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Abstract— Recently, new results about semi-global and global
finite-time observation have been obtained by the use of
continuous high gain observers. In this paper, we propose
to extend these results by studying ”time-varying high gain”
observers and by providing new update laws : first, we adapt the
law introduced by L. Praly in the case of asymptotic observation
to the finite-time case and we prove that the updated high gain
remains bounded. Secondly, we propose a new update law which
guarantees the high gain’s value tends asymptotically to 1.

I. INTRODUCTION

Over the past few decades, the problem of finite-time
observation of non linear systems has received a lot of
attention. Except a few other results, there are mainly two
classes of finite-time nonlinear observers that have been
widely studied.
First, discontinuous finite-time sliding mode observers have
deserved a lot of attention : a lot of papers using classical
sliding observers can be found in the literature [14] − [17].
Sliding mode observers is still an active field of research and
more recently higher order sliding observers have also been
introduced (see for instance [18], [19]).
Secondly, spurred by the work of Bhat and Bernstein [1]
on the finite time stabilization of a double integrator, a
continuous homogeneous observer has been proposed for a
large class of nonlinear second order systems [6]. This led
to the development of the wide branch of continuous finite-
time nonlinear observers.
The homogeneous domination approach was soon introduced
in order to deal with higher dimensional uncertain nonlinear
systems : its principle is to dominate the nonlinearities by
introducing a scaling gain into the homogeneous observer.
This enabled to solve the problem of finite-time output
feedback stabilization of more and more complex classes of
nonlinear systems [8], [13].
Meanwhile, another type of finite-time observer was intro-
duced for a class of linearizable nonlinear system [10] and
soon extended to observe uniformly observable systems in
a semi-global [9] and global [12] ways . In all these design
methods, the gain of the observer is fixed and must be chosen
sufficiently large (so in a conservative way). However, in
the asymptotic stabilization case, there exist some results to
adapt the gain of high gain observers when the unknown
nonlinear functions have an unknown growth rate [5] or when
this rate depends on the measured output [4].
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Recently, in [11], an update law whose gain is an exponential
function with arbitrary growth rate has been combined with
the semi-global finite time observer of [9] to obtain a global
result. Since, the resulted law is exponential and the uncertain
nonlinear terms are bounded by a perfectly known Lipschitz
condition, we think this observer deserves many extensions.
Therefore, in this paper, we consider the problem of updating
the gain of global finite time high-gain observers for a class
of uncertain nonlinear system whose uncertain nonlinear
terms have an unknown growth rate which depends on the
output. We obtain two possible update laws : the first one
is a natural extension of the law introduced in [4] at the
difference that some terms of this law serve to dominate
some homogeneous factors outside a compact set around
the origin. It is proved that the high gain remains bounded
when the state and input of the observed nonlinear system
are bounded. Then, a second update law is proposed and
provides a gain which not only remains bounded under the
same conditions than above but also tends asymptotically to
1.
This paper is organized as follows. Some basic notations and
definitions followed by the problem formulation are given in
Section 2. In Section 3, we present our observer and some
hypotheses. Then, we provide the adaptation laws and prove
our main results in Section 4. We then illustrate our results on
a numerical example in Section 5 and compare our adaptation
laws.

II. PRELIMINARIES

Let R (resp. N ) denote the set of real numbers (resp.
natural integers). In this paper, we interest us to nonlinear
SISO systems of dimension n ∈ N .

A. Notations

Given α ∈ R+\{0}, y ∈ R, we note :

dycα := |y|αsign(y)

For a given vector x := [x1, . . . , xn]T ∈ Rn, ∀j ≥ i, we
note

xi,j := [xi, xi+1, . . . , xj ]
T

We use the following notation for a given n × n diagonal
matrix

diag(a1, . . . , an) :=

a1 0 0

0
. . . 0

0 0 an
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B. Finite-Time Stability

In this paper, we interest us to finite time stability and
stabilization results which have the merit to provide contin-
uous time observer and controller by using a mix between
Lyapunov theory and geometric homogeneity. We invite the
reader which is not familiar with the basic definitions of
homogeneity to look at the work of [2] or [12].
Nevertheless, let us briefly recall a basic result about Finite
Time Stability (See [2] for more details) that will be useful
in this paper.
Theorem : Suppose there exist a possibly non Lipschitz
vector field f on Rn, a C1 positive definite function V :
Rn → R and positive real numbers a > 0, 1 > β > 0 such
that :

∀x ∈ Rn, V̇ (x) = LfV (x) ≤ −aV β(x)

then the origin is GFTS (Globally Finite Time Stable) under
the vector field f .

