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Abstract— In this paper we analyze the mapping accuracy of
a sensor network using a quantitative measure of the mapping
error as performance metric. We use optimal interpolation to
calculate the estimation error of a map of a spatiotemporal
field produced by assimilating observations collected by a
group of vehicles. The vehicles travel in a closed trajectory
in a steady, uniform flowfield. The mapping error is analyzed
for statistically homogeneous fields and for inhomogeneous
fields in which the correlation coefficient depends on position.
For the homogeneous field, we design a closed-loop speed
controller to minimize the average mapping error and, for
the inhomogeneous field, we introduce an artificial flowfield
to minimize a convex combination of the average error and
maximum error.

I. INTRODUCTION

In the fields of oceanography and meteorology it is critical
to have accurate maps of a variety of quantities such as
salinity, temperature, and wind speed. However, the available
sensing resources might not be adequate to accurately map
the quantity using a static sensor distribution. For example,
consider the task of measuring wind speed in an impending
severe-weather front. Weather systems can change signifi-
cantly in a short period of time, so the deployment window
and the available time to collect measurements may be short
[1]. In addition, certain areas of the windfield may vary
significantly and require more attention. For this type of
system, we require a mobile sensor network with the ability
to map critical areas accurately.

We study the use of a multi-vehicle network to optimally
map a scalar spatiotemporal field with respect to a quanti-
tative error metric. The scalar field is treated as a random
field with known statistics. In related work [2], the authors
consider a persistent monitoring task in which a changing en-
vironment is modeled using a general accumulation function.
In [3], the error metric is related to the mapping performance
and vehicles are routed to maximize the mapping skill. This
metric applies a framework known as objective analysis.
Another approach is to assume that the field follows a known
process model, such as diffusion, and to estimate the model
parameters. [4], [5], and [6] provide algorithms to perform
distributed parameter estimation. Optimal placement of a
static sensor network to cover a time-invariant field has been
studied in [7].
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Schemes to compute the mapping error of a scalar field
typically rely on a priori information. In [3], the first-order
and second-order statistics of the field are needed and, in [4,
6, 5], parameter estimation requires a process model for the
spatiotemporal field. Determining the statistics of the field
may conflict with minimizing the mapping error. There is
also the need to analyze the mapping error if the statistics
of the field can vary in time and space, i.e., the field is
inhomogeneous.

In this paper we use optimal interpolation to perform
mapping-error analysis on spatiotemporal fields with known
first-order and second-order statistics. The sensor platforms
travel on a periodic trajectory using a steering control law [8]
to remain evenly spaced in time (a time-splay formation) in
a steady, uniform flowfield. We use metrics corresponding
to the maximum and average error to determine the map-
ping performance of a sensor network in a homogeneous
field. A closed-loop vehicle speed controller is derived to
minimize the average mapping error in a uniform flow. We
then optimize the performance of the sensor network in an
inhomogeneous field for which the correlation coefficient
depends on position. An artificial flowfield is introduced to
minimize a convex combination of the maximum and average
error.

The contributions of this paper are 1) a framework based
on optimal interpolation theory to evaluate sampling perfor-
mance in homogeneous and inhomogeneous spatiotemporal
fields; 2) a closed-loop speed controller that minimizes
the average mapping error in a homogeneous field in the
presence of a uniform flowfield; and 3) an open-loop speed
controller based on an artificial flowfield that minimizes the
maximum and/or average mapping error in an inhomoge-
neous field.

Section II summarizes relevant background information,
including an overview of mapping-error analysis and sensor
dynamics and control. Section III provides mapping-error
analysis for closed trajectories in a spatiotemporal field.
Section IV provides speed control laws that optimize the
sampling performance by minimizing the mapping error.
Section V summarizes the paper and ongoing work.

