
 
 

 

  

Abstract— Recently, a stochastic automaton known as the 
influence model was advanced as a tool for flexible and 
distributed graph partitioning, which can find optimal solutions 
to numerous hard partitioning problems in an almost-sure 
sense. Here, we provide a performance analysis of the influence 
model-based partitioner, for the hard problem of m-way 
partitioning with reference vertices. Specifically, we show that 
the influence model algorithm finds the optimal partition 
quickly with high probability, whenever the optimal cut-set is 
sufficiently weak compared to other cuts in the graph. 

I. INTRODUCTION 
wide family of graph-partitioning algorithms have been 
developed, that permit fast partitioning according to a 

variety of metrics. These partitioning algorithms have found 
quite wide application in engineering fields ranging from 
VLSI circuit design to sensor networking. As graph 
partitioning is applied in an increasingly wide range of 
modern network applications, however, several new needs in 
graph partitioning are coming to the forefront.  First, the 
metrics for partitioning are becoming increasingly 
complicated and varied, and tools for optimal or fast 
partitioning are needed for these new metrics. Additionally, 
there is also an increasing need for fast algorithms for 
partitioning in settings where decisions need to be made in 
real-time, e.g. in power system islanding. In these settings, 
good approximations of solutions are needed for partitioning 
problems that are NP-hard. Third, distributed- or self- 
partitioning algorithms, wherein network nodes must achieve 
partitioning through distributed communication and/or local 
knowledge of the network topology, are increasingly needed. 
These needs call for further research on graph partitioning. 

Stochastic graph-partitioning algorithms are promising in 
that they yield fast solutions for some graph classes and 
partitioning metrics, and yet are potentially flexible enough 
to give globally optimal solutions for a range of problems 
including some NP-hard ones. Numerous stochastic 
algorithms have been developed, many originating from a 
classical work of Karger [4]. Specifically, [4] uses a 
stochastic “recursive contraction algorithm” to solve the min-
cut problem, i.e. to find the minimum number of edges 
whose removal partitions an un-weighted multigraph 
of n nodes into two disjoint sub-graphs. The recursive 
contraction algorithm presented in [4] finds all the solutions 
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of the min-cut problem in 2 3( log )O n n run-time with a very 

high probability (exceeding 11 n− ); the computational cost 

and storage needs compare favorably with other 
deterministic algorithms for the min-cut problem. 
Motivated by the need for an algorithm that finds the optimal 
partitions for broad classes of graphs and is flexible with 
regard to the metric for partitioning, Wan et al proposed an 
alternate stochastic algorithm for graph partitioning in [1]. 
The core construct underlying the proposed algorithm is a 
discrete-valued discrete-time stochastic network model 
known as the influence model. The influence model was 
initially advanced as a tractable representation for some 
stochastic interactions that occur among components in 
engineered networks [2, 3]. Recently, the influence model 
has also been used for various computational tasks, not only 
the partitioning task considered here but also distributed-
agreement and social-network decision-making tasks [5, 6].  
It was shown in [1] that the proposed algorithm is able to 
find optimal partitions for various metrics and graph classes, 
and is especially suited for graph partitioning problem in 
which certain nodes are constrained to be in specified 
partitions (referred to here as partitioning with reference 
vertices). Examples in [1] suggest that the algorithm can 
achieve fast solutions to these problems (many of which are 
NP-Hard) for some graph classes. However, a detailed 
convergence analysis of the algorithm was not developed in 
[1]. Here, we characterize the convergence rate of the 
algorithm for a particular class of graphs, namely ones whose 
optimal cut is sufficiently weak compared to other cuts in the 
graph. This convergence analysis lends credence to the 
algorithm’s use in various engineering problems, where 
mixed strong/weak connections are common. 
The remainder of the paper in organized as follows. Section 
2 briefly reviews the influence model, while section 3 
reviews influence model- based partitioning. The remainder 
of the paper is devoted to performance analysis of the 
algorithm for an m-way partitioning problem with reference 
vertices, for graphs with weak links (Sections 4 and 5). In 
our review of the influence model and the partitioning 
algorithm, we closely follow our group’s previous works in 
those directions [1-3]. Due to space constraints, examples 
and proofs are excluded, see [11] for these. 

