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Abstract— This paper addresses the control design for a
class of nonholonomic systems which are subject to inequality
state constraints defining a constrained (viability) set K. Based
on concepts from viability theory, the necessary conditions
for selecting viable controls for a nonholonomic system are
given. Furthermore, a class of nonholonomic control solutions
are redesigned by means of switching control, so that system
trajectories are viable in K and converge to a goal set G in K.
The motion control for an underactuated marine vehicle in a
constrained configuration set K is treated as a case study. The
set K essentially describes the limited sensing area of a vision-
based sensor system, and viable control laws which establish
convergence to a goal set G in K are constructed. The efficacy
of the methodology is demonstrated through simulation results.

I. INTRODUCTION

Control of systems which are subject to both nonholo-

nomic and state (configuration) constraints is a challenging

problem, often encountered within the fields of robotics

and multi-agent systems. Nonholonomic constraints apply to

various robotic systems, either due to the rolling without

slipping condition, or due to underactuation. Furthermore,

control systems in real-world applications are additionally

subject to hard state constraints, imposed for safety or

performance issues. Indicative examples of such constraints

often arise due to limited sensing; consider, for instance,

an underactuated robotic vehicle equipped with sensors (e.g.

cameras) of limited range and angle-of-view, which has to

track or move with respect to (w.r.t.) a target of interest. The

requirement of always having the target in the camera field-

of-view (f.o.v.) imposes a set of inequality state constraints

which should never be violated. This problem is often termed

as maintaining visibility and applies in leader-follower for-

mations [1]–[3], in landmark-based navigation [4]–[6], in

autonomous inspections [7], or in visibility-based pursuit-

evade problems, see [8] and the references therein. Similar

state constraints apply in maintaining connectivity problems

involving n nonholonomic agents with limited sensing and/or

communication capabilities, that have to accomplish a task

while always staying connected [9].

This paper proposes a control design methodology for

a class of nonholonomic systems subject to hard state

constraints. The state constraints are realized as nonlinear

inequalities w.r.t. the state variables, which constitute a

closed subset K of the state space Q. The set K is thus

the subset of state space in which the system trajectories

should evolve ∀t ≥ 0. Therefore, the control objective is to

find a (possibly switching) state feedback control law, so that
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system trajectories starting in K converge to a goal set G in

K without ever leaving K .

The proposed approach combines concepts and tools from

viability theory [10] and results from our work on feedback

control for nonholonomic systems with kinematic Pfaffian

constraints [11] (Section II). In the sequel, following [10],

state constraints are called viability constraints, the set K is

called the viability set of the system, and system trajectories

that remain in K ∀t ≥ 0 are called viable (see Section

III). We adopt the concept of tangency to a set K defined

by inequality constraints [10], and provide the necessary

conditions under which the admissible velocities of a kine-

matic nonholonomic system are viable in K , as well as the

necessary conditions for selecting viable controls (Section

IV). As a case study, we consider the motion planning for

an underactuated marine vehicle subject to configuration

constraints due to limited sensing. The task is to control

the vehicle so that it converges to a desired configuration

w.r.t. a target of interest, while this target is always visible in

the f.o.v. of the onboard camera. The visibility maintenance

requirement imposes a set of configuration constraints that

define a viability set K . Given the control solutions in [11],

we propose a way of redesigning them so that the resulting

trajectories are viable in K and furthermore converge to

a desired set G ⊂ K , along with simulation results that

demonstrate the efficacy of our methodology (Section V).

Our conclusions and plans for future extensions are summa-

rized in Section VI.

The problem formulation is similar to the characterization

of viable capture basins of a target set C in a constrained set

K [12], which is based on the Frankowska method. However,

in this paper we rather address the problem in terms of set

invariance [13], where the objective is to render the viability

set K a positively invariant set, and the goal set G the largest

invariant set of the system (if possible) by means of state

feedback control. Compared to our prior work [7], here we

do not adopt an optimal control formulation, and propose

viable solutions that also converge to a goal set G ⊂ K .

Finally, we extend our control design method in [11] to the

case of nonholonomic systems with dynamic (second order)

Pfaffian constraints.