II. BACKGROUND

A. Quantification of Mapping Error

We use mapping error to quantify the performance of a
sensor network. To analyze the mapping error, we use an
optimal interpolation (OI) framework, formerly known as
objective analysis, developed in [9] and popularized in [10].
OI treats the value of a scalar field at a point, A(x) , Ax ∈
R, where x ∈ Rn (n ∈ N), as a random variable. We would
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like to estimate the value of the field at a point x using
noisy observations of A(x). The components of x are space-
time coordinates. For example, in a one-dimensional space,
x = [x t]T , where x is position and t is time.

In order to produce the optimal estimate, Âx, we require
the mean of the field, E[Ax] , Āx, and the covariance
around the mean E[(Ax − Āx)(Ax′ − Āx′)] , C(x,x′),
where E[·] is the expected-value operator.

The field is estimated from N noisy measurements, zm,
of the form

zm = Ax + εm, m = 1, ..., N,

where εm is the measurement error. We assume E[εmzl] = 0
for all pairs m and l and E[εmεl] = σ̃0δml. σ̃0 is the standard
deviation of the corrupting noise and δml is the Kronecker
delta eaual to 1 if m = l and 0 otherwise.

From the Gauss-Markov theorem [11], the optimal esti-
mate of the field is

Âx = Āx +

N∑
m=1

C(x,xm)

(
N∑
l=1

M−1ml zm

)
. (1)

M−1ml is the (m, l) entry of the inverse of the measurement
covariance,

Mml = E[zmzl] = C(xm,xl) + σ̃0δml.

C(xm,xl) is a covariance function that describes the statis-
tics of the field, discussed further in Section III. The variance
of the error, called the mapping error [12], is

Ce(x,x) = C(x,x)−
N∑
m=1

N∑
l=1

C(x,xm)M−1ml C(x,xl). (2)

(Derivations for equations (1) and (2) can be found in [10]
and [13].)

Using the mapping error, we adopt the following metric
to quantify the measurement performance [12] :

Eav =

∫
D
Ce(x,x)dx∫
D
dx

, (3)

which is a measure of the average error in the domain D.
Similarly, we can define a metric for the maximum error

Emax = max
x∈D

[Ce(x,x)]. (4)

B. Sensor Platform Dynamics and Control

When analyzing the mapping error in a uniform flowfield,
we assume that the vehicles are modeled as Newtonian
particles (see [14], [8]). The equations of motion are [8]

ṙk = v0e
iθk + β

θ̇k = uk, k = 1, ..., N,

where rk is the position of the kth particle represented in
complex coordinates, β is the velocity of a uniform flowfield
(aligned with the real axis without loss of generality), θk is
the orientation of the kth vehicle’s velocity relative to the
flow, v0 is the vehicle speed relative to the flow and uk is a
steering control input.

This system can also be represented in inertial coordinates
as

ṙk = ske
iγk

γ̇k = νk,

where sk = |eiθk + β| and γk = arg(eiθk + β). νk is the
steering control input relative to the inertial frame.

If we drive particle k in the absence of flow with a constant
input uk = ω0v0, the particle will travel in a circle of
radius |w0|−1. In the presence of a flowfield, circular motion
occurs when γ̇k = νk = ω0sk, which can be integrated by
separation of variables to obtain

t =
1

ω0

∫ γk

0

dγ

s(γ)
.

A time-phase variable ψk denotes the progress of the kth

vehicle around a circular trajectory [8]:

ψk =
2π

ω0T

∫ γk

0

dγ

s(γ)
,

where T is the period of a single revolution. Decentralized
steering-only control laws exist to stabilize time-splay circu-
lar formations in which the vehicles are uniformly spaced in
time [8].

Using speed control allows vehicles to control their spatial
separation in a flowfield. In the following particle model each
vehicle has the ability to control its speed as well as its
turning rate. Taking the inertial derivative of ṙk = ske

iγk

yields
r̈k = ṡke

iγk + skie
iγk γ̇k. (5)

The force on the kth particle can be represented as

Fk = ξke
iγk + νkskie

γk , (6)

where ξk and νk are control inputs corresponding to the iner-
tial speed and steering controls respectively. Using Newton’s
second law (and assuming unit mass), (5) and (6) can be
combined to give

ṡke
iγk + skie

iγk γ̇k = ξke
iγk + νkskie

γk .

