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Abstract— This paper addresses stability analysis of closed-
loop sampled-data piecewise affine (PWA) systems. In particu-
lar, we study the case in which a PWA plant is in feedback
with a sampled-data piecewise linear (PWL) controller. We
consider the sampled-data system as a continuous-time system
with a variable time delay. The contributions of this work are
threefold. First, we present a modified Lyapunov-Krasovskii
functional (LKF) for studying PWA systems with time delay.
Second, based on the new LKF, sufficient conditions are pro-
vided for asymptotic stability of PWA systems in feedback with
sampled-data PWL controllers. Finally, following the time-delay
approach, we formulate the problem of finding a lower bound
on the maximum delay that preserves asymptotic stability to
the origin as an optimization program in terms of LMIs. The
new results are successfully applied to a unicycle example.

I. INTRODUCTION

PWA systems are considered as a framework for modeling

and approximating nonlinearities that arise in physical sys-

tems [1]. Stability analysis of continuous-time PWA systems

is addressed in [2], [3], [4], [5] using Lyapunov-based meth-

ods. Designing continuous-time controllers for PWA systems

has received increasing interest since the late nineties [3], [4],

[6], [7]. However, the resulting continuous-time controllers

must be emulated as a discrete-time controller to be im-

plementable in microprocessors. We refer the reader to [8]

for more discussion on designing nonlinear controllers via

the emulation method. While sampled-data control of linear

systems is a well-studied subject [9], its extension to PWA

systems has not received many research contributions. The

term “sampled-data PWA system” was probably used for

the first time in [10], [11], although the system described

there does not possess the typical structure of a continuous-

time plant being controlled by a discrete-time controller.

In the problem addressed by [10], [11] the controller is

implemented in continuous-time and the switching events are

the ones controlled by the system logic inside a computer.

In other words, it is assumed that the designer has command

over the switching times of the system.

By contrast, [12] addresses the classical structure of a

sampled-data system in which a continuous-time system

is controlled in discrete-time inside a computer. Assuming

constant sampling rate, the author studies the stability of

sampled-data PWA systems using a quadratic Lyapunov

function. The paper provides a set of linear matrix in-

equalities (LMIs) as sufficient conditions for exponential

convergence of the sampled-data system to an invariant set

containing the origin.

In sampled-data systems, the discrete-time controller can

also be modeled as a continuous-time controller with time

varying delay. The time-delay representation has been imple-

mented in nonlinear and linear sampled-data systems using

Razumikhin-type theorems [13], and Lyapunov-Krasovskii

functionals (LKFs) [14]. Following the time-delay approach,

reference [15] studies the stability of sampled-data PWA

systems with variable sampling rate. The paper uses a LKF to

prove that if a set of LMIs are satisfied, the trajectories of the

sampled-data system converge to an invariant set containing

the origin.

In contrast to previous work, we address asymptotic sta-

bility to the origin rather than stability to an invariant set for

sampled-data PWA systems when the feedback controller is

PWL. To the best of our knowledge, asymptotic stability

of sampled-data PWA systems was not proved before. We

study a continuous-time PWA plant in feedback with a PWL

controller that appears between a sampler, with variable

sampling rate, and a zero-order-hold. The contributions of

this work are threefold. First, we present a modified LKF for

studying PWA systems with time delay. Second, based on the

new LKF, sufficient conditions are provided for asymptotic

stability of PWA systems in feedback with sampled-data

PWL controllers. Finally, following the time-delay approach,

we formulate the problem of finding a lower bound on the

maximum delay that preserves asymptotic stability to the

origin as an optimization program in terms of LMIs.

The paper is organized as follows. Section II presents

basic information about sampled-data PWA systems. In

Section III, first a modified LKF is introduced. Next, we

present a theorem that provides sufficient conditions for

asymptotic stability of PWA systems with sampled-data

PWL controllers. Furthermore, we formulate the problem of

finding a lower bound on the maximum delay that preserves

asymptotic stability to the origin as an optimization program

in terms of LMIs. Finally, the new results are applied to a

unicycle example in Section IV.