II. NONHOLONOMIC CONTROL DESIGN

This section gives a brief introduction on our methodology

[11] on the feedback control of drift-free, kinematic nonholo-

nomic systems of the form

q̇ =
m∑

i=1

gi(q)ui, (1)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5497



which are subject to κ < n kinematic Pfaffian constraints

A(q)q̇ = 0, (2)

where A(q) ∈ R
κ×n, the state vector q ∈ R

n includes the

system generalized coordinates, gi(q) are the control vector

fields, ui are the control inputs.1 The main idea is that one

can define a smooth N-dimensional reference vector field

F(·) for (1), given as

F(x) = λf
(
p T x

)
x− p

(
x T x

)
, (3)

where N ≤ n, λf ≥ 2, x ∈ R
N is a (particular) subvector of

the state vector and p ∈ R
N is a vector that “generates” the

vector field F(·); the vectors x, p are determined by the form

of the constraint matrix A(q), see [11]. The vector field F(·)
serves as a velocity reference for (1); i.e. one can use the

available control authority to first “align” the system vector

field q̇ with F, and “flow” in the direction of the reference

vector field on its way to q = 0. These two objectives dictate

the choice of particular Lyapunov-like functions V . Thus,

one can find a smooth function V : Rn → R of compact level

sets, and a feedback control law γ(·) = (γ1(·), . . . , γm(·)) :
R
n → R

m such that

V̇ ≤ 0 ⇔ ∇V q̇ = ∇V
m∑

i=1

gi(q)γi(·) ≤ 0, (4)

where ∇V ,
[
∂V
∂q1

. . . ∂V
∂qn

]

the gradient of V at q.

Using standard techniques, one can establish that the system

trajectories q(t) asymptotically converge to the origin.2

III. TOOLS FROM VIABILITY THEORY

This section gives a brief description of concepts and tools

from viability theory [10], [14] that are used in the paper.

Consider a system described by a (single-valued) map f :
Ω 7→ X , where X is a finite dimensional vector space and

Ω an open subset of X , and the initial value problem:

∀t ∈ [0, T ], ẋ (t) = f
(
x(t)

)
, x(0) = x0. (5)

Definition 1: ( Viable Functions ) Let K be a subset of

X . A function x(·) from [0, T ] to X is viable in K on [0, T ],
if x(t) ∈ K , ∀t ∈ [0, T ].

The characterization of viable sets K under f is based on

the concept of tangency: A subset K is viable under f if at

each state x of K the velocity f(x) is “tangent” to K at x,

for bringing back a solution to (5) inside K . This concept

of tangency is realized via the contingent cone.

Definition 2: ( Contingent Cone at a Fréchet differen-

tiable point ) Consider the continuous real-valued map g =
(g1, g2, . . . , gp) : X → R

p and the subset K of X defined

K = {x ∈ X | gi(x) ≥ 0, i = 1, 2, . . . , p}, (6)

where gi(·) are Fréchet differentiable at x. For x ∈ K , denote

I(x) = {i = 1, 2, . . . , p | gi(x) = 0} (7)

1It is shown in Section V that the method can be extended to the control
design of underactuated systems with dynamic Pfaffian constraints.

2Convergence to the origin is “almost” global, in the sense that γ(q) is
undefined on particular singularity subsets A.

the subset of active constraints. The contingent cone TK(x)
to K is TK(x) = X whenever I(x) = ∅, otherwise

TK(x) = {υ ∈ X | ∀i ∈ I(x), 〈g′i(x), υ〉 ≥ 0} ,

where g′i(x) ∈ X⋆ is the gradient of gi at x, X⋆ is the dual

space of X and 〈·, ·〉 stands for the duality pairing.

Definition 3: ( Viability Domain ) The subset K of Ω is a

viability domain of f : Ω 7→ X if ∀ x ∈ K, f(x) ∈ TK(x).
Definition 4: Consider a control system (U, f):

ẋ(t) = f(x(t), u(t)), where u(t) ∈ U(x(t)),

where U : X  Z a feedback set-valued map, X the state

space, Z the control space, and f : Graph(U) → X . The

map RK := K  Z of viable controls u is defined as

∀x ∈ K, RK(x) := {u ∈ U(x) | f(x, u) ∈ TK(x)}.

If the subset K is given by (6), the set of active constraints

is as in (7), and for every x ∈ K , ∃υ0 ∈ X such that ∀i ∈
I(x), 〈g′i(x), υ0〉 ≥ 0, then the regulation map RK(x) is

RK(x) := {u ∈ U(x) | ∀i ∈ I(x), 〈g′i(x), f(x, u)〉 ≥ 0}.

