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Abstract— We present in this paper preliminary results and
research directions concerning the output regulation problem
for over-actuated linear systems. The focus of the paper is on the
characterization of the solution of the full-information regulator
problem for systems which are right-invertible but not left-
invertible, where the input operator is injective. The intrinsic
redundancy in the plant model is exploited by parameterizing
all solutions of the ensuing regulator equations and performing
a static or dynamic optimization on the space of solutions.
This approach effectively shapes the non-unique steady-state of
the system so that the long-term behavior optimizes a given
performance index. In particular, nonlinear cost functions that
account for constraints on the inputs are considered. Examples
are given to illustrate and validate the proposed methodology.

I. THE FULL INFORMATION REGULATOR PROBLEM FOR

OVER-ACTUATED SYSTEMS

Consider the following linear plant:

P :
ẋ = Ax+Bu+ Pw
e = Cx+Du+Qw

(1)

with state x ∈ Rn, control input u ∈ Rm and performance

output e ∈ Rp. The signal w ∈ Rq is assumed to be generated

by the following exosystem

S : ẇ = Sw. (2)

Following standard regulation theory [1], [8], (A,B,C,D)
is refereed to as the realization of the plant model and

(S, P,Q) as the realization of the exosystem. The following

assumptions define the class of plant and exosystem models
considered in this paper:

Assumption 1:

1) The plant model is over-actuated, that is, m > p;

2) The matrices B and C satisfy rankB = m and

rankC = p;

3) The pair (A,B) is stabilizable;

4) The matrix S is semi-simple (that is, it has only simple

eigenvalues) and specS ⊂ C
0.

Item 2 of Assumption 1 is made to avoid trivialities and

overlap with previous results. The case in which B is

rank-deficient, which corresponds to having the so-called
strong input redundancy (see [9]) for (A,B), can be handled

separately from the weak redundancy exploited here.

To the best of our knowledge, the output regulation prob-

lem for linear over-actuated systems has been investigated
first in [4] in the context of tracking control for a linearized
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model of a hypersonic aircraft, and later extended to en-

compass linear parameter-varying systems [5]. The steady-
state optimization for an input-redundant linear system with

nonlinear output function has been considered in [2], with

exosystem model restricted to pure integrators. For the same
type of exosystem, the results in [9], [6] provide a framework

allowing for nonlinear dynamic allocation solutions.

A. Problem Statement and Preliminaries.

The problem addressed in this paper is the design of a full

information (possibly nonlinear) regulator that is capable of

exploiting the redundancy stated at item 1 of Assumption 1

to induce a desirable selection of the control input u (in a
sense to be specified). As a possible selection of a function

to be optimized, we consider in Section III function whose

minimization corresponds to keeping the steady state input
far from the saturation limits. As pointed out in [9], the use

of input allocation should be seen as synergistic with anti-

windup techniques, since the latter account for saturation
during transients, whereas the former addresses steady-state

saturations. This must be done while guaranteeing internal

stability of the closed-loop system when the exosystem
is disconnected and the asymptotic tracking requirement

limt→∞ e(t) = 0 when the exosystem is active. As cus-
tomary, by full information it means that both x and w are

available for measurement. Here, it is also assumed that P
and S are known exactly.

A standard sufficient condition for the solvability of the
regulator problem (which becomes necessary if mild assump-

tions on parametric uncertainties affecting the plant matrices

are considered) is given by the following:

Assumption 2: [geometric version]

1) The plant model is right-invertible, i.e., the output e is

functionally controllable from the input u;

2) The set of transmission zeros of (A,B,C,D) is disjoint

from the spectrum of S.