II. PRELIMINARIES

Consider the PWA system

ẋ(t) = Aix(t) + ai + Bu(t), for x(t) ∈ Ri and i ∈ I, (1)
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where x ∈ R
nx denotes the state vector, Ai ∈ R

nx×nx ,

ai ∈ R
nx , B ∈ R

nx×nu , u ∈ R
nu is the control input, and

I = {1, ..., M} is the set of indices of the regions Ri that

partition the state space. Each region Ri is defined as the

intersection of pi open half spaces in R
nx , i.e.

Ri = {x|Eix + ei ≻ 0}, (2)

with Ei ∈ R
pi×nx , ei ∈ R

pi , and ≻ represents an ele-

mentwise inequality. Each polytopic region R i can be outer

approximated by a (possibly degenerate) quadratic curve as

Ri ⊆ ǫi = {x|xT E
T

i ΛiEix > 0}, (3)

where Λi ∈ R
pi×pi is a matrix with non-negative entries and

x =

[

x
1

]

, Ei =
[

Ei ei

]

. (4)

Let a PWL controller for (1) be defined by

u(t) = Kix(t), for x(t) ∈ Ri,

where Ki ∈ R
nu×nx . Furthermore, let I∗ = {i|0 ∈ Ri},

where Ri denotes the closure of Ri.

Assumption 1: The vector field of the open-loop sys-

tem (1) for u(t) = 0 is continuous across the boundaries

of any neighboring regions.

Assumption 2: The open-loop system is linear in the re-

gions that contain the origin in their closure, i.e. a i = 0 for

i ∈ I∗.

Assumption 3: The measurements for computing the con-

trol input are taken in a sample-and-hold fashion. Therefore,

the control input can be rewritten as

u(t) = Kjxtn
, for t ∈ [tn, tn+1), xtn

∈ Rj , and j ∈ I,

where tn and tn+1, n ∈ N, are two consecutive sampling

times, and xtn
= x(tn).

We denote the time elapsed since the last sampling instant

by

ρ(t) = t − tn, for t ∈ [tn, tn+1), (5)

and the shortest and longest intervals between two consecu-

tive sampling times by ǫ > 0 and τ > 0, respectively, i.e,

ǫ = inf
n∈N

(tn+1 − tn), τ = sup
n∈N

(tn+1 − tn). (6)

Assuming x(t) ∈ Ri and xtn
∈ Rj , we can rewrite (1) as

ẋ(t) =Aix(t) + ai + BKjxtn
(7a)

=Aix(t) + ai + BKixtn
+ Bw(t), (7b)

where w ∈ R
nu is a piecewise constant vector defined by

w(t) = (Kj − Ki)xtn
, for x(t) ∈ Ri and xtn

∈ Rj . (8)

The vector w represents the input for the closed-loop system

due to the fact that x(t) and xtn
might be in different regions.

We denote the m×m identity matrix by Im and define a

non-negative scalar ∆K as

∆K = max
i,j∈I

||Kj − Ki||. (9)

III. MAIN RESULTS

Let V : R
nx ×C([t− τ, t], Rnx)× [0, τ ] → R

+ be an LKF

where C([t − τ, t], Rnx) is the Banach space of absolutely

continuous functions mapping the interval [t − τ, t] to R
nx

and let xt ∈ C([t − τ, t], Rnx) be defined as x(t + r) for

−τ ≤ r ≤ 0 (see [16], Section 2.1). We define

V (x, xt, ρ) = V1(x) + V2(xt) + V3(xt, ρ), (10)

with

V1(x) =xT (t)Px(t),

V2(xt) =

∫ 0

−τ

∫ t

t+r

(ẋ(s) − BKjxtn
)T

R(ẋ(s) − BKjxtn
) ds dr,

V3(xt, ρ) =(τ − ρ)(x(t) − xtn
)T X(x(t) − xtn

),

where P , R, and X are symmetric positive definite matrices

in R
nx×nx , tn ≤ t is the most recent sampling instant, and

xtn
∈ Rj .