II. INFLUENCE MODEL: REVIEW 
In general terms, an influence model is a network of 
interacting discrete-time finite-state Markov chains. 
Specifically, we define the influence model to have 
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n components or nodes or sites. Each node has a discrete-
valued status (specifically, one of a finite set of possibilities) 
evolving in discrete time. Each site’s status evolves 
according to an update rule that depends not only on the 
status of the site but also on those of its neighbors: 

1. At each time k , each site i  independently picks 
another site j  (possibly itself) with probability ijd . 

Site j is referred to as the determining site for site i . 
2. Site i’s next status is probabilistically selected based 
on the current status of site j . That is, the Probability 
Mass Function (PMF) of site i ’s next status is 
specified by the determining site j’s current status. 

We kindly ask the reader to see [1-3] for numerous 
illustrative examples of the influence model update.  

We shall focus on the special case of a copying influence 
model wherein each site has the same number of statuses 
and, furthermore, each site simply copies the status of its 
determining site at every time step. To facilitate our analysis 
of the influence model based partitioning algorithm, let us 
introduce some notations and terminology regarding the 
copying influence model and briefly describe its analysis.  
For the copying influence model, we assume that the status 
of each site may be one of the m possible values. We find it 
convenient to represent the status of a site i at time step k by 
an -m element column status indicator vector [ ]is k , that has 
a single unity entry indicating the status of the site and is 
otherwise zero. Also, we term the stochastic 
matrix [ ]ijD d= as the network influence matrix. We define a 
network graph for the influence model from D as follows. 
The graph is assumed to have n vertices, corresponding to 
n sites. The graph has a directed edge with weight ijd from 

site j to site i when 0ijd > . The statuses of all sites at time 

step k  is represented in a column vector [ ]s k of length 
n m× as 1[ ] [ ] ... [ ]ns k s k s k′ ′ ′=    . 
Due to the special structure of the influence model update, 
the status probabilities of individual sites in the model can be 
computed easily via a low-order linear recursion.  
Specifically, the site status probabilities can be found as 

1( '[ 1] | '[0]) '[0] ( '[ ] | '[0])kE s k s s H E s k s H++ = =  
where the recursion matrix is given by ' mH D I= ⊗  (and mI is 
an m m× identity matrix) and E is the expectation operator. 
The influence model admits numerous analyses beyond 
computing individual sites’ status probabilities. We refer our 
readers to [2, 3] for details. 

III. INFLUENCE MODEL BASED PARTITIONING ALGORITHM 
This paper is focused on the problem of partitioning with 
reference vertices. We present a brief review of the problem 
before reviewing the influence model based partitioning 
algorithm. Specifically consider a directed and weighted 
graph ( , : )G V E W , where V is a set of n vertices labeled as 
(1, …, n)  and E is the set of directed edges in the graph. The 

weight of the edge from node i and to node j is denoted 
by ijw and is assumed strictly positive. For m-way 
partitioning with reference vertices, we wish to divide the 
vertices in the graph into m different groups (partitions), 
subject to the constraint that m specified vertices 
(say 1 2, ,... mV V V ) are constrained to be in m different 
partitions.  Our aim is to find partitions of the network of this 
form that minimize a cost defined from the edge weights 
between partitions. For the special case that the cost function 
is the sum of the edge weights between partitions (i.e., min-
cut partitioning), this problem is known to be NP-Hard for 

3m ≥ [7, 8], and good approximations are still needed. 
Our group advanced an influence model based partitioning 
algorithm in [1] as a tool for solving several partitioning 
problems including m-way partitioning with reference 
vertices. We now review the algorithm briefly. See [1] for a 
more detailed description of the algorithm. 
The algorithm consists of three phases:  1) Mapping, 2) 
Initialization and 3) Recursion and Stopping. 

