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Abstract— This paper presents a UAV path planning strategy
for optimizing the return over a finite-time horizon, where the
return is specified by a bounded differentiable reward function.
We represent paths using a simulated chain in a force field,
where the forces are influenced by the reward function. The
chain adapts continuously to changes in the return function, and
produces good paths with minimal computational overhead. We
compare the chain-based path planner to a look-ahead planner
and extend this approach to multiple UAVs in a centralized
manner.

I. INTRODUCTION

Over the years, many applications have been found for
Unmanned Aerial Vehicles (UAVs). Two applications that
have been the subject of recent focus are target tracking
and surveillance. While there have been many approaches
presented (See [1], [2], [3], [4], [5]), one issue that always
arises, no matter the application, is path planning.

As with many path planning problems, one of the largest
challenges inherent in UAV path planning is the size of
the configuration space. The number of possible paths is
so large that, even with modern computers, we could not
hope to search the entire space to find the best path in a
reasonable amount of time. For non-holonomic vehicles like
a UAV, the problem is made even more interesting because
motion constraints (such as minimum turn radius) must not
be violated. The result is that, even if we can easily identify a
set of positions where we would like the UAV to be, planning
the best path to visit them, and in what order, is a non-trivial
problem.

One obvious simplification is to restrict the configuration
space to a small subset of flyable paths. For example, in
[6], Kim restricts UAV paths to orbits with the aircraft’s
minimum turn radius, and attempts to optimize the center
of the orbit so that a ground target is visible as often as
possible. Kim discretizes each orbit into a set of positions
and tests viewability of the target at each position; the orbit
center is adjusted using a simplified hill-climbing algorithm.
While Kim’s algorithm is reasonably fast, it is restrictive in
that it can only plan orbits.

This paper takes a different approach. Instead of optimiz-
ing one type of path, this paper introduces a planner that
models the UAV path using a series of connected waypoints
that serve as links in a simulated chain. The chain is placed
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inside a force-field that is generated using the gradient of a
bounded differentiable reward function, so that each link in
the chain tends to move toward local maxima of the reward
function. Other forces are applied to prevent UAV flight
constraints from being violated. Since the path is represented
using waypoints that are a fixed distance apart, it is easy to
determine roughly where the UAV will be at any given time.
This timing information can be used to prevent collisions and
spread out paths when creating plans for multiple UAVs.

The structure of this paper is as follows. Section II
develops the dynamics of the chain-based path planner. In
Section III we present plans generated by the planner and
simulation results comparing the chain-based path planner
to an n-step look-ahead planner. In Section IV we extend
the chain-based path planner to handle multiple UAVs and
explore how it scales to large numbers of UAVs. Section V
contains plans generated by the planner for multiple UAVs
and a variety of reward functions.

II. SINGLE UAV CHAIN-BASED PATH PLANNER

To generate more detailed, informative UAV paths, we
loosely simulate a chain placed in a force-field, where
angles between links are constrained to enforce the minimum
turn radius of the UAV. The chain model is specifically
designed so that good paths can be discovered quickly, and
existing paths can be modified in real-time as the bounded
differentiable reward function changes.

Similar to [7], we model the chain as a collection of
unit-mass points constrained to the 2-D plane. Letting
zi = (xi, yi) be the position of the ith element in the
chain, then a N -link chain is represented by

c = [ z1 z2 . . . zN ]
T
.

Let F(z) be a bounded differentiable function. Without
loss of generality, assume that F is normalized so that the
minimum is zero and the maximum is one. The magnitude
of the force applied to link i is proportional to (1−F(zi)),
while the direction of the force is given by the gradient of
F(zi). Let gi be the unit vector pointing in the direction of
the gradient of F(zi), i.e.

gi =
∂F(zi)

∂zi
/

∥∥∥∥∂F(zi)

∂zi

∥∥∥∥ .
The unconstrained dynamics for link i are then

z̈i = γ1(1−F(zi))gi,

where γ1 is a positive constant. The unconstrained dynamics
of the entire chain are given by

c̈ = γ1u (1)
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where

u =


(1−F(z1))g1

(1−F(z2))g2

...
(1−F(zN ))gN

 (2)

We constrain link motion so that the distance between
adjacent links is kept constant. Let L be the desired distance
between each adjacent chain link, and define the constraint
vector φ(c) as

φ(c)
4
=


‖z2 − z1‖2 − L2

‖z3 − z2‖2 − L2

...
‖zN − zN−1‖2 − L2

 . (3)

As long as each element of φ(c) is zero, the distances
between each link in the chain will be correct. To push each
element of φ(c) toward zero, we add a restoring term to
Equation (1) to obtain

c̈ = γ1u− γ2
∂φ

∂c
φ,

where γ2 is a positive constant. Large values of γ2 force
adjacent links to remain a distance L apart. On the other
hand, as γ2 gets large, the differential equation stiffens, re-
quiring more computational resources to simulate the model
accurately. A tradeoff must be made between maintaining
exact distances, and modeling the chain movement in a
computationally efficient manner.

To ensure that the minimum turn radius of the UAV is
not violated, straightening forces are applied to each link in
the chain. Let rmin be the minimum turn radius of the UAV
and let θmax be the maximum allowable angle formed by
the vectors between three adjacent links. Then the minimum
number of links required to complete a full circle is given
by

n =
2π

θmax
. (4)

As shown in Figure 1, the length of the approximate circular
path is at least as long as a circle with radius rmin, or

nL ≥ 2πrmin. (5)

Combining Equations (4) and (5), we get

θmax ≤
L

rmin
. (6)

To guarantee that turn radius constraints are not violated,
Equation (6) is treated as a strict equality.

As shown in Figure 2, the straightening force applied to
link i is designed to ensure that |θi| < θmax, where θi is the
angle between v1

i and v2
i , defined as

v1
i = (zi − zi−1)/ ‖zi − zi−1‖ ,

v2
i = (zi−1 − zi−2)/ ‖zi−1 − zi−2‖

It follows that θi is given by

θi = arccos(v1
i · v2

i ).

min
r

max
θ

L

A B

d

e

θ

Fig. 1. Definition of θmax, the maximum allowable turn angle to
approximate a circle using a discrete chain.

The straightening force for link i is given by

fi =
λi

1 + exp(k(θmax − θi))
(v1
i )
⊥

where k is a positive constant that defines how closely the
logistic function approximates a step function, λi is the upper
limit of the straightening force for link i, and

(v1
i )
⊥ =

(
0 −1
1 0

)
v1
i .

For each link, λi must be large enough to at least match
the sum of all possible forces on all subsequent links in the
chain; otherwise, there may be cases where the straightening
force might not be high enough to prevent minimum turn
radius constraints from being violated. If there are N links
in the chain, and i = 1 corresponds to the first link, then we
define λi as

λi = γ1(N + 1− i).

Recall that γ1 is the largest possible magnitude of the
unconstrained force applied by the force-field to each link.

There is a tradeoff that must be taken into account when
selecting the constant k. Ideally the straightening force would
only be applied when the maximum angle constraint is
violated, and then only enough to correct the violation.
However, this is computationally infeasible. Large values of
k, which would approximate a step function, cause the differ-
ential equations to become stiff and require more computing
power. On the other hand, the smaller k is, the sooner the
straightening force becomes significant which limits the turns
the links can make.

Let fs be the vector of all straightening forces applied to
the chain, defined as

fs
4
= [ f1 f2 · · · fN ]

T
. (7)

Then, the chain dynamics with straightening forces are given
by

c̈ = γ1u− γ2
∂φ

∂c
φ+ fs.

A damping term is added to reduce oscillations to obtain

c̈ = γ1u− γ2
∂φ

∂c
φ+ fs − γ3ċ (8)
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Fig. 2. Definition of terms for chain-based path planner.

where γ3 is a positive constant.
When using the chain to plan paths in real-time, the first

two links serve as waypoints for the UAV to follow, and are
not allowed to move. When the UAV nears the end of the
first link, the link is removed from the chain and a new link
is added to the end, and the two links that then comprise the
beginning of the chain are fixed as new waypoints. Therefore
the UAV always has two unchanging waypoints to follow
while the remainder of the chain continuously adapts to
changing target conditions.

One issue that occurs is that the straight line links between
the nodes of the chain might not be flyable. The equal length
trajectory smoothing technique described in [8] can be used
to provide flyable paths while still maintaining the timing of
each of the later waypoints.

III. SINGLE UAV SIMULATION RESULTS

Figure 3 shows a number of paths generated by the chain-
based planner in realistic situations. The reward function
was generated by estimating, by a mixture of Gaussians,
the probability of detecting a target within a city where the
buildings partially occlude the target.

In order to test the effectiveness of the chain-based path
planner, we created a simulation consisting of a 6-DOF
model of a UAV flying within a 300 by 300 meter world.
The UAV had a cruising speed of 10 m/s and a minimum
turn radius of 20 meters. Three different reward functions
were used: a 2D gaussian

f3(x, y) = αe−
1

2σ2
(x2+y2), (9)

where σ2 = 50 is the variance and α was used to normalize
the reward function to have a maximum value of one. The
second reward function is a ’doughnut’

f(x, y) = αe
−ν8

∣∣∣(√x2+y2−R)
∣∣∣ (10)

where ν = 0.01 controls the drop off of the curve, R = 100
is the radius of the doughnut, and α normalizes the function.

TABLE I
PERCENT DIFFERENCE IN SCORE BETWEEN PLANNED PATH FROM THE

CHAIN-BASED PATH PLANNER AND THE ACTUAL PATH THE UAV FLEW.

Function Doughnut Gaussian Mixture of Gaussians
Mean (%) -0.86 -4.2 -9.37

Standard Deviation (%) 0.39 3.91 13.36

The final reward function is a mixture of three Gaussians

f(x, y) = α

3∑
i=1

βi (2π)
− 3

2 |Σi|−
1
2 e−

1
2 (c−µi)TΣ−1

i (c−µi)

(11)
where α scales the reward function to have a maximum of
one, 0 < βi < 1 is a random positive weight of the ith
gaussian, µi is a random mean for the ith gaussian, and Σi
is a random covariance matrix for the ith gaussian.

One hundred Monte Carlo simulations were run for each
reward function with random UAV starting position and
orientation for the 2D Gaussian and doughnut reward func-
tions and random UAV starting position and orientation as
well as random means, covariances, and weights for the
mixture of Gaussian reward function. For each simulation
a chain-based path planner, with twelve links for the 2D
Gaussian and doughnut and eight links for the mixture of
Gaussians and a link length of 20 meters, and a 5-step look-
ahead planner, see [9] for a good overview, consisting of
straight paths and the following possible heading changes
θ ∈ {−20,−10,−5, 0, 5, 10, 20}. Each simulation ran for
100 seconds of flight time and the score of the UAVs path,
defined as the integral of the reward function over the UAVs
path, was recorded for both path planners.

Table I shows the percentage difference in score between
the planned path and the path that the UAV actually flew. As
can be seen, the UAV was not able to perfectly fly the path
generated by the chain-based path planner due to the instanta-
neous turns required. The error is larger for the Gaussian and
mixture of Gaussians functions than the doughnut because
of the numerous sharp terms being performed. However, the
path that was flown is comparable to the desired path.

Table II shows the percentage difference in score between
the planned path from the chain-based planner and the look-
ahead planner. Notice that, on average, the chain-based path
planner is comparable to the look ahead planner for all
three functions. However, data from one of the mixture of
Gaussians scenarios was not used when computing the mean
and standard deviation because it was a severe outlier. In this
particular scenario, the chain-based path planner did 980%
better than the look ahead planner. This occurred because the
UAV started in a position that the look-ahead planner could
not find any of the gaussian distribution maxima. The chain-
based path planner had no difficulty finding these maxima
due to the much longer chain length than the look-ahead
length. If this scenario was included in the data, then the
mean would have been 16.54% and the standard deviation
would be 100.32%.
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Fig. 3. Examples of paths generated by chain-based path planner for a target surveillance application

TABLE II
PERCENT DIFFERENCE IN SCORE BETWEEN THE PATH FROM THE

CHAIN-BASED PATH PLANNER AND 5-STEP LOOK-AHEAD PLANNER. A
NEGATIVE VALUE MEANS THE LOOK-AHEAD PLANNER PERFORMED

BETTER THAN THE CHAIN-BASED PLANNER.

Function Doughnut Gaussian Mixture of Gaussians
Mean (%) -0.45 -0.95 6.8096

Standard Deviation (%) 2.65 2.255 17.286

IV. MULTIPLE UAVS CHAIN-BASED PATH PLANNER

There are several possible methods for extending the
single UAV chain-based path planner to multiple UAVs.
The simplest method is for each UAV to have its own
independent chain. While this approach has several benefits,
such as the UAVs do not need to communicate, there are
several disadvantages. First, if the UAVs are flying at the
same altitude, independent chains will do nothing to prevent
collisions between the UAVs. Second, if the UAVs start in
similar locations they could fly almost identical paths. This
would provide little benefit in most surveillance or tracking
applications. Instead, we will develop a method in which
each UAV has its own chain but the chains interact with
each other.

Let the jth UAV have an N -link chain
cj = [zj1, zj2, . . . , zjN ]

T We will start with the
single UAV chain dynamics given in Equation (8). Note
that each UAV can have a different minimum turn radius.
In addition, the desired distance between links, Lj , does not
need to be the same for each UAV. However, Lj should be
proportional to the speed of the jth UAV. This restriction
implies that each UAV will fly through the ith node in its
chain at approximately the same time.

We create another force that causes the chains of different
UAVs to repel each other. Let dij(m,n) be the vector going
from the nth node of the jth UAV to the mth node of the

ith UAV, or
dij(m,n) = zim − zjn

and

d̂ij(m,n) =
dij(m,n)

‖dij(m,n)‖
.

Define the repulsive force acting on node m of the ith UAV
due to node n of the jth UAV to be

rij(m,n) =
d̂ij(m,n)γij4e

−γij5‖dij(m,n)‖ if |m− n| < k and
‖dij(m,n)‖ < dmax

0 otherwise
(12)

where γij4 is a positive constant that scales the repulsive
force, γij5 is a positive constant that controls how quickly
the force drops off due to distance, k is a positive integer
that determines how time dependent the interactions are, and
dmax is the furthest distance that nodes can influence each
other from. By not requiring that γij4 = γji4 and γij5 = γji5,
UAVs can be given precedence over others. For example, if
γij4 > γji4 = 0 and γij5 > γji5 = 0 then the ith
UAV’s path would be pushed away from the jth UAV’s path
while the jth UAV’s path is not influenced by the ith UAV’s
path.

Merging all of the repulsive forces acting on the chain of
the ith UAV by the chain of the jth UAV, we obtain

Rij = [Rij(1)Rij(2) . . . Rij(N)]T

where

Rij(n) =

N∑
m=1

rij(n,m)

is the sum of all the forces acting on the nth node of the
ith UAV by all the nodes of the jth chain.
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Adding the total repulsive forces to Equation (8) we obtain
the complete chain dynamics for the jth UAV

c̈j = γj1uj − γj2
∂φj
∂cj

φj + fjs − γj3ċ +
∑
i 6=j

Rji. (13)

As it is currently implemented, the chain-based path
planning method for multiple UAVs is unsuited for a decen-
tralized implementation. This is because every agent needs
the link locations for every other agent in order to generate
the repulsive forces. Even if the planner is implemented in
a centralized manner, good communication is required from
the planner to all of the agents due to waypoints needing to
be sent every couple of seconds.

A. Scaling

Over the last few years, there has been a lot of focus on
large groups of UAVs. Path planners for these teams need to
scale to the large number of agents well. The non-repulsive
portion of the multi-UAV chain-based planner obviously
scales on the order of Nu where Nu is the number of UAVs.
However, as will be shown, the repulsive forces do not scale
as well.

In the worst case, k = ∞ and dmax = ∞, where k and
dmax are as defined in Equation (12). In this case each link
in the chain interacts, or is repelled, with (Nu − 1)N other
links where N is the number of links in a UAV chain. There
are a total of NuN links which means the total number of
repulsive forces is

Nforces = (Nu − 1)NuN
2.

Therefore in the worst case, the multiple UAV chain-based
planner scales on the order of N2

u .
If k < ∞, the total number of repulsive forces can drop

drastically. In this case, each link in the chain interacts with
at most (Nu−1)(2k−1) other links providing a total number
of repulsive forces of

Nforces = (Nu − 1)Nu(2k − 1)N.

This number can be lowered much further if dmax < ∞,
however it will still scale on the order of N2

u .

V. MULTIPLE UAV SIMULATION RESULTS

Figure 4 shows how the generated paths can vary by
modifying γij4 and γij5. In the first two images, only the
black path is being repulsed (γ124 6= 0 and γ215 = 0). In
the last image, both chains are repelling each other. Figure 5
shows several paths generated with different UAV and target
starting locations. In these images, the repulsive parameters
do not change.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a UAV path planner based
on a chain in a force field. This path planner can operate
for a single UAV or, with the addition of repulsive forces,
multiple UAVs. This planner tries to find paths that go
through maxima of an underlying bounded differentiable
reward function.

The chain-based planner is advantageous because it runs
quickly, paths can be modified continuously as the under-
lying differentiable function changes, and there are few
restrictions on the shape of the generated path. In addition,
because the paths are continuously updated, there is no
required amount of precessing time to compute a flyable
path. At any given moment, the path is valid. Giving the
chain-based path planner more processing time allows a
larger chain to be computed or more time spent simulating
the chain.

We currently have several areas to explore in the future.
First, we want to extend this to three dimensions. While
it appears that the extension will be very straight forward,
we will need to see if modern processors will be able to
handle the additional computational requirements. Second,
we would like to apply this planner to a target tracking prob-
lem. Because the chain-based planner encodes the expected
UAV position with respect to time, allowing each UAV to
determine when it expects its line of sight to be occluded,
it might be possible to weight the forces on each chain
link so that multiple UAVs can ”hand-off” target tracking
responsibility so that at least one sensor is positioned to
view the ground target at all times. Third, we would like
to modify the planner so that each UAV has multiple chains
initialized in different directions. The UAV would then fly to
the next waypoint along the path that has the best fitness. As
it flies to the next waypoint, it would remove all other chains
and initialize new ones. This should increase performance by
allowing the planner to explore more of the space while not
requiring much more computational power. Finally, we want
to develop a decentralized version of the planner.
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