Note that the second component of the LKF introduced

in (10) is different from its corresponding term in previously

studied LKFs such as [14], [15]. By subtracting BKjxtn

from ẋ in the definition of V2, we omit an unfavorable posi-

tive definite term involving wT w from V̇ . This modification

considerably improves the stability results as shown in Sec-

tion IV. The following theorem provides a set of sufficient

conditions for which the trajectories of a PWA system in

feedback with an emulated PWL controller asymptotically

converge to the origin.

Theorem 1: Consider the closed-loop sampled-data PWA

system defined in (7) and (8) with sampling intervals smaller

than τ . The system is asymptotically stable to the origin if

there exist symmetric positive definite matrices P , R, and X ,

symmetric matrices Λi, i /∈ I∗, with non-negative entries,

matrices Ni, i /∈ I∗, and N i, i ∈ I∗, with appropriate

dimensions, and positive scalars γ, 0 < θ < 1, and η,

satisfying

∆K2γ < θ (11)

• for all i /∈ I∗

Ωi + τ(M1i + M2i) + Si < 0 (12)
[

Ωi + τ(M2i + M3i) + Si τNi

τNT
i − τR

]

< 0 (13)

• for all i ∈ I∗

Ωi + τ(M1i + M2i) < 0 (14)
[

Ωi + τ(M2i + M3i) τN i

τN
T

i − τR

]

< 0 (15)

where

Ωi =









Ψi

[

P
0

]

[

B ai

]

[

BT

aT
i

]

[

P 0
]

[

−γInu
0

0 η

]








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−









Inx

−Inx

0
0









NT
i − Ni

[

Inx
− Inx

0 0
]

,

Ψi =

[

AT
i

KT
i BT

]

[

P 0
]

+

[

P
0

]

[

Ai BKi

]

−

[

Inx

−Inx

]

X
[

Inx
− Inx

]

+

[

ηInx
0

0 Inx

]

,

M1i =









AT
i

KT
i BT

BT

aT
i









X
[

Inx
− Inx

0 0
]

+









Inx

−Inx

0
0









X
[

Ai BKi B ai

]

,

M2i =









AT
i

0
0

aT
i









R
[

Ai 0 0 ai

]

,

M3i =









0
KT

i BT

BT

0









NT
i + Ni

[

0 BKi B 0
]

,

Si =









ET
i

0
0
eT

i









Λi

[

Ei 0 0 ei

]

,

Ωi =





Ψi

[

P
0

]

B

BT
[

P 0
]

− γInu



 −





Inx

−Inx

0



 N
T

i

− N i

[

Inx
− Inx

0
]

,

M1i =





AT
i

KT
i BT

BT



X
[

Inx
− Inx

0
]

+





Inx

−Inx

0



X
[

Ai BKi B
]

,

M2i =





AT
i

0
0



R
[

Ai 0 0
]

,

M3i =





0
KT

i BT

BT



N
T

i + N i

[

0 BKi B
]

.

Proof: Similar to the approach in [15], it can be shown

that the LKF (10) is positive definite and decrescent. The

first two components, V1 and V2, are continuous functions.

The last component, V3, is equal to zero at the sampling

instants (x(t)|t=tn
= xtn

) and greater than zero at other

times. Therefore, the LKF is non-increasing at the sampling

times. To prove asymptotic stability of the trajectories to

the origin, it suffices to show that inequalities (11)-(15) are

sufficient conditions for V to be strictly decreasing between

any two consecutive sampling times.

The time derivative of V for t ∈ [tn, tn+1) is composed

of three terms computed as follows. First, the time derivative

of V1 is

V̇1 = ẋT Px + xT P ẋ (16)

Second, applying the Leibniz integral rule to V2 yields

V̇2 =

∫ 0

−τ

(ẋ − BKjxtn
)T R (ẋ − BKjxtn

) dr

−

∫ 0

−τ

(ẋ(t + r) − BKjxtn
)
T

R (ẋ(t + r) − BKjxtn
) dr

=τ (ẋ − BKjxtn
)
T

R (ẋ − BKjxtn
)

−

∫ 0

−τ

(ẋ(t + r) − BKjxtn
)
T

R (ẋ(t + r) − BKjxtn
) dr.