IV. VIABLE NONHOLONOMIC CONTROLS

Consider a nonholonomic system of the form (1) subject

to λ inequality state constraints determining the viability set

K := {q ∈ Q | cj(q) ≤ 0, j = 1, 2, . . . , λ}, (8)

where cj(·) : Q→ R are continuously differentiable maps.

Assume that I(q) = ∅, i.e. none of the constraints is

active; then q ∈ Int(K), and the contingent cone of K at

q coincides with the state space Q, TK(q) = Q.3 Thus the

system can evolve along any direction q̇ ∈ TqQ without vi-

olating the viability constraints. For a nonholonomic system

(1) with Pfaffian constraints (2), the admissible velocities

q̇ ∈ TqQ belong into the null space of the constraint matrix

A(q), an (n−κ) dimensional subspace of the tangent space

TqQ. Thus, for q ∈ Int(K), the viable admissible velocities

q̇ of (1) are tangent to an (n− κ) dimensional subspace of

the contingent cone TK(q).
Assume now that, for some j ∈ {1, 2, . . . , λ}, at least

one of the j-th constraint becomes active: cj(z) = 0, where

z ∈ ∂K . The contingent cone TK(z) is now a subset (not

necessarily a vector space but rather a cone) of the tangent

space TzQ. Thus, an admissible velocity for a nonholonomic

system (1) is viable at z if and only if

ż ∈
(

Null(A(z))
⋂

TK(z)
)

6= ∅.

Based on these, we are able to characterize the conditions

for selecting viable controls (if any) for the system (1).

For q ∈ Int(K), an admissible control u = (u1, . . . , um) :
R
n → R

m for (1) is viable at q if and only if

u ∈ U(q), q̇ =

m∑

i=1

gi(q)ui ∈ TK(q) , TqQ,

3If K is a differentiable manifold, then the contingent cone TK(q)
coincides with the tangent space to K at q.

5498



Fig. 1. Any control law γ(·) = (γ1(·), . . . , γm(·)) : Rn → R
m such

that γ(z) ∈ U(z), ż =
∑m

i=1
gi(z)γi(·) ∈ (C

⋂

TK(z)) is also viable
at z ∈ ∂K , bringing the system trajectories into the interior of K .

where U(q) is the subset of feasible controls.

For z ∈ ∂K such that a single constraint is active: cj(z) =
0, for some j ∈ {1, . . . , λ}, the map of viable controls at z

reads RK(z) = {u ∈ U(z) | ∇cj
∑m
i=1 gi(z)ui ≤ 0},

where ∇cj =
[
∂cj
∂q1

. . .
∂cj
∂qn

]

at z ∈ ∂K . An admissible

control u = (u1, . . . , um) : R
n → R

m for (1) is thus viable

at z ∈ ∂K if and only if

u(z) ∈ U(z),
[
∂cj
∂q1

. . .
∂cj
∂qn

] m∑

i=1

gi(z)ui ≤ 0. (9)

If 1 ≤ λα ≤ λ constraints cj(q) : Q→ R are simultaneously

active at some z ∈ ∂K , then a control law u(·) is viable at

z if (9) holds for each one of the active constraints. If all λ

constraints are active at z, the conditions can be written as

u(z) ∈ U(z), Jc(z)
m∑

i=1

gi(z)ui ≤ 0, (10)

Jc(z) is the Jacobian of the map c = (c1(·), . . . , cλ(·)) :
Q→ R

λ at z.

Consequently, the state feedback control laws γ(·) =
(γ1(·), . . . , γm(·)) : R

n → R
m given [11] are viable at

z ∈ ∂K if and only if

γ(z) ∈ U(z),
[
∂cj
∂q1

. . .
∂cj
∂qn

] m∑

i=1

gi(z)γi(·) ≤ 0, (11)

for each one of the active constraints cj(z) = 0 at z ∈ ∂K ,

where U(z) ⊆ R
m is the subset of feasible controls at z.

To illustrate this, consider that a single constraint is

active, cj(z) = 0 for some z ∈ ∂K (Fig. 1). The vi-

able system velocities ż belong into the contingent cone

TK(z) at z. The system velocities that establish asymp-

totic convergence to the origin [11] define the subset C =
{ż ∈ TzQ | ∇V ż ≤ 0}. Thus, a convergent control law γ(·)
is viable at z ∈ ∂K if and only if γ(z) ∈ U(z) and

the system velocity ż =
∑m

i=1 gi(z)γi(·) belongs into the

intersection (C
⋂
TK(z)); if this intersection is empty, then

γ(·) steers the system trajectories out of K .

