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Abstract— This paper tackles the problem of H-infinity (H∞)
norm computation for a commensurate Fractional Order Sys-
tem (FOS). First, H∞ norm definition is given for FOS and
Hamiltonian matrix of a FOS is computed. Two methods based
on this Hamiltonian matrix are then proposed to compute the
FOS H∞ norm: one based on a dichotomy algorithm and
another one on LMI conditions. The LMI conditions are based
on the Generalized LMI characterization of axes in the complex
plane on which the Hamiltonian matrix eigenvalues must not
appear to ensure a FOS norm less than predefined value. The
accuracy of the proposed methods is proved on the computation
of the modulus margin of a CRONE passive car suspension.

I. INTRODUCTION

Many phenomena can be modeled with Fractional Order

Systems (FOS). Thus, several studies have been made on

FOS properties such as stability. Using pole location anal-

ysis [5] results have been obtained for commensurate FOS

stability. The most well known stability result is Matignon’s

criteria [15] which enables to test FOS stability through the

location of the state matrix eigenvalues in the complex plane.

In the sequel, some LMI-based results have been proposed

for commensurate FOS stability [12] [20] but several LMI-

based Integer Order Systems (IOS) results still need to be

extended to FOS.

LMIs have indeed many applications in control theory

since they can effectively express various problems arising

in that domain [7]. Moreover, compared with analytical

methods (such as Riccati equations for instance), LMI ap-

proach has better flexibility allowing to tackle complicated

robust control problems. One of the well known results for

evaluating an integer system H∞ norm using an LMI is the

Bounded Real Lemma [6]. This LMI allows both to test

system stability using Lyapunov theory and to determine an

upper bound for its H∞ norm.

Contrary to integer order systems very few results can

be found on FOS H∞ norm computation [17]. For IOS,

most H∞ norm computation methods are based on Riccati

equations and their LMI counterparts. Generalization of

these methods to FOS is a tedious task given that they

simultaneously test the system stability and H∞ norm, and

that stability domain of FOS of order 0 < ν ≤ 1 is not

convex and thus not an LMI region. However Moze [17]

proposed important basis to compute an upper bound of a

FOS H∞ norm even if these results do not prove the system

stability.
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In this paper, another way is explored to compute FOS H∞

norm. First, H∞ norm definition is given for FOS and Hamil-

tonian matrix of a FOS is computed. Two methods based on

this Hamiltonian matrix are then proposed to compute a FOS

H∞ norm: one based on a dichotomy algorithm and another

one on LMI conditions. The LMI conditions are based on

the Generalized LMI characterization of two half axes in the

complex plane on which the Hamiltonian matrix eigenvalues

must not appear to ensure a FOS norm less than predefined

value. The accuracy of the proposed methods is proved on

the computation of the modulus margin of a CRONE car

suspension [18].

Notations: The transpose of a matrix A is denoted AT ,

its conjugate Ā and its conjugate transpose A∗. For Hermi-

tian matrices, ≻ (�) denotes the Löwner partial order, i.e.

A ≻ B iff A − B is (semi) positive definite. Laplace

transform of a transfer function G(jω) is written G(s) and

its H∞ norm is noted ‖G(s)‖∞.

II. FRACTIONAL ORDER SYSTEMS

A. LTI Commensurate Fractional Order Systems

In this paper are considered LTI commensurate FOS

admitting a pseudo state space representation of the form
{

Dνx(t) = A x(t) +B u(t)
y(t) = C x(t) +D u(t)

(1)

where x(t) ∈ R
n is the pseudo state vector, u(t) ∈ R

m

is the input vector, y(t) ∈ R
p is the output vector, ν is

the fractional order of the system and A, B, C and D
are constant matrices. Dν is the fractional differentiation

operator of order ν (presented results are valid whatever

definition used: Riemann-Liouville [16], Caputo [9] or others

[21]). Transfer matrix is G(s) = C (sνI −A)
−1

B+D and

impulse response matrix is g(t) = L−1 (G(s)).
Remark 1: For a FOS, the knowledge of x(t0) (t0 being

the initial time) is not sufficient to determine the future

behavior of the system [13]. Consequently, vector x does

not strictly represent the state of the system and is denoted

“pseudo state” in this paper [19].