C. Problem position

Throughout this paper, we consider the following class of
nonlinear systems :

ẋ1 = x2 + f1(x1)
ẋ2 = x3 + f2(x1, x2)
...
ẋi = xi+1 + fi(x1, x2,i)
...
ẋn = u+ fn(x1, x2,n)
y = x1

(1)

where x = [x1, . . . , xn]T ∈ Rn, u ∈ R and y ∈ R are
respectively the state, input and output of this nonlinear
system ; where the unknown functions fi’s are characterized
by the following assumption [H1] :

|fi(x1, x2,i)− fi(x1, x2,i − z2,i)| ≤
∀i∈[2,n]

γ(y)
∑
k=2:i

|zk|

where γ ≥ 0 with γ(0) = 0.

Our aim is to design a global finite-time observer for
this class of nonlinear systems.

III. GLOBAL FINITE-TIME OBSERVER

Let us note
ξi := xi − x̂i

where x̂ denotes the state of a nonlinear high gain observer
defined by:

˙̂x1 = x̂2 + f1(x1) +
ko,1
2 L(dξ1cα1 + ξ1)

˙̂x2 = x̂3 + f2(x1, x̂2) +
ko,2
2 L2(dξ1cα2 + ξ1)

...
˙̂xi = x̂i+1 + fi(x1, x̂2,i) +

ko,i
2 Li(dξ1cαi + ξ1)

...
˙̂xn = u+ fn(x1, x̂2,n) +

ko,n
2 Ln(dξ1cαn + ξ1)

• where [ko,1, . . . , ko,n] ∈ Rn will be defined later

• where 1 > (α1, . . . , αn) > 0 is decreasing and will be
defined later.

• where L ≥ 1 is time varying (L̇ will be designed later)
Let us also introduce the following change of coordinates :

∀i ∈ [1, n], εi =
ξi

Li−1+b

We note : δfi := fi(x1, x2,i)− fi(x1, x̂2,i).
We rewrite the hypothesis [H1] in the new coordinates (this
will be useful in the proof of our main result)

∀i ∈ [2, n], |δfi| ≤ γ(y)
∑
k=2:i

Lk−1+b|εk|

where b > 0 is defined later.
In these coordinates, the dynamics of the observer error is
written :

ε̇1 = Lε2 − ko,1
2 L(L(α1−1)bdε1

⌋α1
+ ε1)− b L̇Lε1

ε̇2 = Lε3 − ko,2
2 L(L(α2−1)bdε1

⌋α2
+ ε1) + δf2

L1+b

−(1 + b) L̇Lε2
...
ε̇i = Lεi+1 − ko,i

2 L(L(αi−1)bdε1
⌋αi

+ ε1) + δfi
Li−1+b

−(i− 1 + b) L̇Lεi
...
ε̇n = −ko,n2 L(L(αn−1)bdε1

⌋αn
+ ε1) + δfn

Ln−1+b

−(n− 1 + b) L̇Lεn
(2)

A. Additional Hypotheses :

Let us note C = [1 0 . . . 0] and A the matrix defined by
(A)i,j = δi,j−1 (where δi,j is the Kronecker delta).
Let a > 0, we choose Q = QT > 0 such that there exists
1 > q > 0 s.t

ATQ+QA− CTC ≤ −2aQ ; qIn ≤ Q ≤ In (3)

We then define (ko,1, . . . , ko,n) > 0 by:

[ko,1, . . . , ko,n]T = Q−1CT

Let us also note D = diag(0, 1, . . . , n − 1). We suppose
there exists b > 0 such that:

−bQ ≤ DTQ+QD ≤ bQ (4)

Remark : in practice, we solve the LMIs associated to
hypothesis (3) and then we search b > 0 in order to satisfy
hypothesis (4).