V. A MARINE VEHICLE WITH LIMITED SENSING

As a case study, we consider the motion control on the

horizontal plane for an underactuated marine vehicle sub-

ject to configuration constraints, which arise due to limited

Fig. 2. Modeling of the state constraints imposed by the sensor system

sensing. The sensor suite includes an onboard camera, and

provides the vehicle’s position and orientation (pose) vector

η =
[
x y ψ

]
T w.r.t. a global coordinate frame G, which

lies on the center of a target on a vertical surface (Fig. 2).

The target is tracked using computer vision algorithms, and

this information is used for estimating η. Thus the target

should always be visible in the camera f.o.v., for the sensor

system to be effective. This requirement imposes a set of

viability constraints w.r.t. η.

A. Mathematical Modeling

The marine vehicle has two back thrusters for moving

along the surge and the yaw degree of freedom (d.o.f.),

but no side (lateral) thruster for moving along the sway

d.o.f.. Following [15], the kinematic and dynamic equations

of motion are analytically written as:

ẋ = u cosψ − v sinψ, (12a)

ẏ = u sinψ + v cosψ, (12b)

ψ̇ = r, (12c)

m11u̇ = m22vr +Xuu+Xu|u| |u|u+ τu, (12d)

m22v̇ = −m11ur + Yvv + Yv|v| |v| v, (12e)

m33ṙ = (m11 −m22)uv +Nrr +Nr|r| |r| r + τr, (12f)

where η =
[
x y ψ

]
T is the pose vector w.r.t. the global

frame G, ν =
[
u v r

]
T is the vector of linear and angular

velocities in the body-fixed coordinate frame B, m11, m22,

m33 are the inertia matrix terms (including the “added mass”

effect) along the axes of the body-fixed frame, Xu, Yv, Nr
are linear drag terms, Xu|u|, Yv|v|, Nr|r| are nonlinear drag

terms, and τu, τr are the control inputs along the surge and

yaw d.o.f.. Furthermore, the thrust allocation implies that

τu = Fp+Fst and τr = d (Fp − Fst), where Fp ∈ [−fp, fp],
Fst ∈ [−fst, fst] are the port and starboard thrust forces,

respectively, fp, fst > 0 are the bounds of the thrust forces

and 2d is the distance between the two thrusters.

B. Nonholonomic control design

The system (12) falls into the class of control affine

underactuated mechanical systems with drift,

ẋ = f(x) +
m∑

i=1

gi(x)ui, (13)
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where x =
[
x y ψ u v r

]
T is the state vector, and

u1 = τu, u2 = τr are the control inputs. The dynamics

of the sway d.o.f. (12e) serve as a second-order (dynamic)

nonholonomic constraint. Since the constraint equation is not

of the form a T(η)η̇ = 0, where η a vector of generalized

coordinates, the approach in [11] can not be directly applied.

Nevertheless, considering for a moment the kinematic

subsystem only, one can easily verify that (12a), (12b) can

be combined into −ẋ sinψ + ẏ cosψ = v ⇒

[
− sinψ cosψ 0

]

︸ ︷︷ ︸

a T(η)





ẋ

ẏ

ψ̇



 = v ⇒ a T(η)η̇ = v, (14)

which for v 6= 0 can be seen as a violation of the constraint

equation of the unicycle. The “constraint” equation (14)

implies that η = 0 is an equilibrium point if and only if

v |η=0 = 0 . With this insight, one can try to steer the kine-

matic subsystem augmented with the second order constraint

(12e) to the origin η = 0, using the velocities u, r as virtual

control inputs, while ensuring that the velocity v vanishes

at η = 0. Following [11], we define an N = 2 dimensional

reference vector field F(·) = Fx
∂
∂x

+ Fy
∂
∂y

, given by (3),

where x =
[
x y

]
T. For λf = 3 and p =

[
1 0

]
T, the

vector field components Fx, Fy read

Fx = 2x2 − y2, Fy = 3xy. (15)

The vector field (15) is non-vanishing everywhere in R
2

except for x = 0, and has integral curves that all converge to

x = 0 with direction φ→ 0. Thus, the idea for the kinematic

control design is that the vehicle can be controlled so that

it “aligns with” the direction and flows along the integral

curves of the vector field F(·), until it converges to η = 0.

