
Observer-Based Generalized Asymptotic
Regulation with Sub-optimal Transient Response

Hakan Köroğlu*
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Abstract— The generalized asymptotic regulation problem is
considered with an observer-based controller. Two different sets
of LMI conditions are derived for the optimization of the tran-
sient behavior. These conditions are potentially conservative, as
would usually be the case for restricted-structure controllers.
Nevertheless, it is illustrated by a design example that the
performance of the observer-based controller can be quite close
to the controller with a general structure.

I. INTRODUCTION

The asymptotic output regulation problem aims at exact
cancelation of infinite-energy disturbances (or tracking of
infinite-energy references) in steady-state. It is well worked
and even subsumed to multi-objective problems in which
additional performance (H∞, H2) indices are minimized (see
[9] and the references therein). For sinusoidal disturbances,
it is possible to generalize the problem formulation in a
meaningful way so that the objective is relaxed to asymptotic
attenuation down to a desirable level which need not be
zero. In some recent works, solutions are provided for this
generalized asymptotic regulation problem under additional
performance objectives based on linear matrix inequality
(LMI) optimization [3], [4]. The generalized problem formu-
lation becomes especially suitable for uncertain parameter-
dependent systems. Synthesis procedures are developed for
the control of such systems as well by the use of controllers
that are scheduled with the online measurements of the
uncertain parameters [5], [6].

The controller used in [3], [4], [6] for generalized asymp-
totic regulation is formed by a particular combination of
the internal model that generates the disturbances and a
controller with general structure. In fact, it just imitates the
structure of the controller used in exact asymptotic regulation
[9]. In spite of this structural restriction on the controller, one
can derive convex constraints that enforce the satisfaction
of additional performance objectives. It is also possible to
solve the generalized asymptotic regulation problem by an
observer-based controller whose structure is the same as the
one used in the exact asymptotic regulation problem. An
observer-based controller is naturally of interest since its
state vector can serve as an estimate of the system state
vector. Moreover, when the problem is considered for a
parameter-dependent plant, an observer-based controller has
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the advantage of having no dependence on the parameter
derivative, in addition to its relatively simpler structure
(see and cf. [6]). Nevertheless, when the structure of the
controller is fixed to be observer-based, it becomes difficult
(if not impossible) to find nonconservative conditions for the
satisfaction of additional performance objectives.

In this paper, we consider the synthesis of observer-based
controllers for generalized asymptotic regulation with sub-
optimal transient response. After formulating the basic gen-
eralized asymptotic regulation problem in the next section,
we summarize its observer-based solution in Section III. The
main contributions of the paper are presented in Section IV,
where we consider optimizing the transient response when
the controller is restricted to be observer-based. With the
Riccati equation approach being not suitable due to the
extended plant eigenvalues on the imaginary axis, we derive
two alternative sets of LMI conditions for a (potentially)
conservative solution of the problem. The proposed solutions
are evaluated in Section V by an example synthesis for
rudder roll stabilization and sinusoidal wave disturbance
cancelation.

II. GENERALIZED ASYMPTOTIC REGULATION

We start by describing the problem setup and formulating
the generalized asymptotic regulation problem. Consider a
linear time-invariant (LTI) plant

Σp :

 ẋ
e
y

 =

 A Br B
Cr Dr Drc
C Dcr 0

 x
v
u

 , (1)

where x(t) ∈ Rk denotes the state and u(t) ∈ Rn represents
the control input. The basic control goal is to use the
measurement vector y(t) ∈ Rm to regulate the error output
e(t) ∈ Rr against an infinite-energy disturbance v(t) ∈ Rl .
The disturbance is generated by the exogenous system

Σe : v̇ = Aev. (2)

By appending the dynamics of the exo-system to the dynam-
ics of the plant, we express the dynamics of the extended
plant as

˙̃x =
[

A Br
0 Ae

]
︸ ︷︷ ︸

Ã

[
x
v

]
︸ ︷︷ ︸

x̃

+
[

B
0

]
︸ ︷︷ ︸

B̃

u,

y =
[

C Dcr
]︸ ︷︷ ︸

C̃

x̃.
(3)
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The standing assumptions of the paper are as follows:
A.1. Ae is skew-symmetric:

HeAe , Ae +AT
e = 0. (4)

This implies that ∥v(t)∥ = ∥v(0)∥,∀t ≥ 0.
A.2. (A,B) is stabilizable: There exists a matrix F ∈ Rn×k

with which A+BF is Hurwitz (i.e. all of its eigenvalues
have strictly negative real parts).