IV. MAIN RESULTS

Let us note :

|ε1|# := max{|ε1|α1 , |ε1|αn}

c1,n := min{3c1, cn} and c1,n := max{3c1, cn}

kB :=
3n

a
max
i∈[1,n]

ko,i
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cB :=
(n− 1)2
√
q

(
1 + max

i∈[2,n]

1

ci

)
Let us now present our first result :

Theorem 1: Let us suppose the state of system (1)
remains bounded by a given bounded controller u ; under the
hypotheses [H1], (3), (4), there exists α < 1 such that system
(2) is Globally Finite Time Stable when we use the following
adaptation law :

L̇ = −1

b
L

(
a

3
(L− 1− L|ε1|#)−

(
cB
c1,n

+ 2
n− 1
√
q

)
γ(y)

)
(5)

with L(0) = 1.
Moreover, this law guarantees that L remains bounded.

proof : it is somewhat technical but relies on the fact
that we prove these results in several steps, taking in mind
the fact that if we prove global asymptotic stability and
finite-time stability in a neighborhood of the origin, we
obtain global finite time stability. (See for instance, Lemma
1 of [12])

A. Global Asymptotic Stability

Under the hypotheses [H1], (3), (4), let us first study the
asymptotic stability.

Let us consider the following candidate Lyapunov function

Vo(ε) = εTQε

where Q satisfies (3).
∀i, αi ≤ 1, we interest us to the following quantity

B(ε) := εTQ


ε2 − ko,1L(α1−1)b dε1cα1

. . .
εi+1 − ko,iL(αi−1)b dε1cαi

. . .
−ko,nL(αn−1)b dε1cαn


• When ε ∈

{
ε ∈ Rn s.t

√
Vo(ε) > kB

}
we have:

B(ε) ≤ εTQAε+ n
√
Vo max
i∈[1,n]

ko,i|ε1|#

≤ εTQAε+
a

3
|ε1|#Vo

• When ε is in the following complementary set

C1 :=
{
ε ∈ Rn s.t

√
Vo(ε) ≤ kB

}
Since when α = 1, ∀ε ∈ Rn, B(ε) ≤ 0 and C1 is a
compact set, we know from the tube Lemma [3] that
there exists 1 > ᾱ1 > 0 such that ∀α ∈]1− ᾱ1, 1[,

∀ε ∈ C1, B(ε) ≤ 0

So we conclude, that there exists 1 > ᾱ1 > 0 such that
∀α ∈]1− ᾱ1, 1[,

∀ε ∈ Rn, B(ε) ≤ max{0, εTQAε}+
a

3
|ε1|#Vo

Therefore, when α ∈]1− ᾱ1, 1[, we can write :

V̇o ≤ LεT (QA− CTC)ε+ LB(ε)

+2εTQ


0
. . .

δfi
Li−1+b − (i− 1) L̇Lεi

. . .
δfn

Ln−1+b − (n− 1) L̇Lεn

− 2b
L̇

L
εTQε

≤ LεT (QA− CTC)ε+ Lmax{0, εTQAε}

+
a

3
L|ε1|#Vo + 2

n− 1
√
q
γ(y)Vo

−2
L̇

L
εT (QD + bQ)ε

≤ Lmax

{
−aVo −

1

2
εTCTCε,−2aVo

}
+
a

3
L|ε1|#Vo + 2

n− 1
√
q
γ(y)Vo

−2
L̇

L
εT (QD + bQ)ε

≤ −
[
a

(
1− 1

3
|ε1|#

)
L− 2

n− 1
√
q
γ(y)

]
Vo

− L̇
L
b

[
2− sign

(
L̇

L

)]
Vo

If we apply the adaptation Law (5), we get after a few
computations (remark that it is easy to prove that this
adaptation law guarantees that ∀t ≥ 0, L(t) ≥ 1 and so
we can use −(2L+ 1) ≤ −3):

V̇o ≤ −aVo −
cB
c1,n

γ(y)Vo

≤ −aVo

so the system is GAS (and so, it will stay inside the ball B1
defined below within a finite time)

B. Proof inside B(1) := {ε s.t |εi| ≤ 1}
Secondly, we interest us to the ball B(1)
1) First subsystem: First we consider the following vector

field fα: 