According to (5) and (6), we have ρ < τ . Therefore,

V̇2 ≤τ (ẋ − BKjxtn
)
T

R (ẋ − BKjxtn
)

−

∫ 0

−ρ

(ẋ(t + r) − BKjxtn
)
T

R (ẋ(t + r) − BKjxtn
) dr

=τ (ẋ − BKjxtn
)T R (ẋ − BKjxtn

)

−

∫ t

t−ρ

(ẋ(v) − BKjxtn
)T R (ẋ(v) − BKjxtn

) dv.

(17)

Since R is positive definite, for any arbitrary time varying

vector hi(t) ∈ R
nx we can write

[

(ẋ(v) − BKjxtn
)T hT

i

]

[

R − Inx

−Inx
R−1

] [

ẋ(v) − BKjxtn

hi

]

≥ 0.

Therefore,

− (ẋ(v) − BKjxtn
)T R (ẋ(v) − BKjxtn

)

≤ hT
i R−1hi − (ẋ(v) − BKjxtn

)
T

hi

− hT
i (ẋ(v) − BKjxtn

) .

Integrating both sides from t − ρ to t, we have

−

∫ t

t−ρ

(ẋ(v) − BKjxtn
)
T

R (ẋ(v) − BKjxtn
) dv

≤ ρhT
i R−1hi − (x − xtn

− ρBKjxtn
)T hi

− hT
i (x − xtn

− ρBKjxtn
) . (18)

Here, we used the facts that for v ∈ [t− ρ, t], Kjxtn
is con-

stant and ẋ(v) is continuous, and t−ρ = tn. Replacing (18)

in (17), we have

V̇2 ≤τ (ẋ − BKjxtn
)
T

R (ẋ − BKjxtn
)

+ ρhT
i R−1hi − (x − xtn

− ρBKjxtn
)
T

hi

− hT
i (x − xtn

− ρBKjxtn
) . (19)
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Now, we use (8) to replace Kjxtn
by Kixtn

+ w in the

last two components of (19) and reach

V̇2 ≤τ (ẋ − BKjxtn
)T R (ẋ − BKjxtn

) + ρhT
i R−1hi

− (x − xtn
− ρB(Kixtn

+ w))
T

hi

− hT
i (x − xtn

− ρB(Kixtn
+ w)) . (20)

From (5) we have ρ̇ = 1. Hence, the time derivative of V3

is computed as

V̇3 = − (x − xtn
)T X(x − xtn

) + (τ − ρ)
(

ẋT X(x − xtn
)
)

+ (τ − ρ)
(

(x − xtn
)T Xẋ

)

.
(21)

Since V̇ = V̇1+ V̇2+ V̇3, adding (16), (20), and (21) yields

V̇ ≤ẋT Px + xT P ẋ + τ (ẋ − BKjxtn
)
T

R (ẋ − BKjxtn
)

+ ρhT
i R−1hi − (x − xtn

− ρB(Kixtn
+ w))

T
hi

− hT
i (x − xtn

− ρB(Kixtn
+ w))

− (x − xtn
)T X(x − xtn

) + (τ − ρ)
(

ẋT X(x − xtn
)
)

+ (τ − ρ)
(

(x − xtn
)T Xẋ

)

. (22)

We divide the state space into two parts:

1) x(t) ∈ Ri and i /∈ I∗,

2) x(t) ∈ Ri and i ∈ I∗.

In the rest of the proof, we study V̇ for t ∈ [tn, tn+1) in

each part of the state space.

• Part 1: For x(t) ∈ Ri and i /∈ I∗, based on (7), we have

ẋ(t) =
[

Ai BKi B ai

]

ζ(t), (23)

and

ẋ(t) − BKjxtn
=

[

Ai 0 0 ai

]

ζ(t), (24)

with ζ(t) =
[

xT (t) xT
tn

wT (t) 1
]T

∈ R
2nx+nu+1.

