) to obtain the gain function K(x, t) for

each fixed t. If p(x, t) is known, the linear BVP admits

a closed-form solution (43) – the main issue thus is the

approximation of the distribution p(x, t).
In this section, we consider the following approximation:

Assumption A2 For each fixed t, the distribution p(x, t)
is a sum of Gaussian:

p(x, t) =
m

∑
j=1

λ j
t q

j
t (x), (22)

where q
j
t (x) = q(x; µ j

t ,Σ
j
t ) = 1

√

2πΣ
j
t

exp(− (x−µ
j

t )
2

2Σ
j
t

),

λ j
t > 0, ∑λ j

t = 1. We assume an ordering so µ j
t < µk

t

for j < k.

The approximation is motivated by the numerical algo-

rithm: At each discrete time-step t, we have particle states

{X i
t }N

i=1. We identify m-clusters each of which is assumed

to be localized in R. We approximate the jth-cluster with

a Gaussian pdf with weight λ j
t ∈ (0,1), empirical mean µ j

t

and variance Σ
j
t .
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TABLE I

TABLE II: Taylor series coe!cients

approx.

Fig. 2. (a) Comparison of the solutions (23) and (25). (b) Comparison of the exact (solid) and approximate (dashed) solutions. In the background, the
three Gaussians are also shown. (c) For both parts (a) and (b) p(x, t) is a sum of (m = 3) Gaussian densities with weights λ j and means µ j tabulated in
Table I. Table II tabulates the formulae for the Taylor series coefficients in (26).

For the ease of presentation, we also assume h(x) = x in

the observation model (1b):

Assumption A3 We assume the observation model (1b)

with h(x)≡ x.

This assumption is not critical. Other modalities can also

be considered as discussed in Remark 1 below.

The following proposition provides a closed-form solution

of the E-L BVP with p(x, t) of the form (22):

Proposition 4: Consider the BVP (4) with h(x) = x. Sup-

pose p(x, t) is of the form (22). Then the solution is given

by

pK(x, t) =
1

σ2
W

( m

∑
j=1

λ j
t (ĥt −h(µ j

t ))Q
j
t (x)

+
m

∑
j=1

h′(µ j
t )λ

j
t Σ

j
t q

j
t (x)

)

,

(23)

where Q
j
t (x) =

∫ x
−∞ q

j
t (y)dy.

The proof is omitted – it is a straightforward verification

by direct substitution of the solution in the ODE (4).

Remark 1: For general h, the expression in (23) represents

an approximate solution of the E-L BVP in the asymptotic

limit that Σ
j
t → 0 for j = 1, . . . ,m.

This is seen by considering a BVP

− ∂

∂x

(
1

p(x, t)

∂w

∂x

)

=
1

σ2
W

h′(x), (24)

with boundary condition limx→±∞ w(x) = 0. Consider also

a limiting distribution p0(x, t) = ∑m
j=1 λ j

t δ (x − µ j
t ). With

p(x, t) = p0(x, t) in (24), the weak solution is given by the

staircase function:

w(x) = w0(x) :=
1

σ2
W

m

∑
j=1

λ j
t (ĥt −h(µ j

t ))H(x−µ j
t ), (25)

where H(·) is the Heaviside function.

For small values of Σ
j
t , the solution given by (23) is a small

perturbation of w0(x) in (25); see Fig. 2(a) which depicts the

two solutions for h(x) = x and (λ j
t ,µ

j
t ) tabulated in Table I

and Σ
j
t = 0.01.

In the case of general h, the approximate nature of

solution (23) follows by considering a perturbation argument

in the asymptotic limit Σ
j
t → 0.

Now given w(x, t) = pK(x, t), the gain function is obtained

as K(x, t) = w(x, t)/p(x, t). Since dividing by p may be a

problem, we also provide asymptotic formulae for values of

x near the jth empirical mean (x ≈ µ j
t ):

1) For 2≤ j ≤ m−1, the gain function may be approximated

by using a Taylor series approximation: For x ≈ µ j
t ,

K(x, t) =
1

σ2
W

(

v0 + v1(x−µ j
t )+ v2(x−µ j

t )
2
)

, (26)

where formulae for the coefficients appear in Table II.