ε̇1 = ε2 − ko,1L(α1−1)b dε1cα1

ε̇2 = ε3 − ko,2L(α2−1)b dε1cα2

...
ε̇i = εi+1 − ko,iL(αi−1)b dε1cαi
...
ε̇n = −ko,nL(αn−1)b dε1cαn

As in [10], we define, (r1, . . . , rn) > 0 and (α1, . . . , αn) > 0
such that :

ri+1 = ri + d, 1 ≤ i ≤ n− 1
αi = ri+1

r1
, 1 ≤ i ≤ n− 1

αn = rn+d
r1

(6)

These equations simply say that the vector field fα is
homogeneous of degree d with respect to the weights

8147



(r1, . . . , rn).

Let us take a real number 0 < α < 1.
We set: r1 = 1, r2 = α, d = r2 − r1 = α − 1 and we
recursively prove that: ri = (i − 1)α − (i − 2) 1 < i ≤ n
and, αi = iα− (i− 1) 1 < i ≤ n.
Since r1 > . . . > rn, in order to guarantee ∀i, ri > 0, we
will also need to assume that :

α >
n− 2

n− 1
= 1− 1

n− 1

Let us now define :Vz(α, ε) := zTQz where zi = dεic
1

riπr

and where πr =
∏

i=1:n−1
ri.

Let us also note : ci = 1
riπr

It is obvious that Vz is homogeneous of degree 2
πr

with
respect to the weights (r1, . . . , rn). and that LfαVz is homo-
geneous of degree 2

πr
+ degree(fα) = 2

πr
+ d = 2

πr
+α− 1

with respect to the weights (r1, . . . , rn).
By using Lemma 4.2 of [2],

−β1(α,L)V βz (ε) ≤ LfαVz(ε) ≤ −β2(α,L)V βz (ε)

where β :=
deg(LfαVz)
deg(Vz)

= 1+ πr
2 (α−1) < 1 because α < 1

and where β1(α,L) := − min
{z s.t Vz(α,ε)=1}

LfαVz(α, ε) > 0

and β2(α,L) := − max
{z s.t Vz(α,ε)=1}

LfαVz(α, ε) > 0. ( we

easily prove it when α = 1 (asymptotic case) and we then
use the same proof than [11])

2) Full system: Since ∀ε, the following quantity is nega-
tive when α = 1

Bz(ε) := zTQ


c1|ε1|c1−1 (ε2 − ko,1ε1)

. . .
ci|εi|ci−1 (εi+1 − ko,iε1)

. . .
cn|εn|cn−1 (−ko,nε1)


moreover, since B(1) is compact, we know from the tube
Lemma [3] that there exists 1 > ᾱ2 > 0 such that:

∀ε ∈ B(1), ∀α ∈]1− ᾱ2, 1[, Bz(ε) ≤ 0 (7)

Therefore, if 1 > α > max
(

1− 1
n−1 , 1− ᾱ2

)
, we can write

:

V̇z ≤ −β2(α,L)V βz (ε) + LBz(ε)

+2zTQ



c1|ε1|c1−1
(
−b L̇Lε1

)
. . .

ci|εi|ci−1
(

δfi
Li−1+b − (i− 1 + b) L̇Lεi

)
. . .

cn|εn|cn−1
(

δfn
Ln−1+b − (n− 1 + b) L̇Lεn

)


≤ −β2(α,L)V βz (ε)− 2

L̇

L
zT (QD + bQ)×

c1 0 0
...

. . .
...

0 0 cn

 z + 2zTQ


0
. . .

ci|εi|ci−1
(

δfi
Li−1+b

)
. . .

cn|εn|cn−1
(

δfn
Ln−1+b

)



First, since the cis are positive and increasing and by using
(4), we have:
• if L̇

L ≥ 0

−2
L̇

L
zT (QD + bQ)

c1 0 0
...

. . .
...

0 0 cn

 z ≤ −cnb
L̇

L
Vz

• if L̇
L ≤ 0

−2
L̇

L
zT (QD + bQ)

c1 0 0
...

. . .
...

