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Abstract— This paper presents a control strategy for exact
reference tracking in the presence of parameter uncertainty
for the NeuroMuscular Blockade (NMB) level of patients
undergoing general anesthesia. For this control application,
a compartmental realization of a minimally parameterized
Wiener model was used in [1] in which the parameters were
estimated from a bank of collected real data using the Extended
Kalman Filter (EKF). Due to the parameter uncertainty this
procedure did not achieve the desired tracking goal. Here
a modified control strategy is presented to overcome this
drawback.

I. INTRODUCTION

Control and modeling of dynamical systems is an impor-

tant step in applied mathematics, in particular, when apply-

ing mathematical methods to address biomedical problems.

Among the commonly used models are the nonnegative

compartmental models. These models are characterized by

conservation laws and composed by a finite number of

interconnected homogeneous, well-mixed subsystems called

compartments. The exchange of nonnegative quantities of

material among the compartments of the system and with

the environment is described by laws that take into account

the conservation, dissipation and transfer of material (mass)

among the compartments and to the environment.

Compartmental models are widely used in pharmacology

and in particular in the control of drug dosing in general

anesthesia. One example of this application is the automatic

control of the NeuroMuscular Blockade (NMB) level, that is

usually monitored during general anesthesia. This condition

is obtained by the administration of a muscle relaxant to pro-

vide adequate surgical conditions. Mathematically, the NMB

level is modeled by PharmacoKinetic/PharmacoDynamic

(PK/PD) models that relate the administration drug dose with

the NMB measure.

In this context, system identification is an important com-

ponent in controller design since it is used to get adequate

models for the conception of a prediction algorithm or

simulation, see e.g. [9]. In this paper a control strategy for

the NMB level of patients undergoing general anesthesia is

developed based on a new minimally parameterized model.

This control strategy consists of a positive control law for
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Fig. 1. Block diagram that relates the atracurium dose, u(t), with the NMB
response, y(t). The signal yl(t,α) corresponds to the effect concentration

feedback stabilization of compartmental systems proposed

by [3]. The Extended Kalman Filter (EKF), see e.g. [9],

is used to estimate the individual patient parameters to be

used in that control law. As expected, due to the parameter

uncertainty, this procedure does not yield the desired tracking

goal. However, the analysis of the system response allows

to take advantage of the model structure and estimate the

steady-state parameter error. In a second stage, this knowl-

edge is used to correct the original control law and achieve

the desired control objective.

II. CONTROL LAW FOR NMB DRUG

In this section a relationship between the drug dose of

atracurium and its measured effect (NMB) is described using

a minimally parameterized model. Furthermore, a positive

control law for feedback stabilization of compartmental

systems, [3], is used and its accommodation to the specific

dynamical system structure under study is analyzed.

A. NeuroMuscular Blockade minimally model

This section describes a model for the relationship be-

tween the administrated drug dose of the muscle relaxant

atracurium and the measured effect, which in this case

is the NMB level. This relationship can be modeled by

a SISO Wiener model, as illustrated in Figure 1.The new

minimally parameterized model for NMB level used in this

paper was proposed by [4] and results from an approximation

of the PharmacoKinetic/PharmacoDynamic (PK/PD) model

presented in the literature, [7].This PK/PD model involves a

total of eight parameters and the poor excitation of the input

and output signals is not enough to enable the identification

of a such a high number of parameters. In order to overcome

this difficulty, [4] proposed this new model with only two

patient-dependent parameters to be identified: one in the

linear dynamics (parameter α in first block in Figure 1) and

the other in the static nonlinearity of the Wiener structure

(parameter γ in second block in Figure 1). Contrary to what

happens with the PK/PD model, this new minimally parame-

terized model does not have a direct physiological meaning,
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but, as shall be seen in the sequel, produces good results

when used for control purposes. The relationship between

the drug dose administration and the drug concentration in

the effect compartment can be described by the following

third-order linear dynamic model,

Yl(s) =
k1 k2 k3 α3

(s+ k1α)(s+ k2α)(s+ k3α)
U(s), (1)

where Yl(s) is the Laplace transform of the output of the

linear of dynamic model yl(t) that corresponds to the effect

concentration, and the U(s) is the Laplace transform of the

input signal, i.e., the atracurium dose. The values of k1 <
k2 < k3 are positive constants and fixed according to [4].