Replacing (23) and (24) in (22) and setting h i(t) =
NT

i ζ(t) with Ni ∈ R
(2nx+nu+1)×nx , we can write

V̇ ≤ζT

















AT
i

KT
i BT

BT

aT
i









P
[

Inx
0 0 0

]

+









Inx

0
0
0









P
[

Ai BKi B ai

]

+τ









AT
i

0
0
aT

i









R
[

Ai 0 0 ai

]

+ ρNiR
−1NT

i

−









Inx

−Inx
− ρKT

i BT

−ρBT

0









NT
i

−Ni

[

Inx
− Inx

− ρBKi − ρB 0
]

−









Inx

−Inx

0
0









X
[

Inx
− Inx

0 0
]

+ (τ − ρ)









AT
i

KT
i BT

BT

aT
i









X
[

Inx
− Inx

0 0
]

+(τ − ρ)









Inx

−Inx

0
0









X
[

Ai BKi B ai

]









ζ.

(25)

Hence, for ρ = 0, LMI (12) implies

V̇ < −ηxT x − xT
tn

xtn
+ γwT w − η − ζT Siζ. (26)

Using Schur complement, LMI (13) implies that (26) holds

for ρ = τ . Since (25) is affine in ρ, LMIs (12) and (13) are

sufficient conditions for (26) to hold for any ρ ∈ [0, τ).
Recalling (8) and (9), we can write

||w|| ≤ ∆K||xtn
||. (27)

Considering (11), we have

||w|| <
√

θ/γ||xtn
||. (28)

Adding and subtracting θxT
tn

xtn
, 0 < θ < 1 to inequal-

ity (26) and using (28), we get

V̇ < −ηxT x − (1 − θ)xT
tn

xtn
− η − ζT Siζ. (29)

It follows from (3) that ζT Siζ > 0 if x(t) ∈ Ri. Hence,

LMIs (11)-(13) are sufficient conditions for V to be strictly

decreasing for any t ∈ [tn, tn+1), x(t) ∈ Ri, and i /∈ I∗.

• Part 2: For x(t) ∈ Ri and i ∈ I∗, based on Assump-

tion 2, we have ai = 0. Replacing Ni by
[

N
T

i 0nx×1

]T

,

N i ∈ R
(2nx+nu)×nx , and setting ai = 0 in (25), LMI (14)

implies

V̇ < −ηxT x − xT
tn

xtn
+ γwT w (30)

for ρ = 0. Using Schur complement, LMI (15) implies

that (30) holds for ρ = τ . Since (25) is affine in ρ, LMIs (14)

and (15) are sufficient conditions for (30) to hold for any

ρ ∈ [0, τ). Adding and subtracting θxT
tn

xtn
, 0 < θ < 1 to

inequality (30) and using (28), we get

V̇ < −ηxT x − (1 − θ)xT
tn

xtn
. (31)

Hence, LMIs (11), (14), and (15) are sufficient conditions

for V to be strictly decreasing for any t ∈ [tn, tn+1), x(t) ∈
Ri, and i ∈ I∗.

Note that Zeno phenomenon does not occur since there

exists ǫ > 0 such that tn+1 − tn > ǫ (see (6)). Therefore,

inequalities (11)-(15) are sufficient conditions for the LKF to

be strictly decreasing between any two consecutive sampling
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times in the whole state space. Since the LKF is non-

increasing at sampling times, the closed-loop sampled data

PWA system is asymptotically stable to the origin.

Based on Theorem 1, the problem of finding a lower bound

on the longest interval between two consecutive sampling

times that preserves asymptotic stability is formulated as

Problem 1:

maximize τ

subject to P > 0, R > 0, X > 0, Λi � 0, for i /∈ I∗,

γ > 0, 0 < θ < 1, η > 0,

(11) − (15).
We denote the solution of Problem 1 by τmax.

IV. NUMERICAL EXAMPLE

Consider the path following example of [6], whose objec-

tive is to control a unicycle to follow the line y = 0 in the

x − y plane (see Fig. 1). The dynamics of the system are

represented by




ψ̇
ṙ
ẏ



 =





0 1 0
0 − k/I 0
0 0 0









ψ
r
y



+





0
0

v sin(ψ)



+





0
1/I
0



u,

(32)

where ψ and r are the heading angle and its time derivative,

respectively, y is the distance from the line y = 0, v
represents the unicycle’s velocity, u is the torque input about

the z axis, I = 1 (kgm2) is the unicycle’s moment of inertia

with respect to its center of mass, and k =0.01 (Nms) is

the damping coefficient. The state vector of the system is

represented by z =
[

ψ r y
]T

. We assume that the

unicycle has a constant velocity v =1 (m/s) and the heading

angle ψ is restricted to the interval [−3π/5, 3π/5].
The system’s nonlinearity, sin(ψ), is approximated by a