An algebraic version of Assumption 2, known as Davison

condition, can also be formulated. Let PΣ(s) denote the
system matrix of system (1), that is,

PΣ(s) :=

[

A− sI B
C D

]

. (3)

Recall that system (1) is left invertible if and only if
rankPΣ(s) = n+m (as a polynomial matrix), and it is right

invertible if and only if rankPΣ(s) = n + p. Obviously,

system (1) is not left-invertible. The values of s̄ ∈ C

for which the complex valued matrix PΣ(s̄) has rank less

than the rank of PΣ(s) as a polynomial matrix constitute

the system zeros, which include all the transmission zeros
plus a subset of the input decoupling zeros (eigenvalues of

the unreachable subsystem) and the output decoupling zeros
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(eigenvalues of the unobservable subsystem). The algebraic
version of Assumption 2 is then stated as follows:

Assumption 2: [algebraic version] rankPΣ(λ) = n + p,

for all λ ∈ specS.

Finally, we recall a few geometric concepts that will be

used in the sequel. By V∗ ⊂ R
n, we denote the weakly

unobservable subspace for P , that is, the set of initial

conditions for which there exists an input function such that
the ensuing output function is identically zero. It is well

known [7] that V∗ is the largest subspace V ⊂ Rn such that
[

A
C

]

V ⊂ (V × 0) + im

[

B
D

]

, (4)

or equivalently the largest subspace V ⊂ Rn such that there
exists F ∈ Rm×n ensuring

(A+BF )V ⊂ V , (C +DF )V = 0. (5)

A matrix F satisying (5) is called a friend of V . Similarly, we

denote by R∗ ⊂ R
n the controllable weakly unobservable

subspace1 of P , that is, the set of initial conditions for which

there exists an input function able to steer the state to zero
in finite time while keeping the output function identically

zero. Obviously, R∗ ⊂ V∗; moreover, any friend of V∗ is

also a friend of R∗ [7, Th. 7.14].

II. REGULATOR ARCHITECTURE AND PROPERTIES

It is well known (see, for instance, [3, Chap. 1]) that the

structure of a full-information regulator comprises:

1) a steady-state control action uss(w) capable of induc-

ing an identically zero output e along a suitable steady-
state trajectory xss(w) of the plant, and

2) a stabilizing control action ũ in feedback from the

mismatch x̃ = x − xss(w), capable of stabilizing the
steady-state trajectory at the previous item.

In the over-actuated case, since the plant model fails to

have a unique inverse (recall that P is necessarily not left-

invertible), redundancy can be exploited in the generation
of the steady-state pair (xss(w), uss(w)). For linear models,

this corresponds to selecting appropriately

xss(w) = Πw , uss(w) = Γw (6)

among the infinitely many solutions (Π,Γ) of the regulator
(or Francis) equations:

ΠS = AΠ+BΓ + P
0 = CΠ+DΓ +Q .

(7)

According to the Proposition 1, all steady-state pairs in (6)

can be generated by exploiting a basis of the space of all

solutions of the homogeneous Francis equation

ΠS = AΠ+BΓ

0 = CΠ+DΓ (8)

1When D = 0, V∗ and R∗ are usually termed respectively the largest
controlled-invariant subspace and the largest controllability subspace con-
tained in kerC (see [8]).
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Fig. 1. The over-actuated regulator control scheme with dynamic input
allocator.

Proposition 1: Under Assumption 1, all solutions to the
Francis equations (7) are parametrized as

Π(θ) = Πp +

s
∑

i=1

θiΠi , Γ(θ) = Γp +

s
∑

i=1

θiΓi (9)

by the parameter vector θ = [θ1 · · · θs]
T ∈ Rs, where s =

(m − p)q, Xp = [Πp; Γp] is any solution2 of (7) whereas

Xi = [Πi; Γi], i = 1, . . . , s are linearly independent matrices
spanning the space of solutions of (8).

The next result is key to the selection of the stabilizing

component of the regulator:

Proposition 2: Each solution Xi = [Πi; Γi] of (8) satis-
fies imΠi ⊂ R∗, i = 1, . . . , s.