2) For i = 1 or m, the Taylor series does not yield a good

approximation and one can use the following formula:

For x ≈ µ1
t :K(x, t) =

1

σ2
W

(

Σ1
t +(ĥt −µ1

t )
Q1

t

q1
t

(x, t)

)

,

(27a)

For x ≈ µm
t :K(x, t) =

1

σ2
W

(

Σm
t +(ĥt −µm

t )
Qm

t −1

qm
t

(x, t)

)

.

(27b)

Using (27b), limx→−∞K(x, t) = Σ1
t

σ2
W

, limx→∞K(x, t) = Σm
t

σ2
W

.

So, the asymptotic value of the gain is consistent with the

formula for the gain obtained in the linear case (see (19)).

Figure 2 (b) depicts a comparison between the exact

numerical solution K and the approximate formulae; pa-

rameter values are the same as in Table I. We obtain the

approximate solution for x ∈ [µ j
t −4

√

Σ
j
t ,µ

j
t +4

√

Σ
j
t ] – for

j = 2 using (26), and for j = 1 and 3 using (27a) and (27b),

respectively.

Remark 2: Depending upon the problem as well as the

available computational resources, one may choose different

approximate structures for the gain function. For example,

using the Taylor series approximation, one possibility is

to chose K(x, t) = 1

σ2
W

v0, a constant for the jth cluster. A

better choice, however, may be to pick the constant to

be the mean value taken over ±1 standard deviation, i.e.,

K(x, t) = 1

σ2
W

(v0 +
1
3
v2Σ

j
t ).

A. Algorithm

At time t, we assume m clusters with empirical mean µ j
t

and variance Σ
j
t , ordered such that µ j

t < µk
t for j < k.
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Fig. 3. Comparison of the mse using feedback particle filter and the
bootstrap particle filter.

We assign the ith-particle to the jth-cluster based on prox-

imity ( j = arg mink |X i
t −µk

t |) and evaluate the gain function

K(X i
t , t) according to (27a,27b) or (26).

Now, one problem with directly implementing the particle

filter model (2) is that there possibly are multiple time-

scales in the problem: K(x, t) may become very large for

particles that lie between two clusters (see Fig. 2(b)). So, dt

would need to be chosen extremely small to avoid numerical

instabilities. This is impractical.

To help deal with this issue, we propose to break up the

trajectory into the following two phases:

(i) Control phase. If K(X i
t , t) < CK(µ i

t , t) then we use

the particle filter model (2) to obtain dX i
t . The constant

C > 1 is selected based on the available dt.

(ii) Flight phase. If K(X i
t , t) ≥ CK(µ i

t , t) then we set

X i
t = µ j

t or X i
t = µ j+1

t depending upon the sign of the

innovation term dIi
t .

Note that the flight phase implements motion during the fast

time-scale: It allows the particle to escape the cluster without

the need to make dt arbitrarily small.

V. NUMERICS

A. Linear case

We first provide a comparison between the feedback

particle filter and the bootstrap particle filter for the linear

problem (18a, 18b).

For the linear filtering problem, the optimal solution is

given by the Kalman filter. We use this solution to define

the relative mean-squared error:

mse =
1

T

∫ T

0

(

Σ
(N)
t −Σt

Σt

)2

dt, (28)

where Σt is the error covariance using the Kalman filter, and

Σ
(N)
t is its approximation using the particle filter.

Figure 3 depicts a comparison between mse obtained using

the feedback particle filter (21) and the bootstrap filter. The

latter implementation is based on an algorithm taken from

Ch. 9 of [1]. For simulation purposes, we used a range of

values of α ∈ [−1,1], γ = 3, σB = 1, σW = 0.5, dt = 0.01,

and T = 50. The plot in Fig. 3 is generated using simulations

with N = 20,50,100,200,500,1000 particles.

0 20 40 60 80 100 120

−1

0

1

X(t)

E(t)

X(t)

Fig. 4. Comparison of the true state X(t) and the conditional mean X̄(t) by
using feedback particle filter. The error E (t) = X(t)− X̄(t) remains small
even during a transition of the state.