A.3. (Ã,C̃) is detectable: There exists a matrix G∈R(k+l)×m

with which Ã+GC̃ is Hurwitz.
A.1 restricts our attention to the generators of multi-
sinusoidal disturbances. A.2 is necessary for the existence
of a stabilizing controller, while A.3 can be replaced by the
detectability of (A,C). Nevertheless, a reduction technique
can be employed to reformulate the problem with a new
plant-exo-system pair that satisfies A.3 when (A,C) is de-
tectable (see [9]). This is to be applied when the plant has
common eigenvalues with the exo-system.

Within this setting, the basic generalized asymptotic reg-
ulation problem is formulated as follows:

Problem 1: Given a plant Σp and an exogenous system Σe
that fulfill the assumptions A.1-A.3, design a controller

Σc :
[

ξ̇
u

]
=

[
Ac Bc
Cc Dc

][
ξ
y

]
, (5)

such that:
C.1. (Internal Stability) The feedback system formed by

Σp and Σc is asymptotically stable, i.e. when v(0) = 0

lim
t→∞

∥e(t)∥ = 0, for any x(0) ∈ Rk,ξ (0) ∈ Rk+l . (6)

C.2. (Generalized Asymptotic Regulation) When v(0) ̸=
0, the closed-loop system satisfies

limsup
t→∞

∥e(t)∥ ≤ κ∥Φ1/2v(0)∥, (7)

where Φ is a given symmetric positive-semi-definite
attenuation profile and κ ≥ 0 represents the desired
level of steady-state attenuation.

We first note that this is a generalized asymptotic regula-
tion problem since κ is allowed to be greater than zero. The
attenuation profile Φ is introduced to add extra flexibility
into the problem formulation. The simplest choice would
clearly be Φ = I. When Ae has a block-diagonal structure,
with which multi-sinusoidal disturbances can be generated,
it might be preferable to emphasize the attenuation level at
certain frequencies. Recall that a sinusoid of frequency ωi
can be generated by

v̇i =
[

0 −ωi
ωi 0

]
︸ ︷︷ ︸

Ai
e

[
vi1
vi2

]
︸ ︷︷ ︸

vi

, vi(0) =
[

v0
i1

v0
i2

]
. (8)

The state of this exo-system can be obtained explicitly as

vi(t) =
[

cos(ωit) −sin(ωit)
sin(ωit) cos(ωit)

][
v0

i1
v0

i2

]
. (9)

For Ae = blockdiag (Ai
e)

p
i=1, one might use Φ =

blockdiag (αiI)
p
i=1, where αi’s represent nonnegative scalars.

For purposes of normalization, it would be convenient to
set one of the αi’s to 1. The others should then be chosen
to reflect the emphasis given to the attenuation of the i’th
frequency component in the error. Note that smaller αi
values will lead to relatively more attenuation of the i’th
frequency component. When exact asymptotic regulation is
required for a particular frequency, the associated αi should
be chosen as zero.

III. OBSERVER-BASED CONTROL FOR GENERALIZED
ASYMPTOTIC REGULATION

In this section we summarize the observer-based solution
to the generalized asymptotic regulation problem. The con-
troller structure is actually the same as those employed for
solving the exact asymptotic regulation problem for linear
time-invariant as well as time-varying systems [9], [2]. An
observer-based controller is to be constructed by integrating
an observer into the solution of the full-information problem.

