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Abstract— The paper deals with the problem to provide
a global estimation of a scenario composed by several and
interdependent infrastructures. Due to the increasing presence
of interdependencies, to correctly manage any infrastructure
it is more and more relevant to have information about the
“state” of the others, especially in critical situations. However,
it is unfeasible both any centralized solution and to exchange
detailed data about the state of each infrastructure, due to their
huge volumes and in order to avoid the disclosure of critical
information. To overcome such problems in this paper a fully
distributed approach is proposed, attesting a copy of the whole
model inside each one of the infrastructures’ control room; each
copy directly receives information coming from its own field and
shares with the others only aggregated and non-sensible data.
Moreover, in order to provide consistent outputs, the different
copies have to synchronize. To this end a specific procedure
has been developed, and some conditions for the convergence
have been identified. In this way the proposed system is able to
operate as an Online Distributed Interdependency Estimation
(ODIE) System. The approach is under experimental tests on a
national wide electric and telecommunication networks inside
the European Project MICIE.

I. INTRODUCTION

Nowadays the protection of the critical national infrastruc-
tures (e.g. energy grids, transportation networks, telecom-
munications systems, etc.) is one of the main issues for
national and international security. Even if such a topic al-
ways gathered large attention, it has become more prominent
due to the increased relevance of critical infrastructures and
because of the increased presence of functional relationships,
i.e. dependencies and interdependencies, among the different
infrastructures, which amplify the negative effect of any
natural or man-made accident [14].

In the literature, many approaches have been introduced,
in order to address the challenging complexity of interde-
pendency; some of them, like the Input-Output Inoperability
Model (IIM) proposed in [11], [12], considers infrastructures
as unique and abstract entities, while others decompose the
overall system into a set of interconnected elements, where
the level of abstraction depends on the specific reference
scenario (see, for example, the approach proposed in [13]).

Hence the stakeholders of each infrastructure, in order
to manage their assets, need to have information about the
actual and near future state of the other infrastructures.

Fig. 1. Example of ODIE framework for 3 interconnected Critical
Infrastructures. Each estimator has the same, although simplified, model
of the system of systems, but directly receives only data generated within
its own field. The different evolutions are then synchronized in a distributed
way (i.e, exchanging data only with the neighbors).

However this is nearly impossible, due to the huge quantity
of data that has to be shared and especially because such
data is often considered sensible information, which the
stakeholders are not willing to share. To overcome such
limits, in the EU project MICIE [20] a distributed online
risk predictor has been developed, which is able to notice
the actual effects of negative phenomena, to estimate (or
even predict) the evolution of the state of the overall system
and then support the decisions of human operators and
actors. Specifically, the tool operates as an alerting system
providing the operators with an estimation of the global state
of the other infrastructures, and of the consequential potential
impact.

To this end it is assumed that each control room is
equipped with an although abstract global model of the over-
all System of Systems, while only data originated within its
own infrastructure is directly available to the corresponding
tool (see Figure 1). The tools, attested in the different control
rooms, in order to provide a consistent system, exchange
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their own state that, due to its abstract and aggregated nature,
does not represent sensible data. To reduce the communica-
tion effort, moreover, the information exchange among tools
has been restricted according to a given network topology,
hence leading to a distributed synchronization. More in detail
each control center is equipped with a Input-Output Inoper-
ability Model (IIM) [11] representing the whole scenario,
and the different copies are then synchronized.

An initial synchronization framework has been proposed in
[15] in the case of distributed and interconnected continuous-
time IIM models; in this case the synchronization was
reached by letting each tool reach consensus on the actual
degradation phenomena occurring over each infrastructure.

A slightly different approach has been proposed in [18],
where a linear, discrete-time interdependency model was
considered, and each tool received only the data originated
within its field, while the status of each tool were composed
with a distributed consensus protocol; the resulting shared
values were used to influence the further evolution of each
tool.