The results of Propositions 1 and 2, as well as the general

structure of a (static) full-information regulator mentioned

above, suggest the architecture of the regulator with dynamic
allocation shown in Figure 1. In particular, dynamic alloca-

tion of the control input u is performed by acting on the

allocation parameter θ. Ideally, this must be accomplished
without affecting the tracking performance – that is, pre-

serving the asymptotic properties of the error signal e(·)
as well as the controlled-invariance of the subspace x =
Π(θ)w. Once the steady-state trajectory ensuring e(t) ≡ 0
is computed as in (6), (9), it is then possible to design
the feedback stabilizer, which according to the scheme in

Figure 1, provides the feedback signal ũ within the selection

u = uss(w, θ) + ũ . (10)

In particular, substituting (10), (6), (9) in the plant dynamics

(1), exploiting (7), and defining x̃ = x − xss(w, θ), the
following dynamic equations are derived for the error system:

˙̃x = Ax̃ +Bũ−

s
∑

i=1

θ̇iΠiw

e = Cx̃ +Dũ.

(11)

Given (11), it is quite natural to select the input ũ as the

linear feedback

ũ = Kx̃ = K(x− xss(w, θ)), (12)

where K is designed in one of the following two ways:

2We use the notation z = [x;y] to denote the vector (or matrix) z =
[

xT yT
]T

.
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1) as any stabilizing gain for the pair (A,B), under the

condition that θ̇(t) ≡ 0, that is the allocation parameter

θ is statically optimized and is kept constant;
2) as a stabilizing gain for (A,B) with the property that

the transfer matrix from ξ = [ξ1 · · · ξs] to e for the

system

˙̃x = Ax̃+Bũ+

s
∑

i=1

Πiξi

e = Cx̃+Dũ.

(13)

is identically zero; this second choice will allow
for nonstationary selections of the allocation param-

eter θ(t) without affecting the tracking performance.

The two possible selections above and the desirable proper-

ties of the ensuing “Over-Actuated Full Information Regu-

lator” in Figure 1 are formally stated in Theorem 1.

Theorem 1: Consider the plant (1) and the exosystem (2)
satisfying Assumptions 1 and 2. Moreover, consider the

controller selection in (10), with (12) and (6), (9), where

(Πp,Γp) and (Πi,Γi), i = 1, . . . , s are computed as in
Proposition 1. Consider the following two cases:

1) The matrix K in (12) exponentially stabilizes the pair

(A,B) and the allocation parameter is constant (θ(t) =
θ for all t ≥ 0); alternatively,

2) the matrix K in (12) exponentially stabilizes the pair
(A,B) and is a friend of the controllable weakly un-

observable subspace R∗ and the allocation parameter

θ(t) is a differentiable and bounded signal for all t ≥ 0.

For each of the above cases, given any initial condition
(x(0), w(0)) of the plant-exosystem pair (1), (2), trajectories

of the closed-loop system are bounded and the error output

satisfies limt→∞ e(t) = 0. Furthermore, for all initial condi-
tions satisfying x(0) = Π(θ(0))w(0) it holds that e(t) ≡ 0.

III. SELECTION OF THE ALLOCATION POLICY

In the previous section we have introduced a design

technique for the Over-Actuated Full Information Regulator

of Figure 1 without commenting on the selection of the
allocator block A. In particular, via Theorem 1, we provided

two design techniques for synthesizing the matrices of the

regulator parametrically in θ in such a way that the tracking
performance is preserved with constant selections of θ(t) = θ
(item 1 of Theorem 1) and with differentiable selections
of θ(t) (item 2 of Theorem 1). In this section, we will

propose a few techniques to select the allocation parameter

θ (namely the allocator block A in Figure 1), in such a
way to induce desirable properties of the closed-loop signals.

It should be recognized that the techniques proposed here

are quite straigthforward and intuitive constructions, while
more involved designs for θ might be achieved by possibly

developing more in the direction highlighted in the next

remark.