The full-information problem assumes that the state vec-
tors of the plant and exo-system are both available for
synthesis. In order to derive a solution for this case, one
introduces a design matrix Π ∈ Rk×l , in terms of which a
new state variable is defined as

ς ,
[

I Π
]︸ ︷︷ ︸

Π̃

[
x
v

]
︸ ︷︷ ︸

x̃

. (10)

The evolution of the plant state and the error to be regulated
can be expressed equivalently in terms of this new state
vector as

ς̇ = Aς +(Br +ΠAe −AΠ)v+Bu, (11)
e = Crς +(Dr −CrΠ)v+Drcu. (12)

When the state of the extended plant, i.e. x̃, and thus x
and v are available, one can construct the control input as

u = Fς −Γv =
[

F FΠ−Γ
]︸ ︷︷ ︸

F̃

[
x
v

]
︸ ︷︷ ︸

x̃

(13)

where F and Γ represent the matrices to be designed. With
this control input, the dynamics of the plant are modified as

ς̇ = (A+BF)ς +(Br +ΠAe −AΠ−BΓ)︸ ︷︷ ︸
Z

v, (14)

e = (Cr +DrcF)ς +(Dr −CrΠ−DrcΓ)︸ ︷︷ ︸
Λ

v. (15)

In order stabilize the plant, one clearly needs to choose F
such that A+BF is Hurwitz. This can simply be realized by
solving the LMI

He(AY +BN) 4 −2ρY ≺ 0, (16)

over Y ∈ Sk
+ and N ∈Rn×k, by setting ρ ∈R+ to a sufficiently

small value. A state-feedback can then be constructed as

F = NY−1. (17)
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The basic idea behind the choices of Π and Γ is to render
Z = 0. This will then ensure limt→∞ ∥ς(t)∥= 0, which means
that e will approach Λv in the steady-state. In order to
guarantee the generalized asymptotic regulation constraint on
e, one then only needs to impose ∥Λv(0)∥≤ κ∥Φ1/2v(0)∥. In
conclusion, the generalized asymptotic regulation objective
will be achieved, if Π and Γ are chosen to satisfy

Br +ΠAe −AΠ−BΓ = 0,(18)[
κΦ (Dr −CrΠ−DrcΓ)T

Dr −CrΠ−DrcΓ κI

]
< 0.(19)

The synthesis of the required observer is standard, except
that it should provide the estimates of the plant as well as
the exo-system states. It is hence constructed by imitating
the evolution of the extended plant state x̃ in (3) with the
addition of a correction term as

ξ̇ = Ãξ + B̃u+G(C̃ξ − y), (20)

where G ∈ R(k+l)×m is the output injection gain matrix to be
designed. The estimation error defined as

ζ , ξ − x̃ (21)

evolves according to

ζ̇ = (Ã+GC̃)ζ . (22)

In order to ensure the convergence of the error to zero, one
needs to choose G in such a way that Ã + GC̃ is Hurwitz.
This can be done by solving the LMI

He
(
XÃ+MC̃

)
4 −2ηX ≺ 0, (23)

over X ∈ Sk+l
+ and M ∈ R(k+l)×m, by using a sufficiently

small value for η ∈ R+. An observer gain matrix is then
constructed as

G = X−1M. (24)

When the control input is constructed by using ξ in place
of x̃ in (13), one obtains an output feedback controller as[

ξ̇
u

]
=

[
Ã+ B̃F̃ +GC̃ −G

F̃ 0

][
ξ
y

]
. (25)

This is clearly a structured controller since its system ma-
trices (identified according to (5)) will necessarily satisfy
Ac = Ã + B̃Cc −BcC̃ with Dc = 0. With this controller, the
evolution of ς will be influenced by the estimation error
ζ as well. In order to derive the state equation, we set
u = F̃(ζ + x̃) and use the relation F̃ x̃ = Fς −Γv in (11)-(12).
In this fashion, we obtain

ς̇ = (A+BF)ς +BF̃ζ +Zv, (26)
e = (Cr +DrcF)ς +DrcF̃ζ︸ ︷︷ ︸

etr

+ Λv︸︷︷︸
ess

. (27)

Choosing Π and Γ in a way to render Z = 0 eliminates
the effect of v on the state evolution in this case as well.
Hence, when the observer is designed to have a finite-energy
estimation error ζ and the state-feedback is synthesized to
stabilize the evolution of ς , we will have limt→∞ ς(t) =

0. This means that the generalized asymptotic regulation
constraint can be guaranteed via (18) and (19) in the case of
output feedback as well. It can be shown that these conditions
are also necessary [3], [4].