Furthermore, note that the linear part is stable if α > 0.

The model (1) can be written through the following state-

space model,
{

ẋ(t) = A(α)x(t)+B(α)u(t)
yl(t) = C x(t)

(2)

with,

A(α) =





−k3 α 0 0

k2 α −k2 α 0

0 k1 α −k1 α



 , B(α) =





k3 α

0

0



 ,

C =
(

0 0 1
)

.

where x(t) is the state vector. The state x3 corresponds to

the effect concentration, yl(t), and the states x1 and x2 are

auxiliary variables.

The second block in Figure 1 represents the static non-

linearity of the Wiener structure given by the Hill equation,

[11]:

y(t) =
100C

γ
50

C
γ
50 + y

γ
l (t)

, (3)

where C50, i.e. the effect concentration at half of the maximal

effect, and γ are patient-dependent parameters. The output

of the model y(t) corresponds to the NMB level and varies

between 100% (for normal muscular activity) and 0% (for

totally paralysis).

B. Mass control

For the purpose of applying a positive control law for

feedback stabilization of compartmental systems proposed

in [3] it is necessary to check that the state-space model (2)

has a compartmental structure. For this sake the components

of the vectors B(α) and C must be nonnegative and A(α)
must satisfy the following conditions, [5].

• A(α) is a Metzler matrix, i.e., it has nonnegative off-

diagonal entries,

ai j(α) ≥ 0, ∀i, j and i 6= j

• A(α) has negative diagonal entries,

aii(α) ≤ 0 ∀i

• A(α) is diagonally dominant,

|aii(α)| ≥ ∑ j 6= j a ji(α) ∀i

If the matrix A(α) satisfies these conditions it is called as

a compartmental matrix. Since, the values for k1 < k2 < k3

and α are positive, it is easily seen that the matrix A(α) in

(2) is indeed compartmental and that the components of the

vectors B(α) and C are nonnegative.

The control law proposed by [3] is shown to stabilize the

total mass M(x(t)) of a compartmental system at a given

positive set point M∗. For the sake of simplicity M(x(t)) is

here after denoted by M(x).
This control law is obtained from the following equation,

u(t)=−

(

3

∑
i=1

bi(α)

)−1

[(1 1 1) A(α)x(t)+λ (M(x)−M∗)] ,

where ∑
3
i=1 bi(α) is equal to (1 1 1)B(α), by imposing a

positivity constraint, which yields:

u(t) = max(0, ũ(t)) (4)

ũ(t) =−

(

3

∑
i=1

bi(α)

)−1

[(1 1 1)A(α)x(t) + λ (M(x)−M∗)]

where λ is a positive design parameter, x(t) is the state vector

and the total mass of the system is given by the amount of

mass in each compartment, xi(t),

M(x) =
3

∑
i=1

xi(t). (5)

The following theorem guarantees the convergence of

the state trajectories of the closed-loop system to the set

ΩM∗ =
{

x ∈ ℜ3 : M(x) = M∗
}

, known as the iso-mass cor-

responding to the value M∗.

Theorem 2.1: For the closed-loop system (2)-(4) with the

arbitrary initial conditions x(0)≥ 0

• the iso-mass ΩM∗ is forward invariant;

• the state vector x(t) is bounded for all t > 0 and

converges to the iso-mass ΩM∗ .

The proof of this theorem is given in [3].

The idea now is to use the mass control in order to achieve

the control of the NMB level. More concretely, it turns out

that the control law (4) not only drives the system mass to

the value M∗, but it also drives the system to a steady-state

in the iso-mass ΩM∗ , and consequently to a certain value

of the effect concentration. Therefore, by suitably choosing

the value of M∗, one can obtain the desired steady-state

value for the effect concentration y
re f

l , and consequently

drive the NMB response to a desired reference value. Here

this reference value is taken to be 10%, as usually required

by clinical practice.