In this paper, exploiting the peculiarities of the IIM mod-
els, a simplified procedure to evaluate a synchronization gain
matrix is provided. Moreover, a formal, analytical method
to grant the synchronization of identical, continuous-time,
linear models is given, where each model receives exoge-
nous disturbances, that model the variation of the working
condition of the infrastructure (e.g., the consequences of an
electrical fault).

Extending traditional synchronization approaches, the
above disturbances are seen as additional states for each
system, and a characterization of the evolution is given,
exploiting the conditions that assure that the synchronized
systems converge. To this end a synchronization algorithm is
used, and when a variation in the disturbances is noticed, the
algorithm is launched again, assuming new initial conditions.

The paper is organized as follows: after some preliminary
notations and definitions, the IIM interdependency model is
reviewed and commented in Section II; Section III is devoted
to introduce the problem of Synchronization of identical,
continuous-time, linear systems, as well as the synchro-
nization with constant disturbances; Section IV details the
proposed framework and describes its application to a real
case study, providing also a small simulative example; finally
some conclusive remarks are collected in Section V.

A. Preliminaries

In the following vectors will be represented by boldface
letters. Let R denote the set of real numbers. Let’s define
In ∈ Rn×n as the n× n identity matrix and 1p as a vector
with p components, each equal to one.

Let A⊗B denote the Kronecker product of two matrices
A and B.

An interconnection is a matrix Γ = {γij} ∈ Rp×p such
that γij ≥ 0 for i 6= j and γii = −

∑
j 6=i γij .

The (directed) graph of Γ is the pair (N,E) where
N = {n1, n2, . . . , np} and (ni, nj) ∈ E ⇐⇒ γij > 0.
Interconnection Γ is connected if its graph is connected (i.e.,

if each node can be reached from each other node by means
of the arcs). For connected Γ , it follows from definition that
λ = 0 is an eigenvalue with eigenvector 1p (i.e. Γ1p = 0).
Moreover, all the other eigenvalues have strictly negative real
parts [24].

A graph is balanced if, for each node {n1, n2, . . . , np} the
incoming degree (i.e., the number of incoming links) equals
the outgoing degree (i.e., the number of outgoing links). If
a graph is balanced and Γ1p = 0 it follows that 1T

p Γ = 0.

II. IIM INTERDEPENDENCY MODELING

The main objective of the IIM model, introduced in
[11] and refined in [12], is to represent within a simple
framework the global effects of negative events in scenar-
ios composed by highly interdependent infrastructures. The
approach analyzes how the effects of natural outages or
terroristic attacks in one economic sector or infrastructure
may affect the others, highlighting cascading effects and
intrinsic vulnerabilities. Based on the economic equilibrium
theory of [17], the static input-output inoperability model is
defined as:

x = A∗x + u (1)

where x is a vector of n components each of one rep-
resenting the degree of inoperability of the corresponding
infrastructure, i.e., its inability (in percentage) to correctly
operate. A∗ is a square n × n matrix whose elements a∗ij
represent the fraction of inoperability transmitted from the
j-th infrastructure the the i-th one.

Finally, u assumes the role of external, induced inoper-
ability; from this point of view it can be seen as an actual
perturbation generated by an adverse event.

In [19] model (1) is further extended, considering a
dynamic term:

x(t) = A∗x(t) + u(t) +W ẋ(t) (2)

Matrix W is a square n × n matrix that represents the
willingness of the economy to invest in capital resources.
Many choices are possible for the W matrix; however, as
exposed in [19], the elements of W must be either zero or
negative for an economic system to be stable. In [12] the
authors adopt a diagonal B matrix in the form:

W = −H−1; kii ≥ 0; ∀i = 1, . . . , n (3)

Substituting inside Eq. (2):

ẋ(t) = H[(A∗ − In)x(t) + u(t)] (4)

Matrix H is generally referred as the industry resilience
coefficient matrix because each element kii can be seen as
the recovery rate with respect to adverse or malicious events.