Remark 1: Consider the (parametric in θ) control law
(10), (12), (6) proposed in the previous section. Taking into

account the matrix selection in (9), this control law can be

rewritten as the following affine function of θ:

u = Γ(θ)w +K(x−Π(θ)w)
= Kx+ (Γp −KΠp)w +Ψ(w)θ,

(14a)

where

Ψ(w) =
[

(Γ1 −KΠ1)w · · · (Γs −KΠs)w
]

. (14b)

Based on the representation (14) of the control input u, it is
possible to design static or dynamic selections of θ aiming at

keeping the control u as small as possible, possibly based on
its saturation limits or based on other plant input performance

specifications. In this paper, two static selections of θ will

be considered. In the first one a constant value of θ is
pre-computed off-line by optimizing a suitable performance

index. In the second one, an (almost) piecewise constant

θ(t) is obtained by an on-line optimization algorithm which
adapts θ(t) with the goal of reaching the minimum of

the same performance index. This give raise to a time-

varying selection of θ(t) which converges in finite time to
a constant value. More general time-varying selections of θ
and dynamic selections along similar lines to those developed

in [9], [6] will be investigated in future work. y

For simplicity, the following assumption is introduced. Its

satisfaction can be easily verified by checking if the ratios
among (the imaginary parts of) the eigenvalues of S are all

rational numbers.

Assumption 3: The exosystem (2) generates periodic re-
sponses, that is, there exists T > 0 such that for any w(0)
and for all t ≥ 0, w(t+ T ) = w(t).

A. An off-line selection of a constant θ

The first strategy for optimizing the input allocation when-
ever Assumption 3 holds arises from recognizing that for

each initial condition w0 of the exosystem (2) (and for each

value of θ), a unique periodic steady state control input
uss(t) = Γ(θ)w is defined whenever θ is kept constant.

Indeed, due to Assumption 3, the response w(t) is periodic

and only depends on the initial condition.

A sensible problem then corresponds to the one of select-

ing θ as the minimizer of the following cost function:

J(θ, w(t)) = (15)

max
t ∈ [0, T ]

i ∈ {1, . . . ,m}

(

1−
uss,i(w(t))

ui

)(

uss,i(w(t))

ui

− 1

)

,

which satisfies J(θ, w(t)) = J(θ, w(0)) for all θ and for all
t ≥ 0, because w(t) = w(t + T ) and because the function

corresponds to the maximum over the whole period.

The rationale behind the cost (15) is to maximize the
worst case distance of any input from its saturation level.

This is actually carried out by normalizing the saturation

levels so that the percentage of the available input range at
all inputs is maximized. Note that the cost function takes

into account the possible periodic nature of the steady-state

input by computing the worst case distance over the whole
period of the steady-state plant input.

Based on the cost function (15), the approach proposed
here is to optimize the selection of θ based on the measure-

ment of the initial value of w (or, equivalently, its value at

any time t ≥ 0). In particular, assuming that it is possible to
solve offline the following optimization problem:

θ∗(w0) = arg min
θ∈Rs

J(θ, w0), (16)
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a constant value of θ(t) = θ∗(w0) can be adopted and,
according to item 1 of Theorem 1, for any K stabilizing the

pair (A,B), the asymptotic tracking performance is retained

and the worst distance of the worst input from its saturation
value is maximized. This fact is illustrated in Example 1 in

the next section.

B. An on-line iterative selection of θ

The constant selection of θ proposed above suffers from

two main issues: 1) it might be nontrivial, in general, to
explicitly compute the maximizer of the cost function (15);

2) even in cases where this maximizer could be computed,

this should be parametrized with respect to w, and this might
be expensive in terms of storage of a suitable grid of optimal

values for θ. To address the above problems, we propose here

a gradient based strategy which allows to optimize online the
value of θ(t).