1) Mapping: The graph to be partitioned is mapped to a 
copying influence model whose sites can each take on m 
possible statuses. In particular, we associate an influence 
model site with each vertex of the graph to be partitioned. 
The copying probabilities ijd in the influence model are 
defined from the edge weights as: 

0             if there is no edge from  to , 
       if there is an edge from  to ,  

1  for  

d j i j iij
w j i j iji

d i jill i









= ≠
∆ ≠

− =∑
≠

 

where the scale factor ∆  is chosen so that 1
max jii j

w
∆ ≤

∑
.  

2) Initialization and Recursion: Let the reference vertices 
be denoted as 1 2( , ,..., )mV V V . The site in the mapped 
copying influence model corresponding to each reference 
vertex is initialized to a different one of the m possible 
statuses (say 1V to status 1, 2V to status 2 and so forth 
without loss of generality). Also, the copying probabilities 
for the influence model site associated with the 

thi reference vertex iV are then modified as: 

0 if 
1 if ij

i j
d

i j
≠

=  =  
for each i=1,…,m. Thus, the influence model sites 
corresponding to the reference vertices always choose 
themselves as their determining site, and the statuses of 
these nodes remains the same. The remaining nodes are 
initialized at random to any of the m possible statuses. The 
influence model is allowed to run as per the above 
mentioned update rules. At each time-step, the influence 
model identifies a valid m-way partition of the network, 
i.e. sites in the same status specify a partition of the 
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original graph, with each reference vertex guaranteed to 
be in a different partition. Typically, the algorithm will 
favor partitions with weak cuts between them, since 
strongly-connected sites are likely to adopt the same status 
while weakly connected sites will remain different. 
3) Stopping: Centralized and decentralized stopping 
strategies for an influence model based partitioning 
algorithm have been developed, see [1] for details. Our 
concern here is on how fast the algorithm achieves the 
optimal partition as it scans through potential partitions 
(for m-way partitioning with reference vertices assuming a 
min-cut cost), so we do not concern ourselves with the 
details of the stopping strategy.  

It was shown in [1] that the algorithm would eventually find 
the optimal partition for m-way partitioning with reference 
vertices with probability 1. In the following section, we show 
that the influence model algorithm is capable of finding the 
partitions quickly when the graphs have a weak-cut.  

IV. PERFORMANCE ANALYSIS 
We take a two-step approach to show that the influence 
model based partitioning algorithm is able to quickly find the 
optimal solution to the partitioning with reference vertices 
problem, when the cuts between the optimal partitions are 
sufficiently weak. First, we show that, asymptotically, the 
sites in each optimal partition of the mapped copying 
influence model have statuses equal to that of the reference 
vertex in that partition with high probability, given that there 
are weak links between the partitions. Second, we provide an 
expression for the number of time-steps after which the 
status probabilities are close to their asymptotic (steady 
state) value. Using simple probability constructs, we then 
show that the above characterization of the statuses of the 
sites implies that the partitions are indentified correctly with 
high probability in a short time. The results in this section 
assume that the cuts between the partitions are arbitrarily 
weak (which is a limiting case). In Section 5, we present 
bounds on how weak these links need to be for fast 
partitioning, in terms of sub-graph eigenvalues and the 
number of nodes in the graph.  
For simplicity of presentation, we develop and prove the 
results for the 2-way partitioning problem with reference 
vertices. We then present the results for m-way partitioning 
with reference vertices after proving the results for 2-way 
partitioning. The proofs for the results for m-way partitioning 
case generally follow the same logic as for the 2-way 
partitioning case. We stress here, in beginning the analysis, 
that the m-way partitioning results are of particular 
importance because the m-way problem is NP-hard; thus, for 
this case, our results identify a sub-class of the problem for 
which fast algorithms can be found. 
For 2-way partitioning, the network is mapped to a binary 
copying influence model, with two reference vertices. For 
notational convenience, the reference vertices are indexed as 

1 and n where n is the number of the vertices in the network. 
To characterize the probabilities that each site takes on a 
certain status asymptotically, we show that these 
probabilities are specified by the eigenvector(s) of the 
network influence matrix associated with its eigenvalue(s) at 
unity. The following theorem characterizes these 
eigenvectors and hence allows analysis of individual sites 
status probabilities. 