B. Stability of commensurate fractional order systems

Definition 1 (Matignon, 1996 [15]): A linear FOS de-

fined by its impulse response g is Bounded-Input Bounded-

Output (BIBO) stable iff ∀ u ∈ L∞ (R+,Rm), y = g ⋆ u ∈
L∞ (R+,Rp).
LTI IOS stability can be checked via the location of the state

matrix A eigenvalues in the complex plane. This result was
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extended to LTI commensurate FOS of order 0 < ν < 1 by

D. Matignon.

Theorem 1 (Matignon, 1996 [15]): System (1), with min-

imal triplet (A,B,C) and 0 < ν < 1, is BIBO stable iff

|Arg (eig(A))| > ν
π

2
. (2)

This result remains valid when 1 < ν < 2 as proved in [20].

Stability domain is thus defined as follows:

Ds =
{

z ∈ C : |Arg (z)| > ν
π

2

}

. (3)

Remark 2: Throughout the paper, triplet (A,B,C) is al-

ways supposed to be minimal.

III. H∞ NORM OF A COMMENSURATE

FRACTIONAL ORDER SYSTEM

As for LTI IOS [22], let us define the H∞ norm of stable

FOS (1) from its transfer function G(s) as follows:

Definition 2: H∞ norm of stable FOS system (1) is:

‖G (s)‖∞
∆
= max

ω∈R

σ̄ (G (jω)) , (4)

where σ̄ (G (jω)) is the largest singular value of G (jω) at

frequency ω:

σ̄ (G (jω)) = max
i={1···min(m,p)}

σi (G (jω)) (5)

= max
i={1···min(m,p)}

√

λi (G(jω)∗G(jω)). (6)

Steady state response of FOS (1) to sinusoidal input

u(jω) is y(jω) = G(jω)u(jω). At frequency ω, the gain

‖y(jω)‖2 / ‖u(jω)‖2, depending on vector u(jω) is:

σ̄ (G (jω)) = max
u(jω) 6=0

‖y(jω)‖2
‖u(jω)‖2

. (7)

Worst case frequency gain is thus given by H∞ norm of

FOS:

‖G(s)‖∞ = max
ω∈R

max
u(jω) 6=0

‖y(jω)‖2
‖u(jω)‖2

. (8)

In time domain, equation (8) writes:

‖(G(s)‖∞ = max
u(t) 6=0

‖y(t)‖2
‖u(t)‖2

= max
‖u(t)‖

2
=1

‖y(t)‖2 . (9)

Therefore, H∞ norm can be interpreted in time domain

as the largest energy among output signals resulting from

all inputs of unit energy. Consequently, H∞ norm physical

interpretation, in frequency and time domains, is the same

for FOS as for IOS.

IV. H∞ NORM COMPUTATION

A. FOS Hamiltonian matrix

The H∞ norm of IOS is usually computed numerically

from a state-space realization as the smallest value of γ such

that the Hamiltonian matrix Hγ has no eigenvalue on the

imaginary axis [23]. This section develops a similar result

for FOS.

G(s) G(s)∗

ũ(t) ỹ(t)

u1(t) y1(t) = u2(t) y2(t)

γ2I

φ(s)

+

−

Fig. 1. Block diagram of φ(jω)

1) H∞ norm upper bound inequality:

Definition 2 and relation (6) imply that H∞ norm of FOS

(1) is less than γ iff:

∀ω ∈ R, max
i={1···min(m,p)}

√

λi (G(jω)∗G(jω)) < γ. (10)

The squared power of last inequality is:

∀ω ∈ R, max
i={1···min(m,p)}

λi (G(jω)
∗G(jω)) < γ2. (11)

Using eigenvalues properties, relation (11) becomes:

∀ω ∈ R, max
i={1···min(m,p)}

λi
(

γ2I−G(jω)∗G(jω)
)

>0, (12)

which is equivalent to the H∞ upper bound inequality:

∀ω ∈ R,
(

γ2I −G(jω)∗G(jω)
)

≻ 0. (13)

Relation (13) is an infinite dimension inequality since

it depends on ω ∈ R. The next two subsections show

how to make this relation independent of ω. The first

step is to build a pseudo state-space representation of

φ(s) = γ2I −G(s)∗G(s).