In order to design a feedback control law r = γ2(ψ) for

stabilizing the orientation error e = ψ − φ to zero, one can

require that ė = −k2e, where k2 > 0, that reads

ψ̇ − φ̇ = −k2(ψ − φ)
(12c)
⇒ r = −k2(ψ − φ) + φ̇. (16)

Then, one can take a function V in terms of the states x, y

and the orientation error e = ψ − φ as

V =
1

2
(x2 + y2 + e2) =

1

2

(
x2 + y2 + (ψ − φ)2

)
,

which is positive definite w.r.t. [x y e] T and radially un-

bounded, and take its time derivative as

V̇
(16)
=

[
x y

] [ cosψ
sinψ

]

u+
[
x y

] [− sinψ
cosψ

]

v − k2e
2. (17)

The behavior of V̇ depends on the velocity v. If v can be seen

as a bounded perturbation that vanishes at
[
x y e

]
T = 0,

then this point is an equilibrium of the kinematic subsystem

(in the sense that, for x = y = 0, one has e = 0 ⇒ ψ =
φ|x=y=0 = 0) and therefore it is meaningful to analyze its

(asymptotic) stability. Moreover, since v comes from the con-

trol input ζ = ur, one should study its evolution in an input-

to-state stability (ISS) framework. With this insight, consider

the candidate ISS-Lyapunov function Vv =
1
2v

2 and take its

time derivative V̇v = −m11

m22

v(ur)−
(

|Yv|
m22

v2 +
|Yv|v||

m22

|v| v2
)

,

where by definition Yv, Yv|v| < 0, and w(v) = |Yv|
m22

v2 +
|Yv|v||

m22

|v| v2 is a continuous, positive definite function. Take

0 < θ < 1, then V̇v = −m11

m22

v(ur)− (1−θ)w(v)−θw(v) ⇒

V̇v ≤ −(1− θ)w(v), ∀v : −
m11

m22
v(ur)− θw(v) < 0.

If the control input ζ = ur is bounded, |ζ| ≤ ζb, then

V̇v ≤ −(1− θ)w(v), ∀|v| : |Yv||v|+ |Yv|v|||v|
2 >

m11

θ
ζb.

Then, the subsystem (12e) is ISS [16, Thm 4.19]. Thus, for

any bounded input ζ = ur, the linear velocity v(t) will be

ultimately bounded by a class K function of supt>0 |ζ(t)|.
If furthermore ζ(t) = u(t)r(t) converges to zero as t→ ∞,

then v(t) converges to zero as well.

Going back to (17), set the control input u = γ1(x, y) as

u = −k1 sgn(x cosψ + y sinψ) tanh(k(x2 + y2)), (18)

where k1, k > 0, sgn(a) = 1 if a ≥ 0, sgn(a) = −1 if

a < 0, that yields

V̇ = −
(

k1

∣
∣
∣

[
x y

] [ cosψ
sinψ

]∣
∣
∣ tanh(k(x2 + y2)) + k2e

2
)

+

+
[
x y

] [ cos(π
2
−ψ)

sin(π
2
−ψ)

]

v(t).

The control input (18) is bounded. Note also that the terms

e, φ̇ in (16) are also bounded; therefore v(t) is bounded,

|v(t)| ≤ b. Furthermore, r(t) → 0 as t→ ∞, since the error

e(t) → 0 exponentially and φ̇ → 0. Therefore v(t) → 0 as

t → ∞. Then, V̇ ≤ −V1 + ‖x‖ b, where V1 ≥ 0, which

implies that V̇ is negative semi-definite for suitable choice

of the gains k1, k2. Furthermore, V̇ is uniformly continuous

in time, since its derivative V̈ is bounded. Then, according

to Barbalat’s lemma, limt→∞ V̇ = 0. Given that e → 0
exponentially and that v(t) → 0 as t → ∞, one has that

the first term of V̇ converges asymptotically to zero as well,

which implies that the system trajectories x(t), y(t) converge

to zero as t→ ∞.4

Finally, for the design of the control inputs τu, τr, assum-

ing that full state feedback x is available, one can use a feed-

back linearization transformation for the dynamic subsystems

(12d), (12f) given as τu = m11α−m22vr−Xuu−Xu|u||u|u,

τr = m33β − (m11 −m22)ur−Nrr−Nr|r||r|r, that yields

u̇ = α, ṙ = β, where α, β are the new control inputs.