THEOREM 1: 
Consider 2-way partitioning with reference vertices for a 
connected graph, comprising two connected sub-graphs 
which each contain one of the reference vertices. Assume 
that the edge weights between the sub-graphs (or optimal 
partitions) can be scaled down by an arbitrary factor. Now 
consider applying the influence model-based partitioning 
algorithm.  Then the asymptotic probability that the status of 
a site in a given partition is equal to the status of the 
reference vertex of that partition approaches unity, as the 
edges between the partitions are made arbitrarily weak (i.e., 
the edge weights are scaled down sufficiently). 
 
The above theorem shows that the sites in partition 1 have a 
high probability of being in status 1 and sites in partition 2 
have a high probability of being in status 2 in steady state 
when each optimal partition is internally strongly connected, 
but the two partitions are weakly linked. Now let us present 
the result for the m-way case. 
THEOREM 1.A: 
Consider m-way partitioning with reference vertices for a 
connected graph comprising m strongly connected sub-
graphs (each of which contain one of the reference vertices), 
and assume that the weights of the edges between the sub-
graphs are scaled down by an arbitrary factor.  Consider 
partitioning the graph using the influence-model algorithm. 
Then the asymptotic probability that the status of a site in a 
given optimal partition is equal to the status of the reference 
vertex of that partition approaches unity, as the edges 
between the partitions are made arbitrarily weak.           ∎ 
 
It is worth stressing that, a priori, a user of the influence 
model-based partitioning algorithm would not know that the 
edge weights between partitions were sufficiently weak – 
after all, finding weak cuts is the goal of the partitioning 
algorithm!  However, as we will formalize in Section 5, the 
strength of cuts needed for fast partitioning can be bounded, 
i.e. the cuts do not need to be arbitrarily weak; we will then 
argue that many graph classes encountered in practice have 
such weak cuts, and so the algorithm will work quickly in 
many cases.  We also reiterate that the algorithm will 
eventually find the weakest cut (or the optimal according to 
an appropriate cost measure), regardless of how strong or 
weak the cut is. 
 
Now that the asymptotic dynamics of the mapped influence 
model have been characterized, we focus on the transients of 
the model with the aim of characterizing how quickly the 
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model can identify optimal partitions. Specifically, for such 
graphs   we show the following: after running the influence 
model algorithm for a specified number of time-steps, the 
sites in each partition have a high probability of being in the 
same status as that of the corresponding reference site. 
Let us first give a conceptual overview of the transient 
analysis and then present the formal result. As is made clear 
from the proof of Theorem 1 (see [11]), the probability of 
sites having status “1” during the transient is given by: 

( )1 1([ ]) ([0]) kP k P D′ ′ ′= ×  
where the vector 1[ ]P k contains the probabilities that each site 
has status “1”. From the above relation, we can see that 
eigen-analysis of the network influence matrix is needed to 
determine the settling behavior of the model. Since the 
occupancy probability vector at the kth time step depends 
on kD′ , a Jordan decomposition of kD shows the modal 
contribution from each eigenvalue. Applying the Frobenius 
theorem for stochastic matrices, we immediately see that 
D has some eigenvalues at unity while the rest of its 
eigenvalues are strictly less than 1 in magnitude. Therefore, 
for sufficiently large values of k , the modal contributions 
from eigenvalues with magnitude strictly less than unity 
should die out, and hence the state occupancy probabilities 
should approach the steady state probabilities (as formalized 
in Theorem 1). This forms the basis of our argument, which 
is formalized in the next theorem. 