0 0 cn

 z ≤ −3c1b
L̇

L
Vz

Due to space restriction, the right term of the last two
inequalities is given by −bc# L̇

LVz where c# := cn +
1
2

(
1− sign( L̇L )

)
(3c1 − cn).

By Young’s inequality:

|εi|ci−1|εk| ≤
ci − 1

ci
|εi|ci +

1

ci
|εk|ci

Hence, ∀i ∈ [2, n]:

|εi|ci−1
δfi

Li−1+b
≤ γ(y)

∑
k=2:i

Lk−i−2|εi|ci−1|εk|

≤ γ(y)

(
ci − 1

ci
(i− 1)|εi|ci +

1

ci

i∑
k=2

|εk|ci
)

≤ γ(y)

(
(n− 1)

√
z′z +

1

ci

i∑
k=2

|εk|ci
)

Since, ∀i ≥ k, ci ≥ ck ≥ 1 and ε ∈ B(1), we have :

|εk|ci ≤ |εk|ck

So, ∀i ∈ [2, n]:

|εi|ci−1
δfi

Li−1+b
≤ γ(y)

(
1 + max

i∈[2,n]

1

ci

)
(n− 1)

√
zT z

Thus, we obtain:

V̇z ≤ −β2(α,L)V βz (ε)− bc# L̇
L
Vz

+γ(y)
(n− 1)2
√
q

(
1 + max

i∈[2,n]

1

ci

)
Vz

We identify the coefficient cB and we thus obtain :

V̇z ≤ −β2(α,L)V βz (ε)−

(
bc#

L̇

L
− cBγ(y)

)
Vz (8)

C. Conclusion of the proof of Theorem 1

To sum up, we applied the adaptation law (5):

L̇ = −1

b
L

(
a

3
(L− 1− L|ε1|#)−

(
cB
c1,n

+ 2
n− 1
√
q

)
γ(y)

)
with L(0) = 1.
Moreover, there exists 1 > α > max

(
1− 1

n−1 , 1− ᾱ1, 1−

ᾱ2

)
> 0 such that:
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• system (2) adapted by this law is GES.
• ∀ε ∈ B1, applying the adaption law to equation the (8),

we obtain:

Vz := z(ε)TQz(ε)

V̇z ≤ −β2(α,L)V βz (ε) +
a

3
c#(L− L|ε1|# − 1)Vz

−2c1,n
n− 1
√
q
γ(y)Vz

≤ −β2(α,L)V βz (ε) +
ac1,n

3
LVz

First, using the first Lyapunov function Vo, we proved the
system is GES so there exists a finite time such that the
system enters the ball B1 without leaving it anymore.
Inside this ball :
• we need to consider the following set :

C2 :=

{
ε s.t

ac1,n

3
Vz(ε) ≤ min

L≥1

β2(α,L)

2L
V βz (ε)

}
If L remains bounded (as we will prove after), this set
is not a zero measured set (i.e it is bigger than {0n}).
Since the system is GES, there exists a finite time such
that the system enters the set B1

⋂
C2 without leaving

it anymore.
Since in this set we have:

V̇z ≤ −
β2(α,L)

2
V βz

we conclude that system (2) converges to the origin in
a finite time.

Thus, we proved the system is GFTS.
Moreover, provided y remains bounded and since L(0) = 1,
the adaptation law form guarantees that L remains bounded.
Indeed, since ε1 tends to 0 within a finite time, L can increase
with a bounded rate within a finite time and after, LL̇ < 0
if

L > 1 +

(
cB
c1,n

+ 2
n− 1
√
q

)
γ(y(t))

the right term is bounded because γ(y) remains bounded, so
after a finite time L decreases if it is superior to a bounded
value.
Let us now stem our second result which is an extension of
the previous one :

Theorem 2: Let us suppose the state of system (1) remains
bounded by a given bounded controller u ; if the hypotheses
[H1], (3), (4) are satisfied, there exists α < 1 such that system
(2) is Globally Finite Time Stable when we use the adaptation
law (5) when ε1 6= 0 and :

L̇ = −L
b

[a
3

(L− 1)
]

when ε1 = 0 (9)

with L(0) = 1.
Moreover, this law guarantees that L tends asymptotically to
1.

Sketch of the proof: We use almost the same computations
than the ones carried in the proof of theorem 1.