The generalized asymptotic regulation constraint clearly
relates to the steady-state behavior. In order to shape the
transient behavior of the closed-loop system, one can use
large values for ρ and η when solving (16) and (23). Since
any scaled solution of these LMIs are also solutions, it is
necessary to introduce some extra constraints for numerical
conditioning. For this purpose, one might might ensure an
upper bound on the condition numbers of Y and X . Expressed
for Y , this can be realized via the LMI conditions

Y 4 σ I and
[

Y I
I σ I

]
< 0. (28)

The state-feedback design ingredients can then be obtained
by minimizing σ subject to the constraints (16) and (28).
Although keeping the condition numbers of Y and X small
might be advantageous, it is hard to ensure a desirable
transient behavior in this fashion. As a matter of fact, the
main contribution of the paper is on how to synthesize F
and G such that the transient behavior is sub-optimal.

IV. GENERALIZED ASYMPTOTIC REGULATION WITH
SUBOPTIMAL TRANSIENT RESPONSE

There is clearly much freedom in the choice of the design
variables for constructing the controller of (25). We hence
consider in this section the problem of optimizing the tran-
sient response by proper choices of the design parameters.
Although it is etr that constitutes the regulation transients,
we consider a more general problem in which the energy of

z =
(
Cp +DpcF

)
ς +DpcF̃ζ (29)

is to be kept small. As can be justified by the decomposition
of e in (27), z(t) ∈ Rq can be viewed as the transient
component of a new output signal obtained from the plant
of (1) as Cpx+Dpcu. A typical choice of z would hence be
z = [eT

tr λuT
tr ]

T , where utr = Fς + F̃ζ = u + Γv and λ is a
nonnegative scalar, which should be chosen large enough to
avoid undesirably large transients for the control input. This
means choosing the performance channel matrices as[

Cp Dpc
]
=

[
Cr Drc
0 λ I

]
. (30)

Based on these ingredients, we formulate the synthesis
problem for suboptimal transient response as follows (see
and cf. [1], [4]):

Problem 2: Design a controller of the form (25) with
ξ (0) = 0 such that C.1 and C.2 are satisfied as well as

∥z∥2
2 ,

∫ ∞

0
∥z(t)∥2dt < γ2∥x̃(0)∥2, ∀x̃(0)∈Rk+l \{0}, (31)

where γ ∈ R+ represents the level of desired performance.
The solution of Problem 2 with a general controller has

been obtained in [4] based on LMI optimization. In this pa-
per, we are interested in the derivation of LMI conditions that
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can be used to shape the transient behavior of the observer-
based controller in (25). When the structure of the controller
is fixed, it becomes difficult (if not impossible) to derive
convex problems for obtaining the design ingredients in a
nonconservative way. In the sequel, we derive two alternative
sets of conditions which are potentially conservative.

A. The First Set of Conditions

The first set of conditions are derived based on an alter-
native expression of the closed-loop dynamics with

θ , ς + Π̃ζ = Π̃ξ . (32)

When Π and Γ are chosen to render Z = 0, the equations for
the evolution of θ and z can be derived as[

θ̇
z

]
=

[
A+BF Π̃GC̃

Cp +DpcF −CpΠ̃−DpcΓ̃

][
θ
ζ

]
. (33)

The idea behind our approach is to assume a choice for
G as in (24) and introduce a new signal as

ϑ =
[

X−1/2 0
0 −S−1/2

][
MC̃

CpΠ̃+DpcΓ̃

]
ζ , (34)

where Γ̃ ,
[

0n×k Γ
]

and S ∈ Sq
+ is a positive-definite

matrix introduced as a slack variable to reduce conservatism.
We view this signal as the output of the unexcited observer
system (22) and as the input to a second system with state
θ (which has a zero initial condition) and output z. In this
fashion, we represent the closed-loop as a series combination
of the following systems:[

ζ̇
ϑ

]
=

 Ã+GC̃
X−1/2MC̃

−S−1/2
(
CpΠ̃+DpcΓ̃

)
ζ , (35)

[
θ̇
z

]
=

[
A+BF Π̃X−1/2 0

Cp +DpcF 0 S1/2

][
θ
ϑ

]
.(36)

Sufficient conditions for the solvability of Problem 2 are then
derived as follows:

(i) Bound, from above, the energy of ϑ obtained in
response to a nonzero initial condition ζ (0) = −x̃0 as

∥ϑ∥2
2 < ϕ x̃T

0 Xx̃0, (37)

where ϕ is an arbitrary positive scalar.
(ii) Bound the energy gain from ϑ to z from above as