THEOREM 2 
Consider a connected graph with two connected subgraphs 
containing the two reference vertices, and assume that the 
weights of the edges between the optimal partitions can be 
scaled down arbitrarily. Sites in the mapped influence model 
in each partition have statuses equal to that of the 
corresponding reference vertex with a high probability 
( 1 0.1q ν> − − , where ν  becomes arbitrarily small as the 
edges between the partitions are made weaker and q can be 
chosen as an arbitrary positive quantity) after k-time steps, if 

( )
( )
10

10 max

log 2
log

q n
k

λ
− − −

≥

 Here, maxλ is the largest eigenvalue of the network influence 
matrix of the mapped influence model with magnitude 
strictly less than unity. 

THEOREM 2.A: 
Consider a connected graph with m  strongly connected 
subgraphs, and assume that the edges between the optimal 
partitions can be scaled down arbitrarily. Sites in the mapped 
influence model in each partition have statuses equal to that 
of the corresponding reference vertex with a high probability 
( 1 0.1q ν> − − , where ν  becomes arbitrarily small as the 
edges between the partitions are made weaker and q can be 
chosen as an arbitrary positive quantity) after k-time steps, if 

( )
( )
10

10 max

log
log

q n m
k

λ
− − −

≥

 
Here, maxλ is the largest eigenvalue of the network influence 
matrix of the mapped influence model with magnitude 
strictly less than unity.               ∎ 
We note that our analysis depends on having “sufficiently 
weak” link between the partitions. We will revisit the 
perturbation of the eigenvector and present explicit bounds 
on ν  (which represents the eigenvector perturbation due to 
graph perturbation) in terms of graph structure in Section 5. 
A note about Theorem 2 is worthwhile. The result we have 
given is phrased in terms of the largest eigenvalue of D that 
is strictly less than 1 in magnitude. The value of this 
eigenvalue depends on how strongly connected the sub-
graphs are. The stronger the connections within the sub-
graphs, the smaller the largest magnitude among the non-
unity eigenvalues and hence the faster the occupancy 
probabilities settle to steady-state values. A family of results 
is available in the algebraic graph theory literature, that 
formalize the relationship between connectivity and sub-
dominant eigenvalue locations. We omit the details here. 
Since each site has been shown to adopt the correct partition 
status with high probability quickly, we intuitively believe 
that our proposed algorithm can identify partitions correctly 
after the specified number of time steps with a high 
probability. To formalize this intuition, we should prove that 
the statuses of the sites jointly identify the partitions. 
Computations of joint probabilities are developed and 
discussed in [2]. However, explicitly computing joint 
probabilities is computationally taxing. Instead of directly 
characterizing the joint status probabilities, we here will 
bound the joint status probabilities from the individual site 
status probabilities. Specifically, we have shown that in 
steady state sites in different partitions have high probability 
(nearly equal to 1) of being in the same status as the 
reference vertex of the partition. Thus, we can expect that the 
joint probability of the sites in the same partition having the 
same status, and of sites in different partitions having 
different statuses, is high. This notion is formalized in 
Theorem 3. 

THEOREM 3: 
Consider using the influence model for m-way partition with 
reference vertices. The optimal (min-cut) partitions are 
denoted as Partition 1, Partition 2 and so on for notational 
convenience. Say that at some time k in the influence model 
algorithm, the individual site status occupancy probabilities 
are defined as ( [ ] )i i ip s k rη = = , where ir is the proper 
partition of site i in the optimal partitioning. Then the joint 
probability ( [ ] )J i iP p s k r= =



is bounded by: 

1

max(0,(1 (1 ))) min( )
n

i J ii
i

Pη η
=

− − ≤ ≤∑
 

∎ 
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Let us first interpret this result in the context of the previous 
two theorems. From Theorems 1.A and 2.A, if the number of 
time-steps k is greater than the specified value, then the sites 
individually have a high probability of being in the same 
status as that of the reference vertices of the partition. Hence, 
from Theorem 3, the joint probability of all sites having the 
status as that of the reference vertex is high after the 
specified number of time-steps. Thus, the algorithm finds the 
correct partitions after the specified number of time steps 
with a high probability for graphs that have a weak cut. 