The IIM model, in its dynamic fashion, can be adopted
to represent the response of interdependent infrastructures to
an induced perturbation, until the equilibrium is reached.

In order to evaluate the level of dependencies of an
infrastructure, in [13] the dependency index is introduced,
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as the sum of the IIM coefficients along a single row:

δi =

n∑
j=1

a∗ij (5)

This index represents a measurement of the robustness of the
corresponding infrastructure with respect to the inoperability
of the others; in fact, it represents the maximum inoperability
that i-th infrastructure may receive when each other element
is completely inoperable. Consequently, δi ≤ 1 means that
the i-th infrastructure maintains some operative capability
also in the case in which all the other infrastructures in the
scenario have completely collapsed.

In [16] it is proved that a sufficient condition to guarantee
the stability of system (2) is that the maximum of the
dependency indexes (5) of matrix A∗ is less than one. This
represents the condition that the infrastructures are provided
with buffers or batteries, thus increasing their resistance to
the inoperability of the other infrastructures.

III. LINEAR SYSTEM SYNCHRONIZATION

In the literature the synchronization of identical linear
distributed systems has been widely investigated [1], [2], [3],
[6], [7], [8], [4], [5]. By synchronization it is intended the
convergence of the solutions of the systems to a common
trajectory; the synchronization approach is said to be dis-
tributed if each system receives data only by a subset of
the other systems (i.e., only by its neighborhood). When
the trajectory is a stationary point, the problem reduces to a
consensus problem [9], [10].

In the following the theory of linear system synchroniza-
tion will be reviewed and a condition for the synchronization
under rather general hypotheses will be provided.

Let p identical linear systems, where i-th system is in the
form:

ẋi(t) = Axi(t) +Bui(t); (6)

where A ∈ Rn×n, B ∈ Rn×m, xi ∈ Rn and ui ∈ Rm.
The input ui only depends on the state of the neighbors of
system i, according to the topology Γ; in other terms:

ui(t) = P
∑p

j=1 γij(xj(t)− xi(t)); (7)

where P is an m× n matrix.
The above systems in the form of Eq. (6) are said to

synchronize if

limt→+∞ ||xi(t)− xj(t)|| = 0 ; ∀i, j = 1, . . . , p; i 6= j
(8)

Let L be the graph Laplacian induced by Γ, whose
elements {lij} are in the form:

lij =

{∑p
k=1,k 6=i γik, j = i

−γij , j 6= i
(9)

Let x(t) = [x1(t), . . . ,xp(t)]T , the overall dynamic for
the p stacked systems is given by:

ẋ(t) = [Ip ⊗A− L⊗BP ]x(t) (10)

In [2] a Lyapunov-based approach is adopted to grant
the stability and then the synchronization; conversely in [5],
under the hypothesis of a stable matrix A, a sophisticated
algorithm is used for the choice of matrix P .

In the following theorem we will show that, under some
additional hypotheses, the complexity of choosing P can be
considerably reduced.

Theorem 3.1: Let K = BP , and chose a matrix P such
that K is diagonal and has nonnegative elements. If matrix A
is such that: for all i = 1, . . . , n aii ≤ 0; for all j = 1, . . . , n,
j 6= i aij ≥ 0 and

∑n
j=1 aij ≤ 0, then System (10) is stable.

Proof: The dynamic matrix of System (10) has the
following structure:

A− l11K l12K · · · l1pK

l21K
. . . . . .

...
...

. . . . . . lp−1,pK
lp1Kn · · · lp,p−1K A− lppK

 (11)

From Gershgorin Circle Theorem [23] the eigenvalues of an
n × n matrix M lie, in the complex plane, in the union of
circles centered in C(i) = mii with radius equal to R(i) =∑n

j=1;j 6=i |mij |. Consider the i-th row of the q-th block row;
the center is given by

C(q, i) = aii −
p∑

g=1

γqgkii (12)

Since γqg, kii are all nonnegative by hypothesis, it follows
that C(q, i) ≤ 0. Conversely off diagonal elements for row
i of block row q are all positive, therefore the | · | is not
required for the radius, which is given by:

R(q, i) =
∑n

j=1,j 6=i aij +
∑p

g=1 γqg
∑n

j=1,j 6=i kij+

+
∑p

g=1,g 6=q γqg
∑n

j=1 kij =

=
∑n

j=1,j 6=i aij + 2
∑p

g=1 γqg
∑n

j=1 kij+

−γqq
∑n

j=1 kij −
∑p

g=1 γqgkii

(13)

The system is stable if C(q, i) + R(q, i) ≤ 0 for each q =
1, . . . p and i = 1, . . . , n, or in other terms if

aii −
∑p

g=1 γqgkii +
∑n

j=1,j 6=i aij+

+2
∑p

g=1 γqg
∑n

j=1 kij − γqq
∑n

j=1 kij+

−
∑p

g=1 γqgkii ≤ 0

(14)

Since for hypothesis
∑

j=1 aij ≤ 0, Inequality (14) is true
if

(
∑p

g=1 2γqg − γqq)
∑n

j=1 kij ≤
∑p

g=1 2γqgkii (15)

where some terms have been rearranged. Clearly, Inequality
(15) is true for all (q, i) if K is diagonal and the kii are
positive.

In [5] it is proved that, for a connected Γ, the p systems
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converge to

x̄(t) = (eAt ⊗ rT )

x10

...
xp0

 (16)

where r ∈ Rp is a vector such that rT Γ = 0 and
∑p

h=1 rh =
1.

It is possible to specify some conditions, in order to further
characterize the synchronization reached:

Corollary 3.2: If Γ is a balanced and connected graph,
then the p systems synchronize to the average evolution.

Proof: Since systems synchronize, it follows that

rT Γ = 0 and rT1p = 1 (17)

Moreover, a balanced Γ ensures that Γ1p = 0 and 1T
p Γ = 0.

Therefore the only r that satisfies (17) is such that rj = 1
p

for each j = 1, . . . , p, proving the statement.

Note that it is also possible to obtain the synchronization
to a weighted average or to the sum of the evolutions. It is
sufficient to use the synchronization algorithm with modified
initial conditions x∗i0 obtained from the real initial condition
detected xi0. For example if x∗i0 = pxi0, where p is the
number of distributed systems, for each system i, the sum of
the evolutions is obtained. Note that, to achieve this result,
each system needs to know the number of systems involved
in the synchronization.

Although the above approach is very powerful, it is not
able to consider systems which depend also on exogenous
signals, as in our case when each copy is ”perturbated” by
inputs coming from its own field.

In the next subsection an approach for the synchronization
of distributed linear systems with constant disturbance will
be introduced.

A. Synchronization with Constant Disturbance

Consider for each of the p systems in the form (6) an
additional constant disturbance wi(t) = wi ∈ Rn whose
effect on the system is determined by the n × n matrix D;
hence each copy has the form

ẋi(t) = Axi(t) +Bui(t) +Dwi(t); (18)

In order to address the synchronization problem, the state of
each system has to be extended in the following way. Let
zi ∈ R2n be defined as:

zi(t) = [xi(t)
T ,wi(t)

T ]T ; ∀i = 1, 2, . . . , p (19)

Transforming systems (6) and introducing a new input
vi(t) ∈ Rm in the form

vi = Q

p∑
j=i

γij [wj(t)−wi(t)] (20)

let ei(t) = [ui(t)
T ,vi(t)

T ]T ; the resulting extended systems
are in the form

żi(t) = Ãzi(t) + B̃ei(t); ∀i = 1, . . . , p (21)

where matrices Ã ∈ R2n×2n and B̃ ∈ R2n×2m are in the
form

Ã =

[
A D
0 0

]
; B̃ =

[
B 0
0 In

]
(22)

Note that Ã is block triangular and the evolution of wi

is independent on xi; therefore the system is stable if A
is stable. Hence it is possible to apply the approach in [5],
which only requires the stability of A. In order to simplify
the choice of matrices P and Q the results of Theorem 3.1
are extended in the following way