If we apply the adaptation Law (5) when ε1 6= 0 and (9)
otherwise, after some computations, we get:{

V̇o ≤ −aVo if ε1 6= 0

V̇o ≤ −
(
a− 2(n−1)√

q γ(y)
)
Vo if ε1 = 0

When ε1 = 0, the Lyapunov function can increase but the
system can not remain on the set Sc = {ε1 = 0 ; ε2,n 6= 0}
during a non zero length time interval. We prove it
by contradiction : suppose the system remains on this
set during a non zero measured time interval, we have
ε1 = ε̇1 = . . . = ε

(n−1)
1 = 0 but because of equation (2),

this implies that ε2 = . . . = εn = 0 which contradicts the
fact that ε ∈ Sc. We say that the error system ’globally
decreases at almost every time’.

As for Theorem 1, we will finally come to the
following conclusions : there exists 1 > α >

max
(

1− 1
n−1 , 1− ᾱ1, 1− ᾱ2

)
> 0 such that:

• system (2) adapted by the law of theorem 2 GA
decreases at almost every time.

• ∀ε ∈ B1, applying the adaption law to equation (8), we
obtain :

V̇z ≤ −β2(α,L)V βz (ε) +
ac1,n

3
LVz if ε1 6= 0

If ε1 = 0, we also have:

V̇z ≤ −β2(α,L)V βz (ε) +

(
ac1,n

3
L+ cBγ(y)

)
Vz

≤ −β2(α,L)V βz (ε) + L

(
ac1,n

3
+ cBγ(y)

)
Vz

Let us define the following set:

C3 :=

{
ε s.t

ac1,n

3
Vz(ε) + cBmax

t≥0
γ(y(t)) ≤

min
L≥1

β2(α,L)

2L
V βz (ε)

}
Since the system GA decreases at almost every time,
it will enter the set B1

⋂
C3 in a finite time without

leaving it anymore. Since in this set, we have :

∀ε1, V̇z ≤ −
β2(α,L)

2
V βz (ε)

we conclude that system (2) converges to the origin in
a finite time.

Thus, we proved the system is GFTS. Moreover, provided
y remains bounded and since L(0) = 1, we prove that L
remains bounded as in the proof of theorem 1. Moreover,
since ε1 and its time derivatives are equal to 0 after a finite
time, the adaptation law (9) guarantees that L tends to 1.

V. ILLUSTRATIVE EXAMPLE

We illustrate the effectiveness of our design on the fol-
lowing two dimensional nonlinear system: ẋ1 = x2 + x21

ẋ2 = u+ x21 cosx2
y = x1
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Choosing γ(y) = y2, it is easy to see that assumption [H1]
holds.
Then we choose α = 4

5 , a = 1
2 , we solve the LMIs given

by (3) and (4) and we obtain :

Q =

[
0.5865 −0.3787
−0.3787 0.6530

]
and q = 0.1054, ko1 = 2.7261, ko2 = 1.5811, b = 2.2646
We apply an input u such that the state and the input of the
system we want to observe remain bounded.

• Figure 1 shows the observer error when we apply the
adaptation 1 : the error goes to 0 in finite time and L
remains bounded. More specifically, in this example, L
oscillates like y (which oscillates between two bounds).

• Figure 2 shows the observer error when we apply the
adaptation 2 : the error goes to 0 in finite time and the
fact that γ(y) does not go to 0 does not prevent L from
asymptotically tending to 1.

(Remark : if the initial error of the observer is large, we will
need to choose bigger value of α sufficiently close to 1 (but
still inferior to 1) so that the observer still converges).
So, this numerical result illustrates what we have theoreti-
cally proved in this paper.

Fig. 1. With the adaptation Law 1

Fig. 2. With the adaptation Law 2

VI. CONCLUSIONS AND FUTURE WORK

This paper has addressed the problem of updating the
gain of a global finite-time high gain observer. Using the
separation principle for this specific class of triangular sys-
tems and adding a few hypotheses on the fis, it may be
quite straightforward to build a finite time controller and
to combine it with our observer in order to get an output
feedback which renders the system GFTS and such that the
time-varying high gains of both controller and observer are
bounded (and can even tend to 1).
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