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Abstract—In this paper we present a new method
for approximating the matrix exponential of a Metzler
matrix. This method is useful in discretising switched
positive systems. In particular, the method preserves
both linear and quadratic stability of the original
continuous time system, as well as positivity of states
starting for initial conditions in the positive orthant.
The usefulness of the method is highlighted by illus-
trating some of the drawbacks of Padé approximations
when applied to positive linear systems.

I. Introduction

Switched and non-switched linear positive systems
have been the subject of much recent attention in the
control engineering and mathematics literature [1], [2],
[3], [4], [5], [6], [7], [8]. An important problem in the study
of such systems concerns how to obtain discrete time
approximations to a given continuous time system. While
a complete understanding of this problem exists for LTI
systems [9], and while some results exist for switched
linear systems [10], [11], the analogous problems for
positive systems are more challenging since discretisation
methods must preserve not only the stability properties
of the original continuous time system, but also physical
properties, such as state positivity. To the best of our
knowledge, this is a relatively new problem in the litera-
ture, with only a few recent works on this topic [12].
Our objective in this paper is to summarise and the
results of [13], and to present to the control community a
new method of approximation to the matrix exponential.
We show that this method is particularly suited to the
discretisation of switched positive systems. In particular,
both stability and positivity are preserved when using
this method. The utility of the method is highlighted by
outlining the unsuitability of Padé methods when dealing
with positive systems.
The paper is organised as follows: In Section II the
notation and preliminary definitions are introduced. In
Section III we propose the squaring and scaling approx-
imation, that proves efficient in terms of positivity and
co-positive Lyapunov functions preservation. In Section
IV we discuss some of the problems related to the use of
diagonal Padé approximations.
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II. Mathematical preliminaries

A. Notation

Capital letters denote matrices, small letters denote
vectors. For matrices or vectors, (′) indicates transpose
and (∗) the complex conjugate transpose. For matrices
X or vectors x, the notation X or x > 0 (≥ 0) indicates
that X, or x, has all positive (nonnegative) entries and it
will be called a positive (non-negative) matrix or vector.
The notation X � 0 (X ≺ 0) or X � 0 (X � 0)
indicates that the matrix X is positive (negative) definite
or positive (negative) semi-definite. The sets of real and
natural numbers are denoted by R and N, respectively,
while R+ denotes the set of nonnegative real numbers.
A square matrix Ac is said to be Hurwitz stable if all its
eigenvalues lie in the open left-half of the complex plane.
A square matrix Ad is said to be Schur stable if all its
eigenvalues lie inside the unit disc. A matrix A is said
to be Metzler (or essentially nonnegative) if all its off-
diagonal elements are nonnegative; moreover we ask that
the diagonal entries are non-positive, with at least one
negative diagonal entry. A matrix B is an M-Matrix if
B = −A, where A is both Metzler and Hurwitz; if an M-
matrix is invertible, then its inverse is nonnegative [14].
I denotes the identity matrix of appropriate dimensions.

B. Definitions

Generally speaking, we are interested in the evolution
of the system

ẋc(t) = Ac(t)xc(t), xc(0) = x0; (1)

where Ac(t) ∈ {Ac,1, ..., Ac,m}, xc(t) ∈ Rn×1, m ≥ 1, and
where the Ac,i are Hurwitz stable Metzler matrices. Such
a system is said to be a continuous-time positive system.
Positive systems [1], [15] have the special property that
any nonnegative input and nonnegative initial state gen-
erate a nonnegative state trajectory and output for all
times. We are interested in obtaining from this system,
a discrete-time representation of the dynamics:

x(k+1) = A(k)x(k), A(k) ∈ {Ad,1, ..., Ad,m}, x(0) = x0.
(2)

Positivity in discrete time is ensured if each Ad,i is a
nonnegative matrix. One standard method to obtain
Ad,i from Ac,i is via the Padé approximation to the
exponential function eAc,ih, where h is the sampling time.
Notice that, since (1) is a system switching according
to an arbitrarily switching signal σ(t) ∈ {1, 2, . . . ,m},
it is not true, even in the ideal case Ad,i = eAc,ih, that
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xc(kh) = x(k). This property is of course recovered when
tk = kh, where tk is the generic switching instant of σ(t).

A method of choice in control engineering for system
discretisation is to use so-called Padé approximations.
Such approximations are used in calculating the
matrix exponential in Matlab, and when designing and
simulating dynamic systems.

Definition 1: [16] The [L/M ] order Padé approxima-
tion to the exponential function esis the rational function
CLM defined by

CLM (s) = QL(s)Q
−1
M (−s)

where

QL(s) =
∑L

k=0 lks
k, QM (s) =

∑M
k=0 mks

k, (3)

lk = L!(L+M−k)!
(L+M)!k!(L−k)! and mk = M !(L+M−k)!

(L+M)!k!(M−k)! . (4)

Thus, the p-th order diagonal Padé approximation to
eAch (the matrix exponential with sampling time h) is
obtained by setting L = M = p

Cp(Ach) = Qp(Ach)Q
−1
p (−Ach), (5)

where Qp(Ach) =
∑p

k=0 ck(Ach)
k and ck = p!(2p−k)!

(2p)!k!(p−k)! .

Much is known in general about the Padé maps in
the context of LTI systems. In particular, it is known
that diagonal Padé approximations are A-stable [17];
namely, they map the open left-half of the complex plane
to the interior of the unit disc, preserving in this way
the stability from the continuous-time to the discrete-
time system. Notice that for p = 1 the diagonal Padé
approximation is

C1(Ach) =

(
I +

Ach

2

)(
I − Ach

2

)−1

. (6)

This is the celebrated bilinear transformation or Tustin
operator.

We shall see in the sequel that Padé are not very
useful for discretising positive systems [18]. Motivated by
this fact we now propose another approximation to the
matrix exponential. This method, which is a variation
on the squaring and scaling method for calculating the