Note that, when M(x) = M∗, the closed-loop system (2)-

(4) can be written as
{

ẋ(t) = Ã(α)x(t)
yl(t) = Cx(t)

(6)

where Ã(α) = A(α)+ B(α)

∑
3
i=1 bi(α)

(1 1 1) A(α).
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This system has an equilibrium point xe which is the

solution of the equation Ã(α)xe = 0 that satisfies M(xe) =
M∗, which is given by

xe = (M∗/3 M∗/3 M∗/3)T . (7)

Moreover, it can be shown that this equilibrium point is

asymptotically stable. Therefore, setting as desired system

mass

M∗ = 3xe = 3y
re f

l (γ), (8)

where y
re f

l (γ) can be calculated by the inversion of the Hill

equation

y
re f

l (γ) =

(

100

yre f
−1

)1/γ

C50, (9)

and yre f corresponds to the NMB response reference of 10%,

forces the system to follow this desired reference.

C. Identification of system parameters

The identification of the dynamic system by the Extended

Kalman Filter (EKF) is described in this section. Similarly to

what happens in [4] the unknown parameters are identified

using the EKF by a coupled identification model. In order to

implement the proposed model structure in the identification

algorithm, the system is discretized using the zero-order hold

method [2], considering the time sampling frequency h=1/3

imposed by the sampling in the surgery room.

The control law previously described is applicable to

models with fixed parameters [3], which does not agree with

the identification procedure given by the EKF algorithm.

Therefore and meeting the clinical procedures, the idea is

to give the patients an initial bolus, run the EKF until

a certain time t∗, and simulate the system (2) using the

last obtained estimate for each parameter, α(t∗) and γ(t∗),
respectively. The time t∗ is given by the OLARD (OnLine

tuned Algorithm for Recovery Detection) algorithm [10],

that produces an estimate for the beginning of the patients

recovery after the initial atracurium bolus administration,

according to the clinicians’ point of view.

D. Parameter uncertainties

The identified parameters, α and γ may be affected by

uncertainties and the main goal of this paper is to analyze and

derive a control law for reference tracking of the NMB level

which is not sensitive to these uncertainties. The performance

of this new approach is also illustrated by simulation studies.

Note that the value of the desired mass M∗ given by (8),

to be used in the control law, is independent of the parameter

α , so the identification of this parameter does not affect

the reference value of the effect concentration y
re f

l , given

by y
re f

l = Cxe. Nevertheless, this parameter influences how

quick is the converge of the mass of the system, M(x), to

M∗. Thus, the only parameter that affects the convergence

of the system mass is the parameter γ present in nonlinear

static equation. It is assumed that

γ = γ∗+∆γ

where γ∗ = γ(t∗) is considered as the nominal value of the

parameter γ , and ∆γ is the parameter uncertainty.

In order to obtain realistic values for simulations, the

uncertainties ∆α and ∆γ present in parameters α and γ ,

respectively, are obtained by analyzing the set of parameter

estimates obtained in previously collected real data R. This

database presents 60 real patients submitted to general anes-

thesia for abdominal surgeries where the closed-loop control

software Hipocrates, [8], was applied.
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Fig. 2. The estimates of parameters given by EKF algorithm in real
database R. The dashed lines represent the minimum, mean and maximum
values for the nominal value of the parameters α and γ at recovery time t∗.

Figure 2 illustrates the variation of the parameters α and

γ identification given by the EKF. The EKF was applied

to each real case and the online estimates of α and γ

were obtained. The OLARD was also applied to detect the

recovery time for each real case (’•’ in Figure 2) in order

to evaluate γ∗, nominal value for the parameter γ . Hence,

for each patient i in this database and for each parameter a

coefficient of variation ci
v, was calculated, given by

ci
v =

sdi

x̄i
{i = 1, ...,60} (10)

where sdi is the standard deviation of the estimated parameter

calculated between the time t∗ and the end of the surgery,

and x̄i is the corresponding mean value for each parameter

and each patient. Thus, an adequate choice for the parameter

uncertainties is given by the mean value of ci
v, {i=1,...,60}.