Theorem 3.3: Let p linear systems in the form of Eq. (21),
where D is such that dii ≤ 0 for all i = 1, . . . , n, dij ≥ 0
for all j = 1, . . . , n and

∑n
j=1 dij ≤ 0 . Then, under the

hypotheses on the matrix A, required by Theorem 3.1, a
state feedback in the form

ei(t) =

[
P
Q

] p∑
j=1

γij(zj(t)− zi(t)) (23)

solves the synchronization problem if P and Q are such that

K̃ =

[
BP 0
0 Q

]
(24)

is diagonal and the entires of K̃ are nonnegative.
Proof: It is sufficient to show that the elements ãij and

k̃ij respect the conditions required by Theorem 3.1. To this
end note that, due to the hypotheses on D, the conditions on
Ã are satisfied. Moreover Inequality (15) becomes

(
∑p

g=1 2γqg − γqq)
∑n

j=1 k̃ij +
∑n

j=1 dij ≤
∑p

g=1 2γqgk̃ii
(25)

and, for a diagonal K̃ it is sufficient that
∑n

j=1 dij ≤ 0.

Note that the choice of D is not limitative since in typical
situations D is assumed as diagonal and the presence of
negative dii does not preclude to represent any perturbation,
i.e., it is sufficient to suitably change the sign of wi.

Note further that, since the evolution of the wi is decou-
pled from the evolution of xi, the above theorem addresses,
at the same time, the synchronization of linear systems and
the consensus for the disturbances, in a unified approach.

Note that it is possible to represent, at the same time,
the case of non-overlapping disturbances, i.e. the j-th distur-
bance variable for each system is different from zero only
for the i-th system ( wij 6= 0, whj = 0 for each h 6= i), and
the case of inputs with different beliefs, i.e. each copy of
the model receives a different value for the j-th disturbance
variable.

IV. ONLINE DISTRIBUTED INTERDEPENDENCY
ESTIMATION

In the field of Critical Infrastructure Protection a crucial
aspect is the capability to identify possible risks induced
by cascading failures. Unfortunately critical infrastructures
operators are very reluctant to share detailed information
(i.e., field data) about their infrastructures, because this data
is considered sensible information.
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Fig. 2. Simulation Results: Figures (a), (b) and (c) show the convergence of the error between the i − th state variable for the three systems and the
corresponding state variable for a system which directly receives the complete disturbance vector, i.e., in each plot the error for the tree systems is plotted.
Since the evolutions converge to zero, the trajectories of the three systems converge to the sum of their isolated evolutions. Figures (d), (e) and (f) show the
synchronization for first second and third disturbance variable. The red, blue and black curves characterize the first, second and third system, respectively.
Note that the algorithm is executed with updated initial conditions after a change in the disturbance is noticed, i.e. in t1 = 6.99s and in t2 = 15.99s.

To overcome such a difficulty and provide the operators
with a useful tool, in the EU project MICIE [20], an
approach based on a distributed architecture that implements
an Online Distributed Interdependency Estimator (ODIE) has
been proposed. The control room of each infrastructure is
equipped with an identical copy of an abstract and high-level
dynamic model that represents the interdependencies among
the different infrastructures, hence able to capture the most
relevant domino effects.

Each instance of the model, attested in a given infrastruc-
tures’ control room, acquires as inputs information coming
from its own field; in other terms the copy in the control
room of the first infrastructure receives as inputs the severity
of failure affecting the first infrastructure, the control room
of second infrastructure receives as inputs those related to
the second infrastructure, and so on.

Allowing to synchronize the different copies, the system
is able to provide to the different operators a coherent
picture of the global situation, without exchanging sensible
information.

The result is that the trajectory of each system converges
to the trajectory of an “hypothetical” centralized estimator,
i.e., an estimator which receives all the inputs (or a more
reliable input in the case of contradictory information).