We refer the reader to our earlier paper [8] for additional

simulation plots for the pdf and estimates obtained using the

linear feedback particle filter (21).

B. Nonlinear example

We consider

dXt = Xt(1−X2
t )dt +σB dBt , (29a)

dZt = Xt dt +σW dWt , (29b)

where σB = 0.4, σW = 0.2. Without noise, the ODE (29a) has

two stable equilibria at ±1. With noise, the state of the SDE

“transitions” between these two “equilibria” (see Fig. 4).

Figure 4 depicts the simulation results obtained using the

nonlinear feedback particle filter (2). The implementation is

based on the algorithm presented in Sec IV-A with dt = 0.01.

The control gain K(x, t) is chosen via the constant approxi-

mation discussed in Remark 2. We initialize the simulation

with m = 2 clusters at ±1. After a brief period of transients,

these clusters merge into a single cluster, which adequately

tracks the true state including the transition events.

We refer the reader to our earlier paper [8] for another

numerical example that uses the nonlinear feedback particle

filter (2) for filtering of a nonlinear oscillator system.

APPENDIX

A. Derivation of the Forward Equation

We denote the filtration Bt = σ(X i
0,B

i
s : s ≤ t), and we

recall that Zt = σ(Zs : s ≤ t) for t ≥ 0. These two filterations

are independent by construction.

On denoting ã(x, t) = a(x)+u(x, t), the particle evolution

(13) is expressed,

X i
t = X i

0 +
∫ t

0
ã(X i

s ,s)ds+
∫ t

0
K(X i

s ,s)dZ(s)+σBBi
t . (30)

By assumption on Lipschitz continuity of ã and K, there

exists a unique solution that is adapted to the larger filtration

Bt ∨Zt = σ(X i
0,B

i
s,Zs : s ≤ t). In fact, there is a functional

Ft such that

X i
t = Ft(X

i
0,B

i
t ,Z

t), (31)

where Zt := {Zs : 0 ≤ s ≤ t} denotes the trajectory.

The conditional distribution of X i
t given Zt = σ(Zs : s ≤ t)

was introduced in Sec. II-A: Its density is denoted p(x, t),
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defined by any bounded and measurable function f : R→R

via,

E( f (X i
t ) | Zt) =

∫

R

p(x, t) f (x)dx =: 〈pt , f 〉.

We begin by stating a lemma that is the key to proving

Proposition 2.

Lemma 2: Suppose that f is an Bt ∨Zt-adapted process

satisfying E
∫ t

0 | f (s)|2 ds < ∞. Then,

E

[∫ t

0
f (s)ds|Zt

]

=
∫ t

0
E[ f (s)|Zs]ds, (32)

E

[∫ t

0
f (s)dZs|Zt

]

=

∫ t

0
E[ f (s)|Zs]dZs. (33)

We next provide a proof of the Proposition 2 and follow

it up with the proof of the Lemma 2.

Proof of Proposition 2 Applying Itô’s formula to equa-

tion (13) gives, for any smooth and bounded function f ,

d f (X i
t ) = L f (X i

t )dt +K(X i
t , t)

∂ f

∂x
(X i

t )dZt +σB

∂ f

∂x
(X i

t )dBi
t ,

where L f := (a+u) ∂ f

∂x
+ 1

2
(σ2

WK
2 +σ2

B)
∂ 2 f

∂x2 . Therefore,

f (X i
t ) = f (X i

0)+
∫ t

0
L f (X i

s)ds+
∫ t

0
K(X i

s ,s)
∂ f

∂x
(X i

s)dZs

+σB

∫ t

0

∂ f

∂x
(X i

s)dBi
s.