PWA function. The PWA approximation is defined over the

following five regions:

R1 =
{

z ∈ R
3|ψ ∈ (−3π/5,−π/5)

}

,

R2 =
{

z ∈ R
3|ψ ∈ (−π/5,−π/15)

}

,

R3 =
{

z ∈ R
3|ψ ∈ (−π/15, π/15)

}

,

R4 =
{

z ∈ R
3|ψ ∈ (π/15, π/5)

}

,

R5 =
{

z ∈ R
3|ψ ∈ (π/5, 3π/5)

}

.

It is shown in [6] that the continuous-time PWL controller

u = Kiz, for z ∈ Ri, (33)

with
K1 = [−49.907 − 9.468 − 13.925],
K2 = [−48.315 − 9.330 − 13.812],
K3 = [−50.147 − 9.468 − 13.742],
K4 = [−48.316 − 9.330 − 13.812],
K5 = [−49.907 − 9.468 − 13.925],

stabilizes the system to the origin. Assuming that the con-

troller is implemented via sample-and-hold in a micropro-

cessor, our goal is to find a lower bound on the longest

y

x
ψ

Fig. 1. Unicycle path following example

interval between two consecutive sampling times such that

asymptotic stability is preserved.

Solving Problem 1, we get

τmax = 0.126 (sec)

and

P =





28.598 1.233 8.247
1.233 0.289 0.353
8.247 0.353 13.538



 ,

R =





10.491 4.987 1.689
4.987 163.543 − 18.386
1.689 − 18.386 32.819



 ,

X =





226.028 18.681 79.734
18.681 2.047 7.003
79.734 7.003 57.143



 .

Theorem 1 guarantees that if controller (33) is imple-

mented in the unicycle via sample-and-hold, with variable

sampling rates greater than 1/τmax = 7.9 (Hz), the system

asymptotically converges to the origin.

Figures 2- 4, illustrate the simulation results for the uni-

cycle system (32) with PWL feedback (33). The initial con-

dition is z(0) = [π/2, 0, 0.5]T . Simulations are performed

for sampling times of Ts = τmax = 0.126 (sec) and Ts = 0.

Fig. 2 and Fig. 3 show that the state vector asymptotically

converges to the origin. As expected, based on Fig. 4, more

control energy is required for stabilizing the system with the

sample-and-hold controller.

Simulating the system with the same initial condition

z(0) for Ts = 0.213 (sec), we can see that the closed-

loop sampled-data trajectories do not converge to the ori-

gin. Therefore, in this example, the error in the computed

lower bound on the longest sampling interval that preserves

asymptotic stability is at most 41%.

Table I compares the result of Theorem 1 with the result

of [15]. Our proposed theorem provides a stronger stability

result (asymptotic stability) and increases τmax with respect

to the one obtained from Theorem 1 in [15].

V. CONCLUSION

In this paper we presented a theorem that provides suf-

ficient conditions for asymptotic stability of a closed-loop
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TABLE I

COMPARISON OF TWO STABILITY THEOREMS APPLIED TO THE UNICYCLE PROBLEM

Method Stability Result τmax (sec)

Theorem 1 in [15] Convergence to the invariant set {z|V (z, zt, ρ) ≤ 0.0645} 0.098

Theorem 1 in this paper Asymptotic stability to the origin 0.126

Time (sec)

ψ
(r

ad
)

Ts = τmax

Ts = 0

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 2. Unicycle’s heading angle for Ts = τmax and Ts = 0.

y (m)

x
(m

)

Ts = τmax

Ts = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
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6

8

10

12

14

16

18

20

Fig. 3. Trajectory of the unicycle for Ts = τmax and Ts = 0.

sampled-data PWA system to the origin. The problem of

finding a lower bound on the longest sampling interval

that preserves asymptotic stability was formulated as an

optimization problem subject to linear matrix inequalities. It

was shown that our results compare favorably with previous

research.
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