∥z∥2
2 < ϕ−1γ∥ϑ∥2

2. (38)

Conditions (37) and (38) clearly imply

∥z∥2
2 < γ x̃T

0 Xx̃0. (39)

In order ensure (31), we hence need to have

X ≺ γI. (40)

By following the approach sketched above, we arrive at
the following first main result of the paper:

Theorem 1: There exists a controller with a realization as
in (25) that solves Problem 2, if there exist Y ∈ Sk

+, N ∈Rn×k,

Π ∈ Rk×l , Γ ∈ Rn×l , X ∈ Sk+l
+ , M ∈ S(k+l)×m, S :∈ Sq

+ such
that (18), (19) and (40) are satisfied as well as He

(
XÃ+MC̃

)
∗ ∗

MC̃ −ϕX ∗
CpΠ̃+DpcΓ̃ 0 −S

 ≺ 0, (41)

 He(AY +BN) ∗ ∗
Π̃T −ϕ−1X ∗

CpY +DpcN 0 S− γI

 ≺ 0, (42)

where ϕ ∈ R+ is a fixed arbitrary positive scalar and ∗’s
represent the entries that are identifiable from symmetry. The
controller can then be constructed with F and G obtained as
in (17) and (24) respectively.

Proof: We complete the proof simply by deriving the
conditions for energy and energy-gain bounding. The energy
of ϑ resulting from a nonzero initial condition ζ (0) = −x̃0
is bounded from above based on the Lyapunov function

Vd(ζ ) , ζ T Xζ . (43)

This function can be ensured to decay along the trajectories
of the closed-loop in a required way by the H2-type matrix
inequality He

(
XÃ+MC̃

)
∗ ∗

X−1/2MC̃ −ϕ I ∗
−S−1/2

(
CpΠ̃+DpcΓ̃

)
0 −ϕ I

 ≺ 0. (44)

This can be established by multiplying (44) from the left
with ζ̃ T =

[
ζ T ϕ−1ϑ T

]
and from the right with ζ̃ . In

this fashion, we are able to show (for nonzero ζ (0)) that

dVd(ζ (t))
dt

+ϕ−1∥ϑ(t)∥2 < 0. (45)

Integrating this inequality from zero to infinity and using
limt→∞ ζ (t) = 0 as follows from internal stability that is
assured by He(XÃ + MC̃) ≺ 0, we conclude that (37) is
satisfied. By applying a congruence transformation to (44)
with blockdiag (I,X1/2,−S1/2) and making the replacement
ϕS → S, we can express it equivalently as in (41).

The worst-case energy gain from ϑ to z is bounded from
above by using the Lyapunov function

Vs(θ) = θ TY−1θ . (46)

The required decay condition along the trajectories of the
closed-loop can be imposed on this function by the H∞-type
matrix inequality

He(AY +BN) ∗ ∗ ∗
X−1/2Π̃T −ϕ−1I ∗ ∗

0 0 −ϕ−1I ∗
CpY +DpcN 0 S1/2 −γI

 ≺ 0. (47)

By multiplying this inequality from the left with θ̃ T =[
θ TY−1 ϑ T γ−1zT

]
and from the right with θ̃ , we

obtain
dVs(θ(t))

dt
+ γ−1∥z(t)∥2 −ϕ−1∥ϑ(t)∥2 < 0, (48)

for nonzero ϑ and θ along the trajectories of the closed-loop.
Integrating from zero to infinity and using limt→∞ θ(t) = 0
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(as follows from internal stability assured by He(AY +BN)≺
0 and the fact that ϑ is an exponentially decaying input), we
obtain

∥z∥2
2 < γϕ∥ϑ∥2

2 + γθ(0)TY−1θ(0). (49)

Recalling θ(0) = 0, we conclude that (38) is satisfied.
X−1/2 can be eliminated from the (2,1) and (1,2) blocks
by a congruence transformation with blockdiag(I,X1/2, I, I),
which changes the (2,2) block to −ϕ−1X . An application of
the Schur complement with respect to the third row/column
blocks then allows us to remove them simply by adding ϕS
to the (4,4) block. By again making the replacement ϕS→ S,
we arrive at the condition in (42).