Taking conditional expectations on both sides,

〈pt , f 〉= E( f (X i
0) | Zt)+E

[∫ t

0
L f (X i

s)ds|Zt

]

+E

[∫ t

0
K(X i

s ,s)
∂ f

∂x
(X i

s)dZs | Zt

]

+σBE

[∫ t

0

∂ f

∂x
(X i

s)dBi
s | Zt

]

On applying Lemma 2, and the fact that Bi
t is a Wiener

process, we conclude that

〈pt , f 〉= 〈p0, f 〉+
∫ t

0
〈ps,L f 〉ds+

∫ t

0
〈ps,K

∂ f

∂x
〉dZs .

The forward equation (15) follows using integration by parts.

We now provide a proof of Lemma 2.

Proof of Lemma 2 The key is the functional form (31) of the

solution X i
t : It says that apart from the past values of Z, the

solution depends only upon initial condition X i
0 and Wiener

process Bi
t that are both independent of Z.

First we suppose that f is simple, i.e.,

f (s) =
k

∑
i=1

Fi1(ai,bi](s),

where (ai,bi] are disjoint intervals of [0, t] and Fi is measur-

able with respect to Bai
∨Zai

. For general f satisfying the

assumptions of the lemma, the result will then follow via an

application of the dominated convergence theorem.

Once we restrict to simple functions, the essence of the

proof is to establish the identity,

E(Fi|Zt) = E(Fi|Zai
). (34)

Under the measurability assumption we can write Fi =
φ(ζ ,ξ ), where ζ ∈ Zai

, ξ ∈ Bai
are random variables,

and φ is a real-valued function. The random variable ξ is

independent of Zt , so that

E(Fi|Zt) = E(φ̄(ζ )|Zt),

with φ̄( ·) = E[φ( · ,ξ )]. Using the fact that ζ ∈Zai
⊂Zt we

obtain (34):

E(Fi|Zt) = E(φ̄(ζ )|Zt) = E(Fi|Zai
).

The desired results follow easily from (34): To obtain (32),

E(
∫ t

0
f (s)ds | Zt) =

k

∑
i=1

E(Fi(bi −ai) | Zt)

=
k

∑
i=1

E(Fi | Zai
)(bi −ai)

=
∫ t

0
E( f (s) | Zs)ds.

The proof of (33) is similar:

E

[∫ t

0
f (s)dZs | Zt

]

=
k

∑
i=1

E[Fi(Zbi
−Zai

) | Zt ]

=
k

∑
i=1

E[Fi | Zai
](Zbi

−Zai
)

=
∫ t

0
E[ f (s) | Zs]dZs,

where the second equality uses the fact that Z is adapted to

Zt , and ai < bi ≤ t for each i.

B. Euler-Lagrange BVP

In this section we describe, formally, the continuous-time

limit of the discrete-time E-L BVP (11).

In the continuous-time case, the control is of the form:

U i
t = u(X i

t , t)dt +K(X i
t , t)dZt . (35)

Substituting this in the E-L BVP (11) for the continuous-

discrete time case, we arrive at the formal equation:

∂

∂x

(
p(x, t)

1+u′ dt +K′ dZt

)

=p(x, t)
∂

∂ ũ

(

ln p(x+udt +KdZt , t)

+ ln pdZ|X(dZt | x+udt +KdZt)
)

,

(36)

where pdZ|X(dZt |·) = 1√
2πσ2

W

exp
(

− (dZt−h(·))2

2σ2
W

)

and ũ =

udt +KdZt .

For notational ease, we use primes to denote partial

derivatives with respect to x: p is used to denote p(x, t),

p′ := ∂ p
∂x
(x, t), p′′ := ∂ 2 p

∂x2 (x, t), u′ := ∂u
∂x
(x, t), K′ := ∂K

∂x
(x, t)

etc. Note that the time t is fixed.

A sketch of calculations to obtain (16) and (17) starting

from (36) appears in the following three steps:
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Step 1: The three terms in (36) are simplified as:

∂

∂x

(
p

1+u′ dt +K′ dZt

)

= p′− f1 dt − (p′K′+ pK′′)dZt

p
∂

∂ ũ
ln p(x+udt +KdZt) = p′+ f2 dt +(p′′K− p′2K

p
)dZt

p
∂

∂ ũ
ln pdZ|X(dZt |x+udt +KdZt) =

p

σ2
W

[h′ dZt +(h′′K−hh′)dt]

where we have used Itô’s rules dZ2
t = σ2

W dt, dZt dt = 0 etc.,

and the functions

f1 = (p′u′+ pu′′)−σ2
W (p′K′2 +2pK′

K
′′),

f2 = (p′′u− p′2u

p
)+σ2

WK
2

(
1

2
p′′′− 3p′p′′

2p
+

p′3

p2

)

.