V. CHARACTERIZING WEAK CUTS 
The results in the Section 4 show that for graphs with 
sufficiently weak cuts, fast solution to the m-way partitioning 
problem with reference vertices is possible. However, thus 
far the presented results have only guaranteed partition for 
sufficiently weak cuts without explicit characterization of 
how weak the edge weight needs to be to achieve fast 
partitioning. Here, we aim to give graphical bounds on the 
cut sizes for fast partitioning. The reason that the above 
results are not explicit in the graph structure is because they 
are based on a limiting perturbation argument. Specifically, 
the network influence matrix of the mapped influence model 
of the graph with weak links can be viewed as a perturbation 
of the network influence matrix for the case with the weak 
links removed. We have used the following two ideas 
regarding the perturbation of the network influence matrix to 
show fast convergence for sufficiently weak cuts: 

1) The eigenvalues of the network influence matrix do not 
change much due to perturbation. 
2) The eigenvectors of the network influence matrix 
associated with the two eigenvalues at unity remains almost 
the same after perturbation. 

If we are able to give explicit bounds on the extent of 
eigenvalue and eigenvector perturbation due to graph 
perturbations, we may be able to give explicit graph theoretic 
bounds on the partitioning algorithm performance. In the 
following discussion, we characterize the size of the weak 
cuts (and hence of the perturbation) that ensure that the 
eigenvector and eigenvalue of the network influence matrix 
are not significantly perturbed. It should be noted that the 
results of the perturbation theory for general matrices are 
typically conservative. This is mainly because there are no 
convenient tight characterizations of eigenvalue 
perturbations for Jordan block of sizes greater than one. 
Nevertheless, we believe that the development of explicit 
graph theoretic bounds on eigenvalue and eigenvector 
perturbation (for both general and symmetric cases) is 
significant in characterizing the influence model partitioner, 
in that they make explicit class of graphs that permit fast 
partitioning. 

A. Perturbation of Eigenvalues 
The following result gives a bound on size of the weak cut 
(equivalently, the norm of the perturbation on the network 
influence matrix effected by the weak cut) such that the 

eigenvalues of the network influence matrix of the mapped 
influence model with weak cuts are close to those of the 
mapped influence model with weak-cut removed (where 
closeness is in a proportional sense with respect to the 
spectral gap).  

THEOREM 4: 
Let us denote the network influence matrix of the mapped 
influence model as D  and that of the influence model with 
the weak cuts between the optimal partitions removed as D . 
The perturbation matrix is defined as E D D= − . Let maxλ be 
the largest eigenvalue of D with magnitude strictly less than 
unity. We seek to bound the change in maxλ due to the 
perturbation by a fraction of the spectral gap, or more 
generally by an amount max(1 )G λ− where ( )G x is any 
function such that ( ) 0 as 0G x x→ → . Then a perturbation 
matrix satisfying the following inequality guarantees that the 
bounds on eigenvalue change is met.  

( )max2
1log( ) log (1 ) log(2 1) log(4 )

2
nE n G n n

n
λ − ≤ × − − − − ×    

 
This bound on the perturbation matrix is weak. The bound 
can be improved for the case where the eigenvalues are 
simple i.e. the size of the largest Jordan block is one, through 
the application of Henrici’s Theorem [9, pp-172]. 
Unfortunately, it is difficult to provide general graph 
conditions such that the eigenvalues are simple for directed 
graphs, and so it is difficult to obtain a stronger bound on the 
perturbation of the eigenvalues in this way. For the special 
case of undirected graphs with weak links (which is a subset 
of the case that the network influence matrix has real 
eigenvalues), the Courant-Fischer theorem can provide 
strong bounds [11]. 