Equating the real and imaginary parts yields the equations
of motion

ṙk = ske
iγk

ṡk = ξk (7)
γ̇k = νk.

Steering and speed control laws are derived for (7). How-
ever, in order to implement the control onboard a vehicle,
the control laws must be transformed for use in the following
dynamics:

ṙk = vke
iθk + β

v̇k = Tk (8)

θ̇k =
Rk
vk

= uk,
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Fig. 1: Particle model in a uniform flowfield.

where Tk is the speed control and Rk is the steering control
relative to the flow.

Using the geometry of the system shown in Figure 1 and
the particle models given by (7) and (8), the transformation
to express Tk = T (ξk, νk) and Rk = R(ξk, νk) is

Rk =

νksk −
skξk sin(θk − γk)

vk + β cos θk

cos(θk − γk) +
β sin θk sin(θk − γk)

vk + β cos θk

(9)

Tk =
skξk + β sin θkRk
vk + β cos θk

. (10)

With (9) and (10) any control derived in inertial coordinates
can be transformed for implementation onboard a vehicle.

III. ANALYSIS OF MAPPING ERROR

A. Homogeneous Field

In this section, we analyze the mapping performance of
vehicles traveling in a circular time-splay formation using
the metrics defined in Section II-A. The performance is
evaluated in a statistically homogeneous field characterized
by the spatial and temporal decorrelation scales. We are
interested in determining the mapping error along the path
of vehicles. Vehicle trajectories are generated by (8) and
finely discretized to be used in the generation of error maps
using (2). The discretization spacing is chosen such that the
mapping error calculation approaches the continuous path
limit.

As discussed in Section II-A, a covariance function is
needed a priori. We assume an exponential covariance func-
tion of the form [15]

C(x,x′) = σ0e
|x−x′|
σ −

|t−t′|
τ , (11)

where σ and τ are the (constant) spatial and temporal decor-
relation scales of the field. Note, to compute the mapping
error, we need only the measurement times and locations,
and not the measurements themselves.

We define two dimensionless parameters for use in the
mapping error analysis:

Sβ =
β

v0
and Sp = v0

τ

σ
,

where Sβ is the non-dimensional flow speed and Sp is the
nondimensional nominal speed of a vehicle. The vehicle is
spatially constrained if Sp < 1 and temporally constrained
if Sp > 1 [12]. The length of the sensor swath of a spatially
constrained vehicle depends on the spatial decorrelation scale
σ, whereas the swath length for a temporally constrained
vehicle depends on the temporal decorrelation scale τ . In
this context, a swath denotes the area along the track of the
vehicle that exhibits a significant reduction in mapping error
due to the vehicle trajectory.
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Fig. 2: Comparison of error maps generated for Sp < 1 (left) and Sp > 1
(right). The vehicles travel counter-clockwise from the green dot.

Figure 2 compares the error map of a temporally con-
strained vehicle with that of a spatially constrained one.
Each vehicle travels at the same nominal speed in a circular
arc, but the spatial and temporal decorrelation scales are
varied such that Sp = .67 < 1 on the left and Sp =
10 > 1 on the right. The vehicle initial position is a green
dot, and the trajectories are white lines. The error map of
a spatially constrained vehicle appears as an exponential
distribution centered at the current location. The error map
of a temporally constrained vehicle is characterized by an
elongated swath behind the vehicle.

Fig. 3: Three vehicles traveling in circular trajectories shown in the space-
time volume. The error map is represented on the cylinder that encompasses
the vehicle trajectories. The black arrows show the flow direction.