III. APPLICATION TO THE NMB CASE STUDY

In this section simulated cases of the application of the

NMB compartmental control law are presented, based on

a bank P of hundred nonlinear dynamic models Pj { j =
1, ...,100} used [6] .

As mentioned before, the nominal values of the parameters

α(t∗) and γ(t∗) given by the EKF algorithm at time instant

t∗ were used for the application of the compartmental control

law.

Moreover, desired NMB level is taken to be 10%, as also

mentioned before.
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Fig. 3. Feedback control system block diagram composed by the real
patient, the patient model, the identification and the controller blocks.

The strategy for the NMB control with parameter uncer-

tainties used here is schematically represented in Figure 3

and can be summarized in the following steps:

1o The real patient dynamics is simulated from the

models of the database P , after the administration of an

initial bolus of muscle relaxant of 500µg/kg;

2o Until time t∗, the model parameters α and γ and

the state vector are identified by the EKF algorithm;

3o The OLARD algorithm determines the time instant

t∗ and from this instant on the control law (tuned for the

nominal parameter values α∗ and γ∗) is applied to the simu-

lated patient model with α = α(t∗)+∆α and γ = γ(t∗)+∆γ

considering two distinct simulation scenarios. In a first stage

it is considered that ∆α = ∆γ = 0 and in a second stage it is

considered that ∆α 6= 0 and ∆γ 6= 0.

With the purpose of testing the global approach com-

prising the dedicated identification and control algorithms

previously described, simulation studies have been carried

out using the bank model P . The behavior of the system

mass M(x), the desired system mass M∗, the drug dose

profile u(t) obtained by the compartmental control law and

the NMB response y(t) controlled by this dose profile are

plotted in order to illustrate the performance of the control

strategy. From a previous study [1], it turns out that an

adequate choice of the design parameter λ is 0.2.

Figure 4 shows the control algorithm performance when

the exact parametrization of the simulated patient is given

by (2) and (3) and the ∆α = ∆γ = 0. In particular for patient

P60 the parameters are α = 0.068 and γ = 2.682 and the

control objective of achieving a NMB level of 10% amounts

to stabilize the system mass on the value M∗ = 22.08µg/kg.

As shown in Figure 4, the NMB level was driven to the target

value (10%) and the system mass M(x) converges to the

desired mass M∗. Figure 5 illustrates a simulation for patient

model P60 assuming non zero values for the uncertainties ∆α

and ∆γ , 0.0134 and 0.3425, respectively, obtained using, for

each parameter, the mean value of the coefficient of variation

ci
v {i = 1, ...,60} (10).

As shown in Figure 5, the system mass M(x) converges to

the desired M∗ = 22.08µg/kg and the NMB level converges

to a value which is different from the desired target.
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Fig. 4. Simulation for the NMB control level of the patient P60 with
∆α = ∆γ = 0, M∗ = 22.08µg/kg, α = 0.068 and γ = 2.682. Upper plot:
system mass (solid line) and the desired mass (dashed line). Controller
NMB level (left bottom plot) using the control signal represented in the
right bottom plot. The star in xx-axis represents t∗ = 27.33min detected by
the OLARD.
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Fig. 5. Simulation for the NMB control level of the patient P60 with ∆α 6= 0
and ∆γ 6= 0, M∗ = 22.08µg/kg, α = 0.068+∆α and γ = 2.682+∆γ . Upper
plot: system mass (solid line) and the desired mass (dashed line). Controller
NMB level (left bottom plot) using the control signal represented in the right
bottom plot. The star in xx-axis represents t∗ = 27.33min detected by the
OLARD.