2) Pseudo state-space representation of φ(s):
Transfer matrix φ(s) can be seen as the interconnection

represented by block diagram of Fig. 1.

According to relation (1), system G(s) of Fig. 1 admits

the following pseudo state-space representation:
{

Dνx1(t) = A x1(t) +B u1(t)
y1(t) = C x1(t) +D u1(t)

. (14)

In order to derive a pseudo state-space representation for

G(s)∗, it must be proved that conjugate of any commensurate

fractional order transfer function evaluated at frequency ω is

equal to the transfer function evaluated at −ω:

Gij(jω) = Gij(−jω), (15)

where Gij(s) is the transfer function between input i and

output j. Commensurate fractional order transfer function

Gij(s) can be rewritten as:

Gij(s) = Ke

∏Nz

q=1 (aq + sν)
∏Np

q=1 (bq + sν)
= Ke

∏Nz

q=1 zq(s)
∏Np

q=1 pq(s)
, (16)

where Np and Nz , Np ≥ Nz , are respectively the number of

poles and zeros of Gij(s) and ν is the commensurate order.

At frequency ω, zq(s) becomes:

zq(jω) = aq + ωνjν , (17)

zq(jω) = aq + ωνcos
(

ν
π

2

)

+ jωνsin
(

ν
π

2

)

. (18)
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zq(−jω) can be written similarly by noticing that:

(−j)ν = cos
(

ν
π

2

)

− jsin
(

ν
π

2

)

, (19)

zq(−jω) = aq + ωνcos
(

ν
π

2

)

− jωνsin
(

ν
π

2

)

. (20)

That is to say:

zq(−jω) = zq(jω). (21)

Applying a same analysis for poles and given that the product

of conjugate complex numbers is equal to the conjugate of

the complex numbers product leads to:

Gij(jω) = Ke

∏

q zq(jω)
∏

q pq(jω)
= Ke

∏

q zq(−jω)
∏

q pq(−jω)
= Gij(−jω),

(22)

and that for a complex number z̄−1 = z−1, relation (15) thus

holds for FOS.

Thanks to relation (15), the transfer matrix associated with

pseudo state-space representation (1) evaluated at −jω is:

G(−jω) = C ((−jω)νI −A)
−1
B +D, (23)

G(−jω)T = BT
(

e−νjπ(jω)νI −AT
)−1

CT +DT , (24)

G(−jω)T = eνjπBT
(

(jω)νI−eνjπAT
)−1

CT +DT . (25)

A pseudo state-space representation of G(s)∗ is thus:

{

Dνx2 (t) = eνjπATx2 (t) + eνjπCTu2 (t)

y2 (t) = BTx2 (t) +DTu2 (t)
. (26)

Therefore a pseudo state-space representation of the series

interconnection G(s)∗G(s) is:















Dνx̂ (t)=

(

A 0

eνjπCTC eνjπAT

)

x̂(t)+

(

B

eνjπCTD

)

u1 (t)

y2(t) =
(

DTC BT
)

x̂(t) +DTDu1 (t)

(27)

where x̂ =
(

xT1 xT2
)T

.

Thanks to relation (27), a pseudo state-space representa-

tion of φ(s) is:

{

Dν x̃ (t) = Ãx̃(t) + B̃ũ (t)

ỹ(t) = C̃x̃(t) + D̃ũ (t)
, (28)

where:

Ã =

(

A 0
eνjπCTC eνjπAT

)

B̃ =

(

B
eνjπCTD

)

,

C̃ = −
(

DTC BT
)

D̃ =
(

γ2I −DTD
)

.
(29)

Combining the properties of H∞ norm and the study of

φ(s) pseudo state-space representation lead to one of the

main results of this paper.