B. The Second Set of Conditions

The second set of conditions are derived based on the
expression of the closed-loop dynamics with the equation in
(22) and [

ς̇
z

]
=

[
A+BF BF̃

Cp +DpcF DpcF̃

][
ς
ζ

]
. (50)

In this case, the choice of F is fixed as in (17) and the new
signal is introduced as

φ =
[

Y−1/2 0
0 −R1/2

][
Π̃
E

]
ζ , (51)

where E ,
[

0l×k I
]

and R ∈ Sl
+ is a positive-definite

matrix introduced again as a slack variable. In this case,
the unexcited observer system and the second system are
identified as[

ζ̇
φ

]
=

 Ã+GC̃
Y−1/2Π̃
−R1/2E

ζ , (52)

[
ς̇
z

]
=

[
A+BF BÑỸ−1/2

Cp +DpcF DpcÑỸ−1/2

][
ς
φ

]
, (53)

where Ỹ and Ñ are defined as

Ỹ ,
[

Y 0
0 R

]
, (54)

Ñ ,
[

N Γ
]
. (55)

We emphasize at this point that the initial state of the second
system is given by ς(0) = Π̃x̃(0). The steps of the derivation
are quite similar, except for the difference that arises from
nonzero initial state of the second system. In this case,
sufficient conditions for solvability are derived as follows:

(i) Bound, from above, the energy of φ obtained in
response to a nonzero initial condition ζ (0) = −x̃0 as

∥φ∥2
2 < ψ−1x̃T

0 Hx̃0, (56)

where H ∈ Sk+l
+ is a positive-definite matrix and ψ is

an arbitrary positive scalar.
(ii) Bound the energy of z from above as

∥z∥2
2 < ψγ∥φ∥2

2 + γς(0)TY−1ς(0). (57)

Conditions (56) and (57) will now guarantee

∥z∥2
2 < γ x̃T

0
(
H + Π̃TY−1Π̃

)︸ ︷︷ ︸
X

x̃0, (58)

where we used the fact that ς(0) = Π̃x̃(0). Thanks to the
introduction of X as in (58), we can express the condition
under which (31) is satisfied again as in (40). With X chosen
as the design variable, H can be obtained from X simply as

H = X − Π̃TY−1Π̃. (59)

The positive-definiteness constraint on H introduces a cou-
pling condition on X and Y as[

Y Π̃
Π̃T X

]
≻ 0, (60)

which can be obtained by a standard application of the Schur
complement.

The solvability conditions obtained in the way described
above constitute the second main result of the paper ex-
pressed as follows:

Theorem 2: There exists a controller with a realization as
in (25) that solves Problem 2, if there exist Y ∈ Sk

+, N ∈Rn×k,
Π ∈ Rk×l , Γ ∈ Rn×l , X ∈ Sk+l

+ , M ∈ R(k+l)×m, R ∈ Sl
+ such

that (18), (19), (40) and (60) are satisfied as well as[
He

(
XÃ+MC̃

)
+ET RE ∗

Π̃ −ψ−1Y

]
≺ 0, (61)

He(AY +BN) ∗ ∗ ∗
NT BT −ψY ∗ ∗
ΓT BT 0 −R ∗

CpY +DpcN DpcN DpcΓ −γI

 ≺ 0, (62)

where ψ ∈ R+ is a fixed arbitrary positive scalar. The
controller can then be constructed with F obtained as in (17)
and G computed as

G = H−1M =
(
X − Π̃TY−1Π̃

)−1
M. (63)

Proof: The matrix inequality constraint that ensures the
bound on the energy of φ can be expressed as He

(
HÃ+MC̃

)
∗ ∗

Y−1/2Π̃ −ψ−1I ∗
−R1/2E 0 −ψ−1I

 ≺ 0. (64)

We first observe that the third row and column blocks can be
removed by an application of the Schur complement, which
results in the addition of ψ−1ET RE in the (1,1) block. By
then applying a congruence transformation with[

I 0
Y−1/2Π̃T Ã Y 1/2

]
. (65)

we can replace H by X , remove the term Y−1/2 from blocks
(1,2) as well as (2,1) and change the (2,2) block to −ϕY .
After making the replacement ψ−1R → R, we obtain the
the condition in (61). The constraint that ensures an energy
bound on z can easily be expressed in this case as in (62).
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V. ILLUSTRATIVE EXAMPLE

In this section, we consider the course control problem in
ship steering based on a model from [8], Section 4.2:

[
A Br B

]
=


−0.13 0 0 0 0 0 0 0.01
−0.35 −0.77 0 0 0 0.77 0 −0.02

0 1.00 0 0 0 0 0 0
0.53 0 0 −0.10 −0.25 0 0.25 −0.04

0 0 0 1.00 0 0 0 0

 .