Of interest is the error along the track of a periodic trajec-
tory. In the space-time volume shown in Figure 3, a circular
trajectory creates a helical pattern. The along-track mapping
error is represented as a colormap on the cylindrical surface
that encompasses the vehicle trajectories. The colormap can
be mapped from the cylinder to a two dimensional space-time
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domain with periodic boundary conditions on the left and
right, as shown in Figures 4 and 5. In the 2D representation,
the vehicle exits on the right and reappears on the left as it
counterclockwise travels around the circle.
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Fig. 4: Error maps for three values of flowspeed Sβ for vehicles that are
nominally spatially constrained with Sp = .7 < 1. The timel axis is
normalized by the temporal decorrelation scale.
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Fig. 5: Error maps for three values of flowspeed Sβ for vehicles that are
nominally temporally constrained with Sp = 1.3 > 1.

Error maps were created for spatially and temporally
constrained vehicles at various flow speeds. Figures 4(a) and
5(a) show the along-track error for the zero-flow case; as
the vehicle speed is increased the average error, given by
(3) decreases from 0.36 to 0.28. However, as demonstrated
by Figures 4(b,c) and 5(b,c) it is not immediately clear
what happens to the average error as the non-dimensional
flowspeed is increased. We derive a speed controller that
minimizes the average error in Section IV-A.

B. Inhomogeneous Field
We investigate the case where there is a region of the flow

that has heightened spatial variability. This case is modeled
by the following covariance function [16]

C(x,x′) = σ1(x)σ1(x′)e
|x−x′|
σ −

|t−t′|
τ , (12)

where 0 ≤ σ1 < 1 is the position-dependent correlation
coefficient. The correlation coefficient modifies the ampli-
tude of the covariance function but not the decay rate, . The

maximum correlation of two locations is σ1(x)σ1(x′) ≤ 1.
The covariance function (12) reduces the length of the sensor
footprint for a spatially constrained vehicle on a circular
trajectory.

In this paper, we use a von Mises distribution for the cor-
relation coefficient σ1(x) around the perimeter of a circular
trajectory:

σ1(x) = 1− aec cos(x−µ)−c, (13)

where the shaping constants a and c determine the height
and width of the dip in the correlation coefficient and µ de-
termines its position. The inhomogeneity representd by (13)
can be used to represent a multitude of physical scenarios,
such as an area of a salinity field with large gradients [1].
Figure 6 compares the spatial dependence of the covariance
function of a homogeneous field and inhomogeneous field.
The peak covariance for the inhomogeneous field is less than
for the homogeneous field, and its footprint is narrower. The
sensor coverage is illustrated in Figure 6 by the width of the
of the covariance function at the decorrelation threshold 1/e
(shown as a green line).
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Fig. 6: Correlation coefficient and corresponding covariance function. The
blue (resp. red) line represents the spatial dependence of the covariance
function for a homogeneous (resp. inhomogeneous) field.

The effect of the spatially variable correlation coefficient
on the mapping error is shown in Figure 7(a). The location of
the dip is µ = π/2 and the shaping constants are c = 1 and
a = 0.3. Figure 7(a) shows how the swath length changes as
the vehicle traverses the circle, creating a coverage gap where
the dip is located and the error is higher. There are also areas
where the coverage overlaps; sampling at these locations is
redundant. We use this analysis to derive an open-loop speed
controller to minimize the average and/or maximum error in
an inhomogeneous field in Section IV-B.

IV. MINIMIZATION OF MAPPING ERROR

A. Homogeneous Field

In this section, we vary Sp, Sβ and N to determine the
combination of parameters that minimizes the average error
given by (3) in a time-splay circular formation. Figure 8
shows that the trend exhibited in the no-flow cases in Figures
4(a) and 5(a) continue when the flow is non-zero. For a given
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(a) Sβ = 0 (b) Sβ = 0.3

Fig. 7: Error map for three vehicles traveling at constant speed around
a circle with correlation coefficient given by (13). The dip is located at
µ = π/2 and the shaping constants are c = 1 and a = 0.3.

flow speed, if the vehicle speed is increased, then the average
error decreases. For a given vehicle speed, as the flow speed
increases, the average error increases. We also observe that
adding more vehicles decreases the average error.
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Fig. 8: Average error for up to five vehicles with varying Sp and Sβ .