B. Eigenvector Sensitivity 
Another perturbation result that we have relied on is that the 
eigenvectors associated with the eigenvalues at unity (which 
determine the steady state status probabilities) do not change 
much after the perturbation. While there are many well-
known results that deal with sensitivity of eigenvectors to 
perturbation of general matrices, we find it worth our while 
to present a result that is applicable to our development. In 
particular, we aim to develop an explicit bound on the 
eigenvector change, in terms of the strength of the weak links 
between the partitions of the graph. We exploit the block 
lower-triangular structure of the network influence matrix 
and the fact that the perturbation is small compared to the 
matrix itself to characterize the eigenvector. Let us give a 
conceptual discussion of the bound methodology before 
presenting the formal result. 
To do so, we define two ( 1) ( 1)n n− × − matrices, called the 

reduced network influence matrices, by deleting thn row and 
column of the network influence matrices for the connected 
as well as the disconnected graphs. We denote them as D for 
the connected graph (i.e. the graph after perturbation) and 
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D̂ for the disconnected graph. It is easy to see that D̂ and 
D can be written in the following lower triangular block 
structure: 

1

1 0,...,0
D

Aυ
 

=  
 





and 
1

1 0,...,0ˆ
ˆ ˆD

Aυ

 
=  

  


 

It is easy to see that, Â A E= + , ( )O E ε= and 1 1
ˆ ( )Oυ υ ε= +
 

, 
where ε is an arbitrarily small quantity and ( )O ε  is the usual 
Big-o notation. We will show that the relevant eigenvectors 
of these two matrices (which give the steady state 
probabilities) can be found by solving a certain related 
systems of linear equations, and bound the change in the 
eigenvector from this perspective. Here is the formal result: 

THEOREM 5: 
Let the reduced network influence matrix of the mapped 
binary copying influence model be D̂  and that of the 
influence model with the weak cuts between the optimal 
partitions removed be D . Note that D̂ and D have the 
following structure: 

1 1

1 0,...,01 0,...,0 ˆ   ˆ ˆD DA Aυ υ
  = =      





 , 

Where, Â A E= + , and 1 1
ˆ eυ υ= +
   . 

If  

, 1
0.1 1

0.1 ( 2) ( )

q

i j qE
n n I A −

∞

< ×
− + −

and 

1
0.1 1

0.1 ( 2) ( )

q

i qe
n n I A −

∞

< ×
− + −

 

then, the change in the entries of the eigenvector for the unity 
eigenvalue due to perturbation is at most 0.1q where q is an 
arbitrarily chosen positive quantity. 

THEOREM 5.A: 
Let the reduced network influence matrix of the mapped 
copying m-state influence model be D̂  and that of the 
influence model with the weak cuts between the optimal 
partitions removed be D . Note that D̂ and D have the 
following structure: 

1 1

1 0,...,01 0,...,0 ˆ   ˆ ˆD DA Aυ υ
  = =      





 , 

Where, Â A E= + , and 1 1
ˆ eυ υ= +
   . If,  

 

, 1
0.1 1

0.1 ( ) ( )

q

i j qE
n m n I A −

∞

< ×
− + −

 

 
 

 
and 

1
0.1 1

0.1 ( ) ( )

q

i qe
n m n I A −

∞

< ×
− + −

 

then, the change in the entries of the eigenvector for the unity 
eigenvalue due to perturbation is at most, 0.1q where q is an 
arbitrarily chosen positive quantity. 

Remark: - The term 
1

1
( )I A −

∞
−

is undesirable to some 

extent. Numerous results are available in the algebraic graph 
theory and stochastic matrix literature that permit bounding 
of the quantity in terms of the network graph; we omit the 
details. 
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