The states are identified as follows: x1 is the sway velocity
(in m/s), x3 is the yaw angle (in degrees) and x2 is its
rate, x5 is the roll angle and x4 is its rate. We assume that
the measurements of the yaw and roll angles are available
without any noise or disturbance effect. The control problem
that we consider is the adjustment of the rudder deflection u
(in degrees) for the stabilization of the ship dynamics and the
regulation of the roll angle in the face of a single-frequency
sinusoidal wave disturbance (i.e. e = x5). The disturbance is
assumed to be generated by (8) with a wave frequency of
ω1 = 0.3382rad/s, as felt by the ship with a constant velocity.

We have designed four controllers for exact cancellation
of the sinusoidal disturbance effect in the roll angle (i.e.
κ = 0). The optimization problems are coded in Matlab
by the Yalmip parser [7] and solved by SeDuMi [10]. Σ1
is designed with the basic LMI conditions presented in
Section II by using ρ = η = 0.2. The design ingredients are
obtained by minimizing the bounds imposed on the condition
numbers of Y and X . The remaining three controllers are
designed to shape the transient behavior of z = [e λu ]T with
λ = 0.37. Σ2 and Σ3 are observer-based and are synthesized
based on the LMI conditions of Theorem 1 and Theorem 2
respectively. Recall that these conditions have dependence
on the scalars ϕ and ψ , over which we had to perform
line searches. The values of these scalars that provided the
minimum γ values are obtained as ϕ = 0.14 and ψ = 0.28.
With these values, we were able to obtain the minimum γ
values associated with Σ2 and Σ3 as 16.08 and 6.89. Σ4 has a
general structure and is hence synthesized based on the LMI
conditions in [4]. The optimum γ value obtained with this
controller is 5.75. In all the four cases, we also imposed LMI
constraints to avoid closed-loop poles whose real parts are
less than −100. The achieved γ values for the second and
third controllers indicate that the conditions of Theorem 1
and Theorem 2 are potentially conservative. In this particular
example, we observe that the conditions of Theorem 2 lead
to a less conservative design.

The simulation results obtained for the particular initial
condition x̃(0) = [ 0 0 3 0 5 1 0 ]T are presented in Fig-
ure 1. The top plot shows the uncontrolled system error,
which clearly becomes sinusoidal after the transient period.
The middle plot shows the errors for the four different
controllers, whereas the bottom plot shows the associated
control inputs during the transient period. The unrealistic
control input demand of Σ1 is evident from the bottom plot,
whose scale is restricted to standard rudder deflection limits.
Σ2 leads to a better transient behavior than Σ1 with much
less control effort. Nevertheless, its performance is clearly
worse than the Σ3 and Σ4, which is not surprising in view
of the associated γ value. Σ3 leads to a very similar decay
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Fig. 1. Designs for the control of the roll angle: Σ1:solid (cyan), Σ2:dash-
dotted (red), Σ3:dashed (green), Σ4:dotted (blue).

of the error with Σ4. This is not surprising either, since
the associated γ values are quite close to each other. Their
different behaviors are visible from the bottom plots of the
control inputs.

VI. CONCLUDING REMARKS

We have provided two different sets of LMI conditions for
the synthesis of observer-based controllers for generalized
asymptotic regulation with suboptimal transient response.
Although the conditions are potentially conservative, we
consider the results of the paper as an interesting contribution
to LMI-based synthesis of restricted-structure controllers.
It is to be explored whether the approach of this paper
can be applied to derive similar results for other types of
performance measures (e.g. H∞).
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[3] H. Köroğlu and C. W. Scherer. An LMI approach to H∞ synthesis
subject to almost asymptotic regulation constraints. Systems and
Control Letters, 57(4):300–308, April 2008.
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