Thus, the system should be controlled so that the velocities

u, r track the virtual control inputs γ1(·), γ2(·). To design

the control laws α(·), β(·), consider the candidate Lyapunov

function Vτ = 1
2 (u−γ1(·))

2+ 1
2 (r−γ2(·))

2 and take its time

derivative as V̇τ = (u−γ1(·))(u̇−
∂γ1
∂η

η̇)+(r−γ2)(ṙ−
∂γ2
∂η

η̇).

Then, under the control inputs α = −ku(u− γ1(·)) +
∂γ1
∂η

η̇,

β = −kr(r − γ2(·)) +
∂γ2
∂η

η̇, where ku, kr > 0, one gets

4To verify that the case
[

x y
] [

cosψ sinψ
]

T = 0 does not affect
the convergence of x(t), y(t) to zero, one can consider that limt→∞ V1 =
0 holds either at the origin x = y = 0, ψ = φ|x=y=0 = 0, or in the set
x = 0, ψ = φ|x=0,y∈R = π. Nevertheless, in the latter case the control
input u is non zero, and thus the system trajectories escape this set.
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Fig. 3. A convergent solution η(t) given by the control law u = γ1(·),
r = γ2(·) may violate viability during some (finite) time interval.

V̇τ = −ku(u− γ1(·))2 − kr(r − γ2(·))2, which verifies that

the velocities u, r globally exponentially converge to γ1(·),
γ2(·), respectively.

C. Viable nonholonomic control design

The visibility maintenance requirement imposes two non-

linear inequality constraints of the form cj(x, y, ψ) ≤ 0:

c1 : y − x tan(ψ − α) + yT ≤ 0, (19a)

c2 : yT − y + x tan(ψ + α) ≤ 0. (19b)

The control law (18), (16) yields solutions that converge

to (any) desired configuration ηd ∈ K .5 Nevertheless, the

convergent trajectories η(t) may not be viable in K .

Such an example is shown in Fig. 3. The vehicle starts at

η0 ∈ K; however, tracking the reference vector field F(·)
under (18), (16) on its way to ηd =

[
−0.5 0 0

]
T ∈

K implies that the convergent trajectories η(t) are driven

out of K for some finite time. In particular, the system

trajectories η(t) violate the constraint c1(η) given by (19a).

This constraint becomes active when the target lies on the left

boundary of the f.o.v., where f2 = −yT (Fig. 3, dashed line).

This condition defines a subset Z1 = {z ∈ ∂K | c1(·) =
y − x tan(ψ − α) + yT = 0} of the boundary of K . The

viable system velocities at any z ∈ Z1 satisfy ∇c1ż ≤

0 ⇒ [− tan(ψ−α) 1 −x sec2(ψ−α) ]

[
ẋ
ẏ

ψ̇

]

≤ 0. Substituting the

system equations yields

(− tan(ψ − α) cosψ + sinψ)u+ (tan(ψ − α) sinψ +

cosψ) v − x sec2(ψ − α)r ≤ 0. (20)

The condition (20) verifies that the control inputs (18), (16)

violate the constraint c1(z) = 0: at z ∈ Z1 the vehicle

moves with u, r, ψ > 0, thus the first and third term are > 0,

5For driving the system to ηd =
[

xd yd ψd

]

T the reference vector

field F(x∗, y∗) is defined by a vector p =
[

px py
]

T such that ψd =
atan2(py, px), in terms of x∗ = x− xd, y∗ = y − yd.

ci

−∞ ci*

σi

1

+∞0

Fig. 4. The switching signal σi(ci) : (−∞, 0] → [0, 1].

whereas the velocity v is not negative enough to satisfy (20).

Therefore, the control laws u = γ1(·), r = γ2(·) should be

redesigned so that (20) holds ∀z ∈ Z1. To this end, note that

(20) offers a way of selecting viable control inputs when z ∈
Z1. For picking a viable control input r(z), one can choose

to regulate the orientation ψ of the vehicle to the angle φt =
atan2(−y,−x), which essentially is the orientation of the

vector −η that connects the vehicle with the target; in that

way, the system is controlled so that target is centered in the

camera f.o.v., avoiding thus the left boundary.