3) Hamiltonian matrix theorem:

Theorem 2: Let γ > σ̄(D) be a positive real number.

Then ‖G(s)‖∞ < γ iff fractional order Hamiltonian matrix:

Hγ=

(

A+BRDTC BRBT

eνjπCT
(

I +DRDT
)

C eνjπ
(

AT + CTDRBT
)

)

(30)

where R =
(

γ2I −DTD
)−1

has no eigenvalue in set

Cν0 =
{

(jω)ν = ωνeνj
π
2 , ω ∈ R

}

.

Proof: Let us consider φ(s) = γ2I −G(−s)TG(s). It

can be noticed that the H∞ norm of G(s) is bounded by

scalar γ i.e. ‖G(s)‖∞ < γ iff φ(jω) ≻ 0 for all ω ∈ R.

Considering that the limit of G(−jω)TG(jω) as ω tends

towards infinity is given by the direct term of the pseudo

state-space representation (27)

lim
ω→∞

G(−jω)TG(jω) = DTD, (31)

and given that γ > σ̄(D) implies:

γ2 > σmax

(

DTD
)

, (32)

it can be noticed that:

lim
ω→∞

φ(jω) = γ2 − σmax

(

DTD
)

> 0. (33)

Moreover φ(jω) is a continuous function of ω. Therefore

φ(jω) ≻ 0 for all ω ∈ R iff φ(jω) is non singular for

all ω ∈ R ∪ {∞}. For an IOS, that implies that φ(s) has

no pure imaginary zero or φ(s)−1 has no pure imaginary

pole. But since G(s) is a commensurate FOS of order

ν, φ(jω) is non singular for all ω ∈ R ∪ {∞} iff the

zeros of φ(s) or the poles of φ(s)−1 do not belong to the

imaginary axis. Given the relations between eigenvalues and

poles of a commensurate FOS [19], φ(s)−1 has no pole on

the imaginary axis iff φ(s)−1 pseudo state matrix has no

eigenvalue in Cν0 =
{

(jω)ν = ωνeνj
π
2 , ω ∈ R

}

.

A pseudo state-space representation of φ(s)−1 is found by

inverting pseudo state-space relation (28) of φ(s). Let the

input, the output and the pseudo state vector of φ(s)−1 be

respectively uγ(t) = ỹ(t), yγ(t) = ũ(t) and xγ(t) = x̃(t).
Then:

yγ(t) = ũ(t) = D̃−1
(

ỹ(t)− C̃x̃(t)
)

, (34)

yγ(t) = −D̃−1C̃xγ(t) + D̃−1uγ(t). (35)

The state equation is:

Dν x̃(t) = Ãx̃(t) + B̃yγ(t). (36)

Using relation (35) in pseudo state equation (36) gives:

Dν x̃(t) = Ãx̃(t) + B̃
(

−D̃−1C̃xγ(t) + D̃−1uγ(t)
)

, (37)

Dν x̃(t) =
(

Ã− B̃D̃−1C̃
)

x̃(t) + B̃D̃−1uγ(t). (38)

Therefore a state-space representation of φ(s)−1 is:
{

Dνxγ(t) = Hγxγ(t) +Bγuγ(t)

yγ(t) = Cγxγ(t) +Dγuγ(t)
(39)
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where

Hγ=Ã− B̃D̃−1C̃

=

(

A+BRDTC BRBT

eνjπCT
(

I+DRDT
)

C eνjπ
(

AT +CTDRBT
)

)

,

(40)

Bγ = B̃D̃−1 =

(

BR
eνjπCTDR

)

, (41)

Cγ = −D̃−1C̃ =
(

RDTC RBT
)

, (42)

Dγ = D̃−1 = R, (43)

with R =
(

γ2I −DTD
)−1

.

φ(s) is thus not singular iff matrix Hγ eigenvalues do not

belong to the set Cν0. That proves theorem 2.