The functional dependence of θ on time is restricted to be

a smooth but almost piecewise constant signal. In particular,
we fix a small scalar δ ≪ T denoting the time used to

smoothly transition between two subsequent periods (namely,

time intervals of length T ) where θ(t) = θ[k] is constant.
Then we define:

θ(t) := θ[k], ∀t ∈ Tk, k ∈ N,

Tk := [(T + δ)k, (T + δ)k + T ].
(17)

Consider the index

J[k] := J(θ, w(t), k) = max
t ∈ Tk

i ∈ {1, . . . ,m}

Ji(θ, w(t)), (18a)

Ji(θ, w(t)) =

(

1−
uss,i(w(t))

ui

)(

uss,i(w(t))

ui

− 1

)

(18b)

which corresponds to (15) but evaluated during the k−th

period. In the δ-small interval [(T +δ)k+T, (T +δ)(k+1)],
between the end of the k-the period and the beginning of the
(k+1)-the period, θ(t) is smoothly transferred from θ[k] to:

θ[k+1] = θ[k] − α[k]d[k], (19)

where, letting i∗[k] ∈ {1, . . . ,m} denote the index of the

input component such that the maximum in (18) is achieved

and letting t[k] denote the corresponding time, the update

direction d[k] and the update step length α[k] are chosen as

d[k] =
∇θJi∗

[k]
(θ[k], w(t[k]))

∥

∥

∥
∇θJi∗

[k]
(θ[k], w(t[k]))

∥

∥

∥

,

β[k] = τ(J[k] + 1)2
∥

∥

∥
∇θJi∗

[k]
(θ[k], w(t[k]))

∥

∥

∥
,

α[k] =

{

β[k], β[k] ≥ α,

0, β[k] < α,

with τ , α being positive constants. The factor (J[k] + 1)2

is useful to get smoother convergence, since it gets closer
to zero (thus reducing the step length and inducing more

cautious updates) when the components uss,i get closer to

zero, that is far from the bounds on the input. The parameter
α is used to stop the updates when the update step becomes

sufficiently small; in this way, after a finite number of

iterations the value of θ remains constant and the result
in Theorem 1 applies, yielding asymptotic tracking with a

reduced excursion of the steady-state input. Example 2 in

Section IV shows the effectiveness of the proposed recipe.

IV. SIMULATION EXAMPLES

A first numerical example is presented to illustrate the

item 1 of Theorem 1.

Example 1: Consider the plant and exosystem described

by the matrices:

[

A B
C D

]

=





−0.02 0.41 0.35 −0.76 −0.31
−0.10 0.50 0.31 −0.00 0.17
0.29 −0.44 −0.67 0.91 −0.55
0.50 −0.48 0.01 0 0





S =
[

0 15.78
−15.78 0

]

[

P
Q

]

=





0.78 −0.72
0.91 −0.70
0.09 −0.48
0.68 −0.49



 .

All the matrices are generated randomly, except for the

matrix S, which is characterized by two imaginary eigen-
values λ1 = λ∗

2 = j 2π
T

, with T generated randomly and

given by T = 0.39. Moreover, select u = [−30;−20] and
u = [30; 30] in (18). Assumptions 1 and 2 are both satisfied,

so the results of Theorem 1 can be applied. The dimension

of the free parameter θ is given by s = (m − p)q =
(2 − 1)2 = 2. Solving the Francis equation, the particular

and homogeneous solutions can be found to be

[

Πp

Γp

]

=







−1.47 0.91
−0.08 −0.09
1.72 −1.11

20.70 29.03
0 0







[

Π1 Π2

Γ1 Γ2

]

=







−0.43 −0.93 0.93 −0.43
−0.37 −0.82 0.82 −0.37
2.95 5.39 −5.39 2.95

−47.82 28.98 −28.98 −47.82
70.93 −42.44 42.44 70.93






10−2.

A first stabilizing matrix

KNF =
[

−68.49 −380.02 −80.01
0.06 −65.40 −2.68

]

is computed using the Matlab command place with the

goal of assigning the eigenvalues of the closed-loop matrix

(A + BKNF ) at {−8,−10,−12}. Then, Theorem 1 guar-
antees that using K = KNF , for any constant value of θ,

asymptotic tracking is ensured. In particular, according to

the construction given in Section III-A, we select a constant
value of θ optimizing the performance index J(θ) in (15)

when initializing the exosystem (2) from the initial condition
w0 = [1; 0]. Figure 2 shows a numerical evaluation of the

optimal value of θ, based on the level sets of J(θ). Note

that the minimizer is θ∗(w0) = [6; 18]. This proves that the
redundancy in the regulator problem can be effectively used

to obtain an improved usage of the steady-state plant inputs.