Thus, for redesigning the control laws (18), (16) so that

they are viable at z ∈ Z1, one can consider a continuous

switch of the form

σ1(c1) =

{
c1
c1∗
, if c1∗ ≤ c1 ≤ 0,

1, if c1 < c1∗ ,

shown in Fig. 4, and use the control law

u = σ1(c1)uconv + (1− σ1(c1))uviab, (21a)

r = σ1(c1)rconv + (1− σ1(c1))rviab, (21b)

where uconv, rconv are given by (18), (16), and uviab, rviab
are control inputs satisfying (20) at z ∈ Z1; one can set

rviab = −k2(ψ − φt), where φt = atan2(−y,−x), uviab ,
uconv, given by (18), and select the control gains for uviab so

that (20) is satisfied. Then, if c1(z) = 0 one has σ1(c1) = 0,

which ensures that the control laws at z ∈ Z1 are viable.

Under this control setting, one has that if the system

trajectories are such that c1(η(t)) < c1∗(η(t)) ∀t ≥ 0, i.e.

if the viable controls are never activated, then the system

is guaranteed to converge to ηd. On the other hand, if the

switch σ1(·) is activated at some t ≥ 0, it follows that the

vehicle does not track the convergent to (xd, yd) integral

curves of the vector field F during the time interval that

σ1(c1) 6= 1. If furthermore the control laws uviab, rviab
are not convergent to ηd, which is the general case, then

the control law (21) does not any longer guarantee the

convergence of the system trajectories to ηd. In this case,

one can relax the requirement on convergence to a single

point, and rather choose to establish convergence to a goal

set G ⊂ K of desired configurations, given as

G =
{
ηd ∈ K

∣
∣ xd

2 + yd
2 = d2, ψd = atan2(−yd,−xd)

}
,

where d is a desired distance w.r.t. the target. The linear

velocity controller is given as u = −k1 sgn(x1 cosψ +
y1 sinψ) tanh(k(x1

2 + y1
2)), where ψd = atan2(−y,−x),

x1 = x− xd, xd = d cosψd, y1 = y − yd, yd = d sinψd.

Following the same ideas, one can define the switch σ2(c2)
and viable control laws for the case that the constraint c2(η)
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Fig. 5. The path x(t), y(t) under the proposed control scheme.
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Fig. 6. The virtual control inputs u, r.

becomes active, and synthesize the switching between the

convergent and the viable control laws as

u = σ∗uconv + (1− σ∗)uviab, (22a)

r = σ∗rconv + (1− σ∗)rviab, (22b)

where the switching signal σ∗(·, ·) can be defined as σ∗ =
min(σ1, σ2), or σ∗ = σ1σ2, i.e. as function that varies in

[0, 1] such that its value is zero when at least one of the

constraints is active.

Finally, note that the control gains k1, k2, ku, kr can

be properly tuned so that the “virtual” control inputs u,

r correspond to thrust forces Fp, Fst that belong into the

compact set U = [−fp, fp]× [−fst, fst].
To evaluate the efficacy of the methodology, let us consider

the scenario shown in Fig. 5, where the switching signal is

chosen as σ∗ = min(σ1, σ2). The vehicle initiates from a

configuration η0 where the target lies near the left boundary

of the f.o.v.; thus, the vehicle is controlled on its way to

the goal set G including the “nominal” desired configuration

ηd =
[
−0.3 0 0

]
T under the control laws u, r for σ1(·).

During the vehicle’s motion, c2(·) gets greater than c1(·),
which corresponds to the target being closer to the right

boundary of the f.o.v., and thus σ2(·) is activated. The vehicle

converges to a desired configuration in the goal set G. The

evolution of the control inputs u, r is shown in Fig. 6.

VI. CONCLUSIONS

This paper presented a method for the control design of

nonholonomic systems subject to state constraints defining

a viability set K . Using concepts and tools from viability

theory, the necessary conditions for selecting viable control

laws were given. Furthermore, a class of nonholonomic

control solutions were redesigned in a switching control

scheme, so that system trajectories starting in K converge

to a goal set G in K , without ever leaving K . As a case

study, the control design for an underactuated marine vehicle

subject to configuration constraints due to limited visibility

was treated. Viable control laws in the constrained set K

which establish convergence to a goal set G ⊂ K were

constructed. Our ideas and plans for future extensions include

the consideration of perturbations, which typically arise in

this class of problems, towards the solution of the overall

control problem in a viability framework.
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