This is due to the fact that M∗ depends on γ and is

hence affected by the uncertainty in this parameter. More

concretely, the value of M∗ is obtained from (8) with γ = γ∗,

i.e.:

M∗ = 3y
re f

l (γ∗), (11)

whereas the correct value for the desired mass should be

M̄∗ = 3y
re f

l (γ∗+∆γ). (12)

In particular, the term y
re f

l (γ∗+ ∆̂γ) in the last equation can

be written as

y
re f

l (γ∗+∆γ) = y
re f

l (γ∗)+∆yl (13)
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where the value of ∆y can be approximated as follows,

∆yl =
(

y
re f

l

)′
∣

∣

∣

∣

γ=γ∗
∆γ (14)

where
(

y
re f

l

)′
∣

∣

∣

∣

γ=γ∗
=

dy
re f
l

dγ (γ∗) .

So, substituting ∆yl given by the equation (14) in equation

(13), the value of the reference for the output of the linear

part is given by

y
re f

l (γ∗+∆γ)≈ y
re f

l (γ∗)+
(

y
re f

l

)′
∣

∣

∣

∣

γ=γ∗
∆γ (15)

Therefore, the value for the system desired mass, M̄∗ is

obtained by equation (12) as:

M̄∗ ≈ 3× y
re f

l (γ∗)+3×
(

y
re f

l

)′
∣

∣

∣

∣

γ=γ∗
∆γ, (16)

So, it is possible to see that the difference obtained in

the NMB level in the last simulation case is due to the

uncertainty in the desired mass that corresponds to the second

term in the right-hand of equation (16).

Note that, for real patients, the uncertainty ∆γ is unknow.

However, from (14) it is possible to approximately determine

this value as

∆γ =
∆yl

(

y
re f

l

)′
∣

∣

∣

∣

γ=γ∗

, (17)

once ∆yl is known. The value of ∆yl is obtained by making

the difference between the desired effect concentration and

the observed effect concentration when the system begins to

stabilize, i.e. after a certain time tss.
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Fig. 6. Simulation for the NMB control level of the patient P60 with ∆α =
0.0134 and rectification of M∗, assuming α = 0.068 and γ = 2.682. Upper
plot: system mass (solid line) and the desired mass (dashed line). Controller
NMB level (left bottom plot) using the control signal represented in the right
bottom plot. The star in xx-axis represents t∗ = 27.33min detected by the
OLARD.

Figure 6 shows what happens when the initial guess for

the M∗ is rectified and replaced in the control law by the

value M̄∗ obtained from (16) with ∆γ given by (17), which

happens after minute 75. This correction is an online adaptive

process that changes the desired mass for the system and

consequently changes the drug administration profile and

the NMB level. The simulation results in Figure 7 were

performed in the presence of noise taken from a typical NMB

case from real database R. The filter algorithm presented in

[8] was applied to the real signal and the obtained residuals

were used as the noise vector to be added to the output

signal in the simulation. In this case the parameters are

α = 0.063, γ = 2.455, the desired mass M∗ = 23.81µg/kg

and the t∗ = 25.33min. As it is possible to see this simulation

presents a good results for the controller even in the presence

of noise.
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Fig. 7. Noisy simulation for the NMB control level of the patient P60 with
∆α = 0.0134 and rectification of M∗, assuming α = 0.063 and γ = 2.455.
Upper plot: system mass (solid line) and the desired mass (dashed line).
Controller NMB level (left bottom plot) using the control signal represented
in the right bottom plot. The star in xx-axis represents t∗ = 25.33min detected
by the OLARD.

IV. CONCLUSIONS

This paper presents a new strategy for the control of

the NeuroMuscular Blockade (NMB) of patients undergoing

general anesthesia in the presence of parameter uncertainties.

This consists in using a minimally parametrized model

previously presented in the literature, which is here shown

to have a compartmental structure. This special structure

enables the design of a controller for tracking a desired

NMB level, by driving the system to an adequate total

mass. The presence of uncertainties in the model parameters

does not affect the mass control algorithm, but affects the

computation of the adequate set-point for the total mass that

corresponds to the desired NMB level. However an analysis

of the system response allows to estimate the uncertainties in

the parameters and rectify the control law in order to obtain

the desired NMB level set-point.
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[8] T. Mendonça, H. Magalhães, P. Lago, and S. Esteves. Hipocrates: A
robust system for the control of neuromuscular blockade. Journal of

Clinical Monitoring and Computing, 18:265–273, 2004.
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