From the above observations, we conclude that it is
beneficial to have as many vehicles as possible traveling as
fast as possible in the absence of flow. This results in the
vehicles traveling at constant speed with even spacing. In
the presence of a uniform flow β, this can be accomplished
by using the time-splay control law [8] along with a speed-
control law that drives the speed of each vehicle to a desired
value, s0. In this section we design the speed controller, ξk,
that achieves the desired speed.

Theorem 1: Choosing the controller

ξk = K(s0 − sk), K > 0, (14)

in the model (7) forces the solution to converge to sk =
s0 ∀ k.

Proof: Choosing

V =
1

2

N∑
j=1

(s0 − sj)2 ≥ 0,

yields V̇ ≤ 0, which implies the system will converge to
sj = s0 ∀ j.

Note that (14) forces convergence of sk to s0 indepen-
dently of uk, which implies that (14) can be used in con-
junction with a time-splay control [8] to stabilize a circular
formation with evenly spaced particles. For a nominal Sp =
s0τ/σ, the speed control will effectively cancel the along-
track flow component, which implies the mapping error
converges to the values shown for Sβ = 0 in Figure 8.

B. Inhomogeneous Field

In this section, we introduce an artificial flowfield to lower
the average and/or maximum error in an inhomogeneous
flowfield. This is accomplished by setting the vehicle speed
to sk = |vkeiθk + β|, with flow speed Sβ = β/v0. An
example of how a flowfield can lower the maximum error
is shown in Figure 7. In Figure 7(a) the no-flow average
error is 0.54 and the maximum error is 0.78. In Figure
7(b) a flowfield with strength Sβ = 0.3 increases the
average error to 0.56, but also lowers the maximum error to
0.75. In a homogeneous field, the direction of the flowfield,
arg(β) = 0, does not change the error metrics. However,
in an inhomogeneous field the relative angle, arg(β) = µ,
between the dip location and the flow can also be varied to
minimize the maximum and/or average error.

Figure 9 shows how the maximum and average errors
in (3) and (4), respectively, vary as the flow direction and
speed are changed for three vehicles with nominal Sp =
0.7. Observe that there are flow speeds and directions for
which the maximum and average errors are minimized. For
example, the maximum error is minimized with a flow
direction that is rotated −π/2 from the dip angle. Intuitively,
the vehicle speed decreases in the dip of the correlation
coefficient, which increases the number of measurements in
that area and lowers the maximum error. In contrast, the
average error decreases when the vehicle speed increases
in the dip. While this increases the maximum error, it also
increases the number of measurements away from the dip,
which lowers the average error.

Fig. 9: Maximum and average errors for varying flow speed and direction
for three vehicles with Sp = 0.7.
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We now describe the results of minimizing a convex
combination of the two error metrics. The combined metric is
a weighted sum of the two metrics, E = (1−k)Eav +kEmax,
where 0 ≤ k ≤ 1. The red line in Figure 9 shows the optimal
pair Sβ and µ as the relative weight k varies, i.e., the Pareto
front [17]. Figure 10 shows the trajectories that minimize the
average and maximum errors — the extreme points of the
Pareto front.
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Fig. 10: Optimal trajectories for minimization of average mapping error
(left) and maximum mapping error (right) in an inhomogeneous field with
µ = π/2 and N = 3

V. CONCLUSION

In this paper mapping accuracy is analyzed for vehicles
traveling in homogeneous and inhomogeneous spatiotempo-
ral fields. The mapping accuracy is quantified using average
and maximum error as performance metrics. The metrics
are evaluated for vehicles traveling in a uniform flowfield.
For a homogeneous field, a closed-loop speed controller
is provided to minimize the average error. Inhomogeneity
is introduced in the spatiotemporal field by varying the
correlation coefficient over the vehicle path. An artificial
flowfield is used as an open-loop controller to minimize
the average and/or maximum errors. In ongoing work we
are extending the results in this paper to higher spatial
dimensions, in which geometric control of sensor positions
may be applicable.
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