Collecting terms in O(dZt) and O(dt), after some simpli-

fication, leads to the following ODEs:

E (K) =
1

σ2
W

h′(x) (37)

E (u) =− 1

σ2
W

h(x)h′(x)+h′′(x)K+σ2
W G(x, t) (38)

where E (K) = − ∂
∂x

(
1

p(x,t)
∂
∂x
{p(x, t)K(x, t)}

)

, and G =

−2K′
K
′′− (K′)2(ln p)′+ 1

2
K

2(ln p)′′′.

Step 2. Suppose (u,K) are admissible solutions of the E-L

BVP (37)-(38). Then it is claimed that

−(pK)′ =
h− ĥt

σ2
W

p (39)

−(pu)′ =− (h− ĥt)ĥt

σ2
W

p− 1

2
σ2

W (pK2)′′. (40)

Recall that admissible here means

lim
x→±∞

p(x, t)u(x, t) = 0, lim
x→±∞

p(x, t)K(x, t) = 0. (41)

To show (39), integrate (37) once to obtain

−(pK)′ =
1

σ2
W

hp+Cp,

where the constant of integration C = − ĥt

σ2
W

is obtained by

integrating once again between −∞ to ∞ and using the

boundary conditions for K (41). This gives (39).

To show (40), we denote its right hand side as R and

claim (
R

p

)′
=− hh′

σ2
W

+h′′K+σ2
W G. (42)

The equation (40) then follows by using the ODE (38)

together with the boundary conditions for u (41). The veri-

fication of the claim involves a straightforward calculation,

where we use (37) to obtain expressions for h′ and K
′′. The

details of this calculation are omitted on account of space.

Step 3. The E-L equation for K is given by (37) which is the

same as (16). The proof of (17) involves a short calculation

starting from (40), which is simplified to the form (17) by

using (39).

Proof of Proposition 3. Consider the ODE (16). It is a linear

ODE whose unique solution is given by

K(x, t) =
1

p(x, t)

(

C1 +C2

∫ x

−∞
p(y, t)dy− 1

σ2
W

∫ x

−∞
h(y)p(y, t)dy

)

,

(43)

where the constant of integrations C1 = 0 and C2 = ĥt

σ2
W

because of the boundary conditions for K. Part 2 is an easy

consequence of the minimum principle for elliptic PDEs [5].

C. Consistency with the nonlinear filter

Proof of Theorem 1 It is only necessary to show that with

this choice of {u,K}, we have dp(x, t) = dp∗(x, t), for all x

and t, in the sense that they are defined by identical stochastic

differential equations. Recall dp∗ is defined according to

the K-S equation (12), and dp according to the forward

equation (15).

If K solves the E-L BVP (16) then using (43),

∂

∂x
(pK) =− 1

σ2
W

(h− ĥt)p. (44)

On multiplying both sides of (17) by −p, we have

−up =
1

2
(h− ĥt)pK− 1

2
σ2

W (pK)
∂K

∂x
+ ĥt pK

=−1

2
σ2

W

∂ (pK)

∂x
K− 1

2
σ2

W (pK)
∂K

∂x
+ ĥt pK

=−1

2
σ2

W

∂

∂x
(pK2)+ ĥt pK,

where we have used (44) to obtain the second equality.

Differentiating once with respect to x and using (44),

− ∂

∂x
(up)+

1

2
σ2

W

∂ 2

∂x2
(pK2) =− ĥt

σ2
W

(h− ĥt)p. (45)

Using (44)-(45) in the forward equation (15), we have

dp = L
† p+

1

σ2
W

(h− ĥt)(dZt − ĥt dt)p.

This is precisely the SDE (12), as desired.
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