This is even more evident in Figure 3, where the steady-state
input trajectory corresponding to w0 is plotted on the inputs

space for the two cases of θ = 0 (blue circles) and θ = θ∗

(red dots). In the former case, with θ = 0, the input cannot
satisfy the saturation constraint (represented by the green

dashed lines), while in the latter case, with θ = θ∗, the input
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Fig. 2. Example 1. The cost J in (15) as a function of the parameter
θ ∈ R2. The minimizer is θ∗ = [0; 20] (red dot), different from zero (blue
circle).

trjectory lies entirely in the available range and maximizes
the worst case distance from the saturation limits.

A second stabilizing matrix

KF =
[

−217.50 −240.26 −84.16
337.82 339.42 124.90

]

is computed to assign the same set of eigenvalues assigned
by KNF while being a friend of R∗. With K = KF , the

subspace spanned by the matrix

R =

[

−0.69 −0.00
−0.71 0.02
0.01 0.99

]

is invariant.
In Figure 4 two different simulations, respectively with

K = KNF (black dash-dotted) and K = KF (blue solid),

are shown. In both of them the exosystem starts from the
same initial condition w0 = [1; 0] used in the previous

steps, but the plant starts from an initial condition x0 =
xss(w0, θ)+ x̃0, with x̃0 = CT = [0.50;−0.48; 0.01], which
does not belong to the invariant subspace of the steady-state

trajectories. In both simulations θ = θ∗ is used, so that the

steady-state trajectories of both the input components are
within their saturation limits (green dashed horizontal lines).

Since θ is constant, item 1 of Theorem 1 applies and so
both with the friend matrix KF and with the non friend one

KNF , the inputs converge, after a transient, to the steady-

state trajectory uss(w) (red dashed curves) and the error e
converges to 0 (lower trace in the figure).

Example 2: Consider the plant and exosystem described

by the matrices

[

A B
C D

]

=





−0.01 0.80 0.56 −0.19 0.88
−0.02 −0.26 −0.22 −0.80 0.91
−0.32 −0.77 −0.51 −0.73 0.15
−0.88 −0.53 −0.29 0 0





S =







0 0 0 0 0
0 0 7.65 0 0
0 −7.65 0 0 0
0 0 0 0 3.82
0 0 0 −3.82 0







[

P
Q

]

=





−0.96 0.29 −0.09 0.48 −0.63
−0.91 0.46 0.09 −0.62 −0.26
−0.66 0.29 −0.40 0.37 0.25
0.56 −0.83 0.85 0.55 −0.02



 .

Input steady-state trajectory

u
1

u
2
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Fig. 3. Example 1. The values of uss in the case θ = 0 (blue circles), and
for the optimal case θ = θ∗ (red dots). In the former case the steady-state
trajectory is infeasible for the input constraints while in the latter case it is
feasible.
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Fig. 4. Response using θ = θ∗ with K = KF (blue solid) and with
K = KNF (black dash-dotted). In both cases the error e converges to 0
(lower plot) and u converges to uss(w) (red dashed), because θ is constant.

All the matrices are generated randomly, except for the

matrix S, which is characterized by an eigenvalue in the

origin λ1 = 0 and two pairs of imaginary eigenvalues λ2 =
λ∗
3 = j 2π

T1
and λ4 = λ∗

5 = j 2π
T2

with T2 = 2T1 and T1 = 0.82
generated randomly. Moreover, select u = [−30;−20] and

u = [30; 30] in (18). Assumptions 1 and 2 are both satisfied,

so the results of Theorem 1 can be applied. The dimension
of the free parameter θ is given by s = (m − p)q =
(2 − 1)5 = 5. Solving the Francis equation, the particular

and homogeneous solutions can be found to be

[

Πp

Γp

]