Note further that the disturbances are assumed to vary
impulsively and their value remains constant between varia-
tions. In order to cope with such disturbances, their variation
is monitored and, if a variation is noticed at time tc + ε, the
synchronization protocol is executed again considering the
updated initial condition [x(tc)

T , w(tc)
T ]T .

In the following subsection a simple example will be given
to show the potentialities of the proposed framework.

A. Simulation Results

Consider a scenario composed of three interdependent
infrastructures depicted in Figure 1, and an IIM model,
defined in Equation (1), where H is assumed as the identity
matrix. The A∗ matrix and the interconnection Γ are:

A∗ =

 0 0.4 0.5
0.5 0 0.5
0.5 0.6 0

 ; Γ =

−1 1 0
1 −3 2
0 2 −2

 (26)

Note that A∗ − In is stable and that the conditions required
by Theorem 3.1 are verified; we chose a matrix D = −In
and P,Q both equal to the identity matrix, in order to satisfy
conditions required by Theorem 3.3. Note further that Γ is
balanced, and therefore it is possible to achieve the sum
synchronization.

Consider the disturbance vector wi = [wi1, wi2, wi3]T ;
the i − th copy receives an input where i − th component
is equal to wii and other entries are equal to zero (i.e.
non-overlapping inputs). Moreover, the initial conditions of
systems are equal to zero, except for system 1, whose initial
conditions are x1(0) = [0.25, 0, 0]T . The disturbances are
assumed to vary twice during the simulation: at time t0 = 0s
they assume the following values:

w11(0) = 0.1, w22(0) = 0.05, w33(0) = 0.2

then at time t1 = 6.99s they abruptly change assuming the
values:

w11(6.99) = 0.7, w22(6.99) = 0.5, w33(6.99) = 0.1

finally in t2 = 15.99s they become:

w11(15.99) = 0, w22(15.99) = 0.05, w33(15.99) = 0.3
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Fig. 3. Scenario considered within the MICIE European Project [20],
composed of a portion of a national-wide medium voltage power grid, a
telecommunication network and a SCADA system.

Figure (2) shows the results for synchronization of the
three systems; more specifically the error of the three systems
with respect to a system which directly receives the complete
disturbance vector [w11, w22, w33]T is plotted in Figures
2.(a), 2.(b), 2.(c), i.e., each figure represents the error on
a given state variable. Conversely, Figures 2.(d), 2.(e), 2.(f)
show the consensus reached on the disturbances, i.e., in
each figure the value of the i-th disturbance is plotted
for the three systems. Note that, after any perturbation,
the synchronization procedure is executed considering the
updated initial conditions. Note further that to achieve sum
synchronization the initial condition inside the algorithm is
multiplied by p = 3; moreover since D = −I the value
of the disturbance is changed in sign inside the algorithm:
therefore w∗i0 = 3[xTi0,−wT

i0]T .
Such an approach has been adopted in FP7 MICIE Euro-

pean Project, considering a scenario composed of a portion
of a real national-wide medium voltage power grid, with the
connected telecommunication network and the corresponding
SCADA systems operated by one of the project’s partner
(see Figure 3). A copy of the model is installed inside the
control room of each infrastructure and directly receives
the data available from its own field, while the different
tools exchange abstract and non-sensitive data to reach
synchronization(for further details on the results of MICIE
Project see [21], [22]).

V. CONCLUSIONS

In this paper the synchronization problem for linear sys-
tems with disturbances has been addressed and some con-
ditions for the convergence have been provided. The results
are applied to the design of an online distributed estimator
for critical infrastructures. Specifically a copy of the Input-
Output Inoperability model isattested in each control room
and is able to collect information from its own field and share
aggregated data with the other copies. The approach has been
exploited within the MICIE European Project, considering a
real case study in Israel. Future works will be devoted to
introduce time-delays and switching interconnection topolo-

gies, as well as more complex and nonlinear interdependency
models, considering also the discrete time perspective.
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