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Abstract— In this paper, a Fault Tolerant Control (FTC)
strategy using a virtual sensor for Linear Parameter Varying
(LPV) systems is proposed. The main idea of this FTC method is
to reconfigure the control loop such that the nominal controller
could still be used without need of retuning it. The plant with
the faulty sensor is modified adding the virtual sensor block
that masks the sensor fault. The suggested strategy is an active
FTC strategy that reconfigures the virtual sensor on-line taking
into account faults and operating point changes. In order to
implement the virtual sensor approach, a fault estimation is
required. Here, this fault estimation is provided by formulating
it as a parameter estimation problem. Then, a block/batch least
square approach is used to estimate additive and multiplicative
faults. The LPV virtual sensor is designed using polytopic LPV
techniques and Linear Matrix Inequalities (LMIs). To assess
the performance of the proposed approach a two degree of
freedom helicopter simulator is used.

Index Terms— Fault Tolerant Control, Linear Parameter
Varying, Virtual Sensor, Linear Matrix Inequality, TRMS.

I. Introduction

Fault Tolerant Control (FTC) is a new idea recently

introduced in the research literature [1] which allows to

maintain current performance close to a desirable one and

preserve stability conditions in the presence of component

and/or instrument faults. Accommodation capability of a

control system depends on many factors such as severity

of the failure, the robustness of the nominal system and

mechanisms that introduce redundancy in sensors and/or

actuators. From the point of view of the control strategies,

the literature considers two main groups of techniques: the

active and the passive (see [2] for a review). The passive

FTC techniques are control laws that take into account

the fault appearance as a system perturbation. Thus, within

certain margins, the control law has inherent fault tolerant

capabilities, allowing the system to cope with the fault

presence. On the other hand, the active FTC techniques

consist in adapting the control law using the information

given by the Fault Detection and Isolation (FDI) block [1].

With this information, some automatic adjustments in the

control loop are done after the fault appearance trying to

satisfy the control objectives with minimum performance

degradation. Most of the FTC methods have been proposed

for LTI systems. This paper proposes a FTC approach for

non-linear systems that can be approximated by an LPV

model. The main advantage of LPV models is that they allow
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applying powerful linear design tools to complex non-linear

models [3]. Various LPV system modeling techniques in the

fault-free case are presented in [4]. The LPV theory is mainly

used for designing controllers for non-faulty systems, but

recently it has also been used for active FTC [5].

Recently, virtual sensors for linear systems have been

proposed as a fault accommodation approach (see, e.g. [1]).

In particular, this paper extends this virtual sensor approach

for FTC to LPV systems. The main idea of this FTC method

is to reconfigure the control loop such that the nominal

controller could be still used without need of retuning it.

The plant with the faulty sensor is modified adding the

virtual sensor block that masks the sensor fault and allows

the controller to see the same plant as before the fault. The

LPV virtual sensor is designed using LMI regions [6] and

taking into account the effect of the fault and the operating

point. This approach requires to approximate the LPV system

in a polytopic way guaranteeing the desired specifications

at the expense of introducing some conservatism. As a

benefit, controller design can be reduced to solve a convex

optimization problem which can be solved using solvers that

are very efficient nowadays.

To implement the virtual sensor block, a fault estimation

is needed. In the original virtual sensor scheme proposed

in [1], the fault estimation method is not provided. This paper

proposes a method for computing the fault estimation needed

by the virtual sensor that allows to estimate multiplicative

and additive sensor faults. The fault estimation is formulated

as a parameter estimation problem in such a way that

any parameter estimation algorithms (such as least squares,

generalized/extended least squares, instrumental variables,

maximum likelihood, extended Kalman filter and others)

could be used. In general, least-square algorithms can be for-

mulated either in block/batch or recursive on-line forms [7].

The format implemented in this paper is referred to as block

least squares following the ideas proposed by [8].