=







−0.26 −0.52 0.65 0.35 −0.18
1.49 −0.58 0.54 0.39 0.23

0 − 0.23 −0.03 0.10 0.03
−2.52 0 0 0 0
−0.81 −5.34 −4.86 −0.17 2.00







[

Π1

Γ1

]

=







3.65 0.09 −3.65 −0.13 0.79
−20.83 −0.24 2.43 0.16 −0.51
26.66 0.14 6.56 0.10 −1.44
2.18 78.35 −8.60 −8.84 0.85
2.49 48.83 −7.46 −5.58 0.99
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Fig. 5. Example 2. Inputs u and uss (top two plots), error e (middle trace), cost function J in (18) (middle-bottom trace) and parameter θ (bottom trace).

[

Π2

Γ2

]

=







−7.49 2.34 −0.81 −1.48 1.97
42.70 −1.60 0.42 1.18 −1.17

−54.67 −4.13 1.66 2.30 −3.80
−4.48 24.20 47.65 −25.38 −9.99
−5.12 16.42 29.20 −16.65 −5.07
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[

Π3

Γ3

]

=







5.60 3.10 0.72 −0.00 −1.93
−31.92 −2.03 −0.63 −0.18 1.29
40.86 −5.62 −1.02 0.34 3.46
3.35 −6.34 68.26 20.60 −5.69
3.82 −2.16 42.90 12.81 −4.65






10−2

[

Π4

Γ4

]

=







−2.24 0.41 −0.44 7.15 −1.37
12.77 −0.30 0.27 −4.91 0.22

−16.35 −0.70 0.83 −12.55 3.71
−1.34 10.68 7.61 35.50 72.01
−1.53 6.89 4.48 26.20 44.01






10−2

[

Π5

Γ5

]

=







2.88 0.27 0.77 1.88 6.83
−16.44 −0.14 −0.53 −0.59 −4.75
21.04 −0.55 −1.36 −4.56 −11.89
1.72 −15.77 8.08 −67.15 39.98
1.97 −9.66 5.48 −40.69 28.81
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Two different stabilizing matrices,

KNF =
[

224.99 −259.22 251.22
105.78 −134.41 125.14

]

KF =
[

160.13 −412.32 275.49
94.41 −260.23 169.56

]

,

are computed: the former using the Matlab command place

with the goal of assigning the eigenvalues of the closed-

loop matrix (A + BKNF ) at {−8,−10,−12} ; the latter
assigning the same eigenvalues while being a friend of R∗.

With K = KF , the subspace spanned by the matrix

R =

[

−0.56 −0.00
0.72 0.48
0.39 −0.87

]

is invariant. Then, Theorem 1 guarantees that using K =
KNF , for any constant value of θ, asymptotic tracking is

ensured. In particular, we select θ according to the con-
struction given in Section III-B. Figure 5 shows a numerical

simulation of the closed-loop system, with initial conditions

x0 = [0.63; 0.58; 0.28], w0 = [3.6; 3; 0; 2.12; 2.12] and θ0 =
0, repeated in both the cases with K = KNF (blue dashed-

dotted trace) and K = KF (black solid trace). In order to

show how the allocation law (19) responds to disturbances,

at time t = 50 the first component of the exosystem state w1

jumps to the value w1 = −6.4. Both the initial condition w0
and the value of w after the jump, define infeasible (J > 0)

steady-state trajectories uss (red solid bold trace) for the
input u. The allocator block changes the free parameter θ
and makes the actual cost index J(θ) decrease to negative

values. Indeed uss moves back into the feasible input range.
With both the choices for the stabilizer K , the actual input

u reaches the steady-state trajectory uss after a transient due

to both the initial condition x̃0 6= 0 and to the adaptation of
θ, as described by (13). The advantage in using the friend

matrix and relying on item 2 of Theorem 1 appears from the

middle plot of the figure, which shows that the friend matrix
does not cause the impulsive transients experienced on the

error e when θ varies according to the adaptation law.
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