Remark 3: Please note that fractional order Hamiltonian

matrix Hγ is a complex matrix and does not have the proper-

ties of the integer order Hamiltonian matrix (for instance, its

spectrum is not symmetric with respect to imaginary axis).

Moreover, when system H∞ norm is greater than γ, Hγ has

eigenvalues in Cν0 and not on the imaginary axis as for IOS.

There are several ways to compute H∞ norm using

theorem 2. The next sections provide two pertinent methods.

B. γ-iteration

This method for H∞ norm computation is a dichotomous

optimization process directly derived from theorem 2. The

following algorithm shows γ-iteration for a FOS:

1) Choose [γmin, γmax] such that γmin > σ̄(D).
2) For γ = (γmin + γmax) /2, determine Hγ eigenvalues.

– If the eigenvalues are not in set Cν0, γ is reduced

by taking a new interval [γmin, γ].
– If the eigenvalues are in set Cν0, γ is increased

by taking a new interval [γ, γmax].

3) Step 2 is repeated until γ gives a satisfactory approx-

imation of H∞ norm.

Such method is implemented for IOS in SLICOT library [4]

and in many numerical computing softwares such as MAT-

LAB [3] and SCILAB [8]. This method is being implemented

for FOS in CRONE toolbox [14] and will be released in a

future version.

C. LMI-based H∞ norm computation

Based on theorem 2, an LMI-based method for H∞ norm

computation is presented in this section. Such method is

proposed as a first step to tackle the controller synthesis

problem.

Theorem 3: The H∞ norm of stable commensurate FOS

(1) is bounded by scalar γ iff there exist three positive

definite hermitian matrices X1, X2 and X3 ∈ C
2n×2n such

that

r1HγX1+r̄1X1H
∗
γ+r2HγX2+r̄2X2H

∗
γ−HγX3−X3H

∗
γ ≺ 0
(44)

and three positive definite hermitian matrices X4, X5 and

X6 ∈ C
2n×2n such that

r̄1HγX4+r1X4H
∗
γ+r̄2HγX5+r2X5H

∗
γ−HγX6−X6H

∗
γ ≺ 0
(45)

Im(z)Im(z)

Re(z)Re(z)

Ds1 Ds2 Ds3 Ds4 Ds5

Fig. 2. C \ C
+

ν0
(left) and C \ C

−

ν0
(right) as unions of three half planes

where r1 = ej(1−ν)π
2 , r2 = e−j(1+ν)π

2 , and matrix Hγ is

defined by (30).

Proof: The proof is based on the formalism introduced

in [1], [2] and [10] on the concept of Generalized LMI

(GLMI) regions, now introduced.

Definition 3: [10] A region D of the complex plane is a

GLMI region of order l if ∃ θk ∈ C
l×l, ψk ∈ C

l×l, Hk ∈
C

l×l and Jk ∈ C
l×l (∀ k ∈ {1, · · · ,m}), s.t.

D =
{

z ∈ C : ∃w =
[

w1 · · · wm

]′
∈ C

m

s.t. fD(z, w) < 0, gD(w) = 0
}

,
(46)

where fD(z, w)=
∑m

k=1(θkwk + θ∗kw̄k + ψkzwk + ψ∗
kw̄kz̄)

and gD(w)=
∑m

k=1(Hkwk + Jkw̄k).
It was previously mentioned that system (1) H∞ norm is

bounded by scalar γ iff matrix Hγ eigenvalues do not belong

to the set Cν0 =
{

(jω)ν = ωνeνj
π
2 , ω ∈ R

}

. Cν0 can be

decomposed in two domains C
+
ν0 = {(jω)ν , ω ∈ R

+} and

C
−
ν0 = {(jω)ν , ω ∈ R

−}. Domain C\C+
ν0 can be viewed as

the union of three half planes, denoted Ds1, Ds2 and Ds3.

The left half plane is obtained by rotating the first two of

angles ϕ1 = (1−ν)π2 and ϕ2 = −(1+ν)π2 respectively and

Ds3 is the right half plane i.e. ϕ3 = π as shown in Fig. 2:

C \ C+
ν0 = Ds1 ∪ Ds2 ∪ Ds3. (47)

Similarly, domain C\C−
ν0 is the union of Ds4, Ds5 and Ds3

with ϕ4 = −ϕ1 and ϕ5 = −ϕ2 as shown in Fig. 2:

C \ C−
ν0 = Ds4 ∪ Ds5 ∪ Ds3. (48)

Therefore, showing first that Hγ eigenvalues are not in C \
C

+
ν0, then that they are not in C \ C−

ν0 will prove that FOS

(1) H∞ norm is bounded by γ.

Each Dsi =
{

z ∈ C : Re
(

zejϕi
)

< 0
}

, ∀i ∈ {1 · · · 5}
also writes

Dsi=
{

z∈C : ∃wi∈R
+s.t. ejϕizwi+e−jϕiz̄w̄i<0

}

, (49)

and is thus a GLMI region of the form (46) with m = 1,

θ1 =

[

0 0
0 −1

]

, ψ1 =

[

ejϕi 0
0 0

]

, H1 = 1 and J1 = −1.

As proved in [1], the union of m GLMI regions written

Dk={z∈C :fk(z)=αk+βkz+β
∗
k z̄ <0} , ∀k∈{1 · · ·m} ,

(50)

is a GLMI region of the form (46) with order l=m+1 and

θk =
1

2

[

Θk 01×m

0m×1 −εmk

]

, (51)
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M

f0(t)

f1(t) z0(t)

z1(t)Insulated system

Suspension

Fig. 3. One degree of freedom general model of a car suspension

ψk =

[

Ψk 01×m

0m×1 0m

]

;Hk = −Jk = εm+1
k+1 , (52)

where εji are square matrices of size j defined as follows:

εji (ρ, σ) = 1 if ρ = σ = i, εji (ρ, σ) = 0 else, and:

Θk=







αk · · · 0
...

. . .
...

0 · · · 0






;Ψk=







βk · · · 0
...

. . .
...

0 · · · 0






;∀k∈{1, . . . ,m}.

(53)

Each region Dsi can be described by relation (50) with αk =
0 and βk = ejϕk . Therefore domains C \ C+

ν0 and C \ C−
ν0

are GLMI regions of form (46).

LMIs (44) and (45) are then found using the extension of

the following D-stability definition to GLMI regions thanks

to lemma 1 from [10] with D = C \C+
ν0 then D = C \C−

ν0.

Definition 4: A matrix A is D-stable iff its eigenvalues

are strictly located in region D of the complex plane.

Lemma 1 (Chilali, 1996[10]): Let A ∈ C
n×n and D a

GLMI region. A is D-stable iff ∃ m matrices Xk ∈ C
n×n

s.t.
m
∑

k=1

(

θk⊗Xk+ θ∗k⊗X
∗
k+ ψk⊗(AXk)+ ψ∗

k⊗(AXk)
∗)

≺ 0

(54)
m
∑

k=1

(Hk ⊗Xk + Jk ⊗X∗
k) = 0nl×nl. (55)

That concludes the proof.

Remark 4: H∞ norm can be computed using section IV-

B iterative algorithm replacing Hγ eigenvalues location test

of step 2 by feasibility of LMIs (44) and (45) of theorem 3.

V. APPLICATION

Consider the general one degree of freedom model of

a passive car suspension presented in Fig. 3 where M =
300 kg is the car quarter mass. The profile of the road z0(t)
and efforts f0(t) applied on the suspension are respectively

viewed as disturbances at the output and input of the system

whose transfer function is given by:

G(s) =
1

Ms2
. (56)

f1(t) is the force generated by the suspension and z1(t) is

the vertical movement of the mass which is being insulated.

The suspension deflection z10(t) = z1(t) − z0(t) is thus

regulated around a null set point as shown in Fig. 4. The

C(s)

F0(s)

F1(s)

Z0(s)

Z1(s) Z10(s)
G(s)

U(s)
−

−
++

+

Fig. 4. One degree of freedom car suspension general model block diagram

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2

−1
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−0.2

0

0.2

0.4

0.6
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Fig. 5. Intersection of G(s)C(s) Nyquist curve (plain line) and circle
centered in −1 with radius r (dotted line).

controller C(s) used in that application is defined by the

transfer function:

C(s) = C0

1 +
(

s
ωb

)1.5

s
ωb

(

1 +
(

s
ωh

)1.5
) (57)

where C0 = 100 N.m−1 and ωb = 0.08 rad.s−1 and

ωh = 20 rad.s−1 are respectively the low and high corner

frequencies of the controller. Synthesis was performed in

frequency domain in order to minimize disturbances effect

on closed-loop system and to ensure a phase margin of about

45◦. Such a controller is used in CRONE suspension to ensure

the robustness of the deflection overshoot to sprung mass

variations [18].

The methodology proposed in the previous section is used

to evaluate the modulus margin of the closed-loop system

presented in Fig. 4. Modulus margin r of a single input single

output LTI system is the shortest distance between the open

loop Nyquist curve and critical point −1. In this case, series

interconnection G(s)C(s) is a commensurate FOS of order

ν = 1.5 with pseudo state-space matrices:

A =





0 1 0
0 0 1
0 0 −ω1.5

h



 B =





0
0
1



 ,

C =
C0ωbω

1.5
h

M

(

1 1
ω1.5
b

0
)

D = 0.

(58)

and pseudo state vector x =
(

z10

(

z
(1.5)
10

) (

z
(3)
10

))T

.

The shortest distance between G(s)C(s) Nyquist curve and

critical point −1 is shown on Fig. 5 and is equal to r = 0.69.

Another method to measure the modulus margin is to

determine the largest additive disturbance ∆(jω) among all

possible disturbances ∆(jω) which guarantee Fig. 6 closed-

loop block diagram stability. Modulus margin is thus given
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Fig. 7. Eigenvalues of Hγ for γ = 1.45 (left) and γ = 1.4478 (right)

by r =
∥

∥∆(jω)
∥

∥

∞
. According to small gain theorem [11],

modulus margin is thus the inverse of the H∞ norm of

transfer Tw→z:

r =
1

‖Tw→z‖∞
. (59)

Tw→z pseudo state-space representation matrices are given

by: A∆ = A − BC, B∆ = −B, C∆ = −C and D∆ =
−1. According to remark 4, an iterative procedure involving

theorem 3 LMIs leads to:

‖Tw→z‖∞ = 1.4479 (60)

and thus the modulus margin

r =
1

1.4479
= 0.6907 (61)

is exactly retrieved.

Fig. 7 shows Cν0 and some eigenvalues of Hγ for γ =
1.45 > ‖Tw→z‖∞ and γ = 1.4478 < ‖Tw→z‖∞. For

γ > ‖Tw→z‖∞, no eigenvalue belongs to Cν0. For γ <
‖Tw→z‖∞, eigenvalues close to −1.1 + 1.1i now belong

to Cν0. These graphical considerations thus coincide with

theorem 3 result.

VI. CONCLUSIONS AND FUTURE WORKS

The major contributions of this paper are

– Hamiltonian matrix definition for a FOS ;

– two methods based on this Hamiltonian for FOS H∞

norm computation.

The first one is based on the inspection of the Hamiltonian

matrix eigenvalues location using a dichotomy algorithm.

In the second one, the eigenvalues location inspection is

replaced by two LMI conditions. These two LMIs result

from the introduction of the GLMI concept in the definition

of the area of the complex plane in which the Hamiltonian

matrix eigenvalues must not appear to ensure a FOS H∞

norm less than predefined value. This last method has been

used to measure accurately the modulus margin of an passive

car suspension whose deflection is regulated by a fractional

controller. Our future works aim now to find a linearizing

change of variable in the proposed LMI conditions that will

permit to find directly, without an iterative process, the FOS

H∞ norm.
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