The paper is organized as follows: Section II presents

the details regarding the proposed FTC strategy based on

virtual sensors in the context of LPV systems and the fault

estimation procedure. Section III presents the LPV controller

and a reconfiguration analysis of the proposed strategy. In

Section IV, the polytopic approximation of a LPV system

is presented. Section V proposes the design of a virtual

sensor by means of LMI pole placement. Finally, Section VI

describes the two-degree of freedom helicopter used as

application example, which shows the performance of the

proposed approach.
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II. Fault Estimation and Virtual Sensor for LPV Systems

A. LPV System and Fault Definition

Let us consider an LPV system in state-space form includ-

ing sensor faults as follows:

x f (k+1) = A(ϑk)x f (k) + Bu(k) (1)

y f (k) = C f (γk)x f (k) + fy(k) (2)

where x f (k) ∈ ℜnx represents the state vector, u(k) ∈ ℜnu

denotes the control inputs and y f (k) ∈ ℜny are the sensor

outputs including faults. A(ϑk) ∈ℜnx×nx and C f (γk) ∈ℜny×nx

are time-variant matrices while B ∈ ℜnx×nu is a constant

matrix. fy(k) ∈ ℜny denotes the additive sensor faults and

the multiplicative sensor faults are embedded in the matrix

C f (γk) as follows:

C f (γk) = diag(γ1(k), γ2(k), . . . , γny (k))C, 0 ≤ γi(k) ≤ 1 (3)

where γi represents the effectiveness of the ith output sensor,

such that the extreme values γi = 0 and γi = 1 represent

a total failure of the ith sensor and the healthy ith sensor,

respectively. For example, when γ1 = 0.8, the effectiveness of

the first output sensor is 80%. C denotes the faultless output

matrix. ϑk (ϑk :=ϑ(k)) is the system vector of time-varying

parameters of dimension nϑ that changes with the operating

point. This vector is scheduled by some measured system

variables pk (pk := p(k)) that can be estimated using some

known function ϑk = f (pk), named scheduling function.

B. LPV Virtual Sensor

In this paper, the concept of virtual sensor introduced in [1]

is extended to non-linear systems that can be approximated

by an LPV model. The main idea of this FTC method is to

reconfigure the faulty plant such that the nominal controller

could be still used without need of retuning. The plant with

the faulty sensor is modified adding the virtual sensor block

that masks the fault and allows the controller to see the same

plant as before the fault. The overall scheme includes an

LPV state observer, an LPV nominal controller and the fault

estimation module.

The reconfiguration structure can be expressed as:

yc(k) = P(γk)
(

y f (k) − fy(k)
)

+C∆(γk)xv(k) (4)

where yc(k) is the same (or approximately the same) output

as the nominal plant and xv(k) ∈ ℜnx is the virtual sensor

state. Matrices P(γk) and C∆(γk) are given by:

P(γk) = CC f (γk)† (5)

C∆(γk) = C − P(γk)C f (γk) (6)

where C f (γk)† is the pseudo-inverse of C f (γk). Notice that

C∆(γk) = 0 if the following rank condition is satisfied:

rank
(

C f (γk)
)

= rank

(

C

C f (γk)

)

(7)

for ϑk ∈ Θ. If such a condition holds (e.g. when the fault

has changed the sensitivity of the sensor but the signal is not

completely lost), the LPV virtual sensor reduces to a static

reconfiguration block scheduled by γk. Cases where (7) is

not satisfied (e.g. when one or more sensors are completely

broken) should be described through values of the matrix C∗

such that the following condition holds1:

C∗ = P(γk)C f (γk) (8)

In these cases C∆(γk) , 0 and yc(k) depends on the virtual
sensor state xv(k) that is calculated as:

xv(k+1) = A(ϑk)xv(k)+ Bu(k)+ Lv(ϑk)
(

P(γk)(y f (k) − fy(k)) −C∗xv(k)
)

(9)

where Lv(ϑk) ∈ ℜnx×ny is the gain of the LPV virtual sensor.

When the sensor fault appears, the LPV virtual sensor

reconstructs the system output vector yc(k) from the faulty

sensor output y f (k). The faulty plant and the LPV virtual

sensor are called the reconfigured LPV plant which is

connected to the nominal LPV controller. If the reconfigured

LPV plant behaves like the nominal plant, the loop consisting

of the reconfigured plant and the LPV controller behaves like

the nominal closed-loop system.

C. Fault Estimation

The LPV system (1)-(2) takes into account the multiplica-

tive sensor faults in the matrix C f (γk) and the additive sensor

faults in the term fy(k) such that for the ith sensor:

y f ,i(k) = γi(k)

ny
∑

l=1

ci,lxl(k) + fy,i(k) (10)

where y f ,i is the output of the ith sensor when a fault occurs

and ci,l is lth element of the ith row of the faultless matrix

C. In this paper, to estimate the multiplicative and additive

sensor faults, a parameter estimation approach is used. Using

(10) and taking into account the last N samples obtained from

the output sensors leads to:

Y f ,i(k) = ΨT
i (k) fi (11)

where:

Y f ,i(k) =
[

y f ,i(k − N + 1) y f ,i(k − N + 2) · · · y f ,i(k)
]T

(12)

Ψi(k) =







































ci,1 x1(k−N+1) + ci,2 x2(k−N+1) + · · ·

ci,1 x1(k−N+2) + ci,2 x2(k−N+2) + · · ·

.

.

.

ci,1 x1(k) + ci,2 x2(k) + · · ·

+ci,nx xnx (k−N+1) 1

+ci,nx xnx (k−N+2) 1

. . .
.
.
.

+ci,nx xnx (k) 1







































T

(13)

fi =
[

γi fy,i
]T

(14)

Thus, the fault estimation f̂i(k) is given by:

f̂i(k) =
(

ΨT
i (k)Ψi(k)

)−1
ΨT

i (k)Y f ,i(k) (15)

It is assumed that x(k) is not available and the estimated

state x̂(k) should be used instead. Consequently, an LPV state

observer is used to provide such state estimation:

x̂(k+1) = A(ϑk)x̂(k) + Bu(k) + L(ϑk) (yc(k) −Cx̂(k)) (16)

where x̂(k) ∈ ℜnx is the estimated state. The matrix L(ϑk) ∈

ℜnx×ny is the gain of the LPV state observer.

1Notice that the matrix C∗ does not depend on γk because the matrix
P(γk) eliminates the effects of partial faults.
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III. FTC Strategy using Virtual Sensor

A. LPV Controller

The LPV system (1)-(2) is controlled by a state feedback

control with tracking reference input as proposed in [9]. The

feedback control law is based on the classical state feedback:

u(k) = K(ϑk)x(k) (17)

while a nonlinear function Nux is added to the state feedback

control law (17). The basic idea in determining the function

Nux is that it should transform the reference input r(k),

expressed as either a desired value or trajectory of the system

outputs, to a state reference xr(k) and a feedforward control

ur(k) that correspond to an equilibrium point for this r(k).

Thus, the control law can be expressed as follows:

u(k) = ur(k) + K(ϑk)(x(k) − xr(k)) (18)

As in the case of the fault estimator, it is assumed that x(k)

is not available and the estimated state x̂(k) provided by the

LPV state observer (16) should be used.

B. Reconfiguration Analysis

To analyze the reconfigured system, the reconfiguration
model is considered. This augmented model includes the
faulty plant (1), the LPV virtual sensor (9) and the state
LPV observer (16) as follows2:


















x f (k+1)
xv(k+1)
x̂(k+1)



















=



















A 0 0
LvPC f A − LvC∗ 0
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B
B
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u(k)

(19)

A state transformation is performed in order to introduce the

virtual sensor error x∆(k) = xv(k)− x f (k) and the observation

error xδ(k) = x̂(k)−xv(k). By introducing the control law (18)

and taking into account (8), the model of the reconfigured

closed-loop behavior of the system (19) can be reshaped as:
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x∆(k+1)
xδ(k+1)
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A − BK −BK −BK
0 A − LvC∗ 0
0 LvC∗ − LPC f A − LC
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x∆(k)
xδ(k)
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−BK
0
0



















xr(k) +



















B
0
0



















ur(k) (20)

Notice that looking at this model, the separation principle

can be applied. The matrix K(ϑk) influences the behavior of

the process state x f (k) through the submatrix A(ϑk)−BK(ϑk)

(nominal LPV controller). Lv(ϑk) affects the behavior of the

virtual sensor error x∆(k) through the submatrix A(ϑk) −

Lv(ϑk)C∗ (LPV virtual sensor). Finally, the observer error

xδ(k) is affected by the matrix L(ϑk) through the submatrix

A(ϑk) − L(ϑk)C (LPV state observer). The set σ of eigen-

values of the closed-loop system (20) consists of the set of

eigenvalues of the nominal closed-loop system plus the LPV

virtual sensor and the LPV state observer:

σ = σ {A − BK} ∪ σ {A − LvC
∗} ∪ σ {A − LC} (21)

Thus, the nominal LPV controller, the LPV virtual sensor

and the LPV state observer can be designed independently.

2To simplify the equations, the following expressions consider that A =

A(ϑk), Lv = Lv(ϑk) and so on.

IV. Polytopic Approximation of a LPV System

A. Polytopic Approximation

In this paper, the kind of LPV systems considered are

those whose time-varying parameter vector ϑk varies within a

polytope Θ. Each polytope vertex corresponds to a particular

value of scheduling variable ϑk. In other words,

A(ϑk) ∈ Co
(

A j, j = 1, . . . ,N
)

: =

N
∑

j=1

α
j

k
(ϑk)A j (22)

with α
j

k
(ϑk) ≥ 0 and

∑N
j=1 α

j

k
(ϑk) = 1. Because of this prop-

erty, this type of LPV systems is referred as polytopic [10].

A common approach to design a controller and an observer

for an LPV system is to approximate it by a polytopic LPV

system [10]. The simplest polytopic approximation relies on

bounding each LPV parameter by an interval (bounding box

approach). Such a box can be found by considering every

possible combination of minima and maxima of the elements

of ϑk over the allowed range of variation of the measured

system variables pk.

B. Polytopic LPV Equations

Using the previous approximation, state equations of the

system (1), virtual sensor (9), observer (16) and the control

law (18) can be expressed in a polytopic way as follows:

x(k+1) =

N
∑

j=1

α
j

k
(ϑk)A jx(k) + Bu(k) (23)

xv(k+1) =

N
∑

j=1

α
j

k
(ϑk)

[

A jxv(k) + Bu(k) + Lv, j

(

P(γk)C f (γk)x f (k)−C∗xv(k)
)]

(24)

x̂(k+1) =

N
∑

j=1

α
j

k
(ϑk)

[

A j x̂(k) + Bu(k) + L j (yc(k)−Cx̂(k))
]

(25)

u(k) = ur(k) +

N
∑

j=1

α
j

k
(ϑk)K j (x̂(k) − xr(k)) (26)

Here A j ∈ ℜ
nx×nx are time-invariant state matrices defined for

the jth model, Lv, j ∈ ℜ
nx×ny are the gains of the LPV virtual

sensor for each jth model, Analogously, L j ∈ ℜ
nx×ny and

K j ∈ ℜ
nu×nx are the state observer gains and the controller

gains for each jth model. The polytopic equations are sched-

uled through functions designed as follows: α
j

k
(ϑk),∀ j ∈

[1, . . . ,N] that lie in a convex set:

Ω =

{

α
j

k
(ϑk) ∈ ℜN , αk(ϑk) =

[

α1
k(ϑk), . . . , αN

k (ϑk)
]T
,

α
j

k
(ϑk) ≥ 0,∀ j,

N
∑

j=1

α
j

k
(ϑk) = 1

}

. (27)

There are several ways for implementing (22) depending on

how α
j

k
(ϑk) functions are defined [11]. Here, the function

α
j

k
(ϑk) is calculated via barycentric combination of vertexes

as suggested by [10].
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V. LPV Virtual Sensor design using LMI Pole Placement

A. LMI Regions

An LMI approach for the design by pole placement con-

straints is described in [6]. The main motivation for seeking

pole clustering in specific regions of the complex plane is

that, by constraining λ to lie in a prescribed region, stability

can be guaranteed and a satisfactory transient response can be

ensured. A subset D of the complex plane is called an LMI

region if there exist a symmetric matrix ρ =
[

ρkl

]

∈ Rm×m

and a matrix β =
[

βkl

]

∈ Rm×m such that

D = {z ∈ C : fD(z) < 0} (28)

where the characteristic function fD(z) is given by:

fD(z) =
[

ρkl + βklz + βklz̄
]

l≤k, l≤m (29)

fD(z) is valued in the space of m × m Hermitian matrices.

Using Gutman’s theorem for LMI regions [12], pole

location in a given LMI region can be characterized in terms

of the m × m block matrix

MD(A, X) := ρ ⊗ X + β ⊗ (AX) + βT ⊗ (AX)T

=
[

ρklX + βklAX + βlkXAT
]

16k,l6m

(30)

In [6] a polytopic state-space model as (23) and a state

feedback control law as (26) is considered. The problem to

be solved consists in finding a set of state-feedback gains K j

that places the closed-loop poles in some LMI stability region

D with a characteristic function (29). The pole-placement

constraint is satisfied if there exist a set of state-feedback

gains K j and a single Lyapunov matrix X > 0 such that:

[

ρklX + βkl

(

A j − BK j

)

X + βlkX
(

A j − BK j

)T
]

16k,l6m
< 0

for all i = 1, . . . ,N (31)

Using an auxiliary variable W j := K jX the matrix inequalities
(31) become the LMIs:

[

ρklX + βkl

(

A jX − BW j

)

+ βlk

(

A jX − BW j

)T
]

16k,l6m
< 0

for all j = 1, . . . ,N (32)

that can be solved through convex optimization.

B. LPV Virtual Sensor design using LMI Pole Placement

The main objective of this section is to summarize the

design procedure of the LPV virtual sensor (9) for the

faulty LPV system (1)-(2). The design of LPV virtual sensor

implies selecting:

• matrices K j of (26) in order to guarantee closed-loop

stability of the original system assuming that the pair

(A(ϑk), B) is stabilizable for all ϑk ∈ Θ,

• matrices Lv, j (see (24)) in order to correct the LPV

virtual sensor error of the reconfigured system assuming

that the pair (A(ϑk),C∗) is detectable for all ϑk ∈ Θ.

This problem must be solved for each possible C∗,

• matrices L j of (25) in order to correct the LPV state

observer error of the reconfigured system assuming that

the pair (A(ϑk),C) is detectable for all ϑk ∈ Θ,

Under these assumptions and taking advantage of the sepa-

ration principle, it is possible to design the matrices K j, Lv, j

and L j using LMI techniques.

The polytopic LPV controller is designed with LMIs (31)

assuming that eigenvalues are placed in an LMI region. The

LMIs (31) are particularized for an LMI region consisting of

the intersection between the unit circle and a vertical strip

defined by the extreme values S min and S max:

{

diag(Q1,Q2,Q3) < 0

X > 0
(33)

Q1 =

(

−X A jX − BW j

XAT
j
−WT

j
BT −X

)

(34)

Q2 = S minX −
1

2

(

A jX + XAT
j − BW j −WT

j BT
)

(35)

Q3 = −S maxX +
1

2

(

A jX + XAT
j − BW j −WT

j BT
)

(36)

Once these LMIs are solved, the gains of the polytopic

LPV controller (26) can be determined by K j = W jX
−1.

Note that the solutions of the LMIs (33) are computed off-

line and the evaluation of (26) just requires the computation

of α
j

k
(pk) that is calculated via barycentric combination of

vertexes as suggested by [10].

Similarly, the LPV virtual sensor (24) is designed with

LMIs assuming that eigenvalues are placed in an LMI region.

The design implies solving the LMIs (33) substituting A j by

AT
j

and B by C∗. Then, the set of gains Lv, j can be calculated

as Lv, j = W jX
−1.

Finally, the design of the LPV state observer (25) implies

solving the LMIs (33) substituting A j by AT
j

and B by C.

Then, the set of gains L j can be calculated as L j = W jX
−1.

VI. Application example

A. Description of Twin-Rotor MIMO System

The TRMS is a laboratory setup developed by Feedback

Instruments Limited for control experiments. The system is

perceived as a challenging engineering problem due to its

high non-linearity, cross-coupling between its two axes, and

inaccessibility of some of its states through measurements.

The TRMS mechanical unit has two rotors (the main and the

tail, both driven by DC motors) placed on a beam together

with a counterbalance whose arm with a weight at its end

is fixed to the beam at the pivot and it determines a stable

equilibrium position. The beam can rotate freely both in the

horizontal and vertical planes.

The system input vector is u = [uh, uv]
T where uh/v is

the input voltage of the tail/main motor. The system states

vector is x = [ωh, Ωh, θh, ωv, Ωv, θv]T where ωh/v is the

rotational velocity of the tail/main rotor, Ωh/v is the angular

velocity around the horizontal/vertical axis and θh/v is the

yaw/pitch angle of beam.
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B. The TRMS LPV model

The mathematical model of the TRMS is given by a set of

non-linear differential equations that can be found in [13].

This model has been validated with the equipment of the

TRMS and, following the approach described in [14], it has

been reshaped and brought to an LPV representation in [15]:
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+ B(pk)

[

uh(k)

uv(k)

]

(37)

where

A(ϑk) =













































a11(pk) 0 0 0 0 0
a21(pk) a22(pk) a23(pk) a24(pk) a25(pk) a26(pk)

0 Ts 1 0 0 0
0 0 0 a44(pk) 0 0

a51(pk) a52(pk) 0 a54(pk) a55 a56(pk)
0 0 0 0 Ts 1
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1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



























where ϑk = [ϑ1
k
, . . . ϑ12

k
]T = [a11(pk), a21(pk), a22(pk),

a23(pk), a24(pk), a25(pk), a26(pk), a44(pk), a51(pk), a52(pk),

a54(pk), a56(pk)]T .

The model is scheduled with pk = [ω̂h(k), Ω̂h(k), θh(k),

ω̂v(k), θv(k)]T , using the available measurements outputs

θh(k) and θv(k). The rest of states needed for control are

estimated using a state observer. Since the scheduling vector

pk contains some state variables of the system, the model is

said to be quasi-LPV3.

To implement the control and virtual sensor approach for

the TRMS it is necessary to obtain the polytopic represen-

tation (23) of the system (1). This is done by means of the

bounding box approach.

The LPV controller is designed with LMIs (33) assuming

that the eigenvalues are in LMI region with S min = 0.95 and

S max = 1. Analogously, the LPV state observer is designed

assuming that the eigenvalues are in LMI region with S min =

0.7 and S max = 0.9. Finally, the LPV virtual sensors are

designed assuming that the eigenvalues are in LMI region

with S min = 0 and S max = 0.95.4

The fault scenarios present the closed-loop behavior when

the following change of set-point is introduced:

θ
re f

h
=

{

1, t < 50s

1.4, t ≥ 50s
, θ

re f
v =

{

0.1, t < 50s

0.2, t ≥ 50s
(38)

3Notice that b22 in (37) depends on pk. However, it has been seen that
its variations are small enough to let it be approximated by its mean value,
leading the state equation to the form (1).

4In this application, the rank condition (7) is not satisfied in case of total
loss of one sensor. Hence, 4 virtual sensors have to be designed, one for
each sensor loss. In this case, matrices C∗ are obtained from the matrix C
by eliminating the row corresponding to the lost sensor.

C. Fault scenarios

1) Fault scenario 1: The loss of sensor effectiveness in

fault scenario 1 is defined as:

[γ1, γ2, γ3, γ4] =



















[1,1,1,1], for t < 40s

[0.7,1,1,1], for 40s ≤ t < 70s

[0.5,1,0.5,1], for t ≥ 70s

. (39)
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(a) Effectiveness of the tail rotor sensor ωh

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

E
ff

e
c
ti
v
e

n
e

s
s
  

  
γ 3

 

 

Fault amplitude

Fault estimation

(b) Effectiveness of the main rotor sensor ωv

Fig. 1: Sensors effectiveness in fault scenario 1

Fig. 1(a) and Fig. 1(b) present the effectiveness of the tail

rotor sensor ωh and the main rotor sensor ωv in the first fault

scenario. Both the real and the estimated values are shown,

demonstrating that the faults are correctly estimated.
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Fig. 2: TRMS angles in fault scenario 1

Fig. 2(a) and Fig. 2(b) present the yaw angle θh and the

pitch angle θv, respectively. In both cases, the angles have

perturbations at time t = 40s and t = 70s due to faults

occurrences. However the overall loop is able to adapt in

such a way that the fault effect is asymptotically masked .
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2) Fault scenario 2: The loss of sensor effectiveness in

fault scenario 2 is defined as:

[γ1, γ2, γ3, γ4] =



















[1,1,1,1], for t < 40s

[1,1,1,0.5], for 40s ≤ t < 70s

[1,1,1,0], for t ≥ 70s

. (40)

Fig. 3(a) shows that the effectiveness in the pitch angle

sensor θv is correctly estimated.
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Fig. 3: Sensors effectiveness of the pitch angle sensor in fault scenario 2

Fig. 4(a) and Fig. 4(b) present the yaw angle θh and the

pitch angle θv and their reference, respectively. In this case

the fault occurrence provokes a loss of stability, while the

proposed FTC strategy avoids such a loss and, moreover,

the set-points are correctly followed.
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Fig. 4: TRMS angles in fault scenario 2

VII. Conclusions

This paper has proposed an FTC strategy using an LPV vir-

tual sensor for non-linear systems that can be approximated

by an LPV model. This FTC method adapts the faulty plant

to the nominal LPV controller instead of adapting the LPV

controller to the faulty plant. In this way, the faulty plant

together with the LPV virtual sensor block allows the LPV

controller to see the same plant as before the fault. It has

been demonstrated that an LPV controller can stabilize the

faulty plant without having to redesign it at fault time.

The suggested approach implements an FTC LPV virtual

sensor on-line by means of varying parameters that can

change with the operating point or/and a fault. In particular

case, the output sensor fault has been presented. Additionally

the fault estimation is evaluated by the use of a block/batch

least square approach where multiplicative and additive faults

are present.

The implementation of the LPV controller requires a state

LPV observer, that estimates the states with the information

provided by the LPV virtual sensor. The LPV virtual sensor

and observer are designed using polytopic LPV techniques

and pole placement in LMI regions. This formulation allows

a more versatile, straightforward and systematic characteri-

zation of the specifications.

The potential and performance of the approach have been

demonstrated in an illustrative application to a two degree

of freedom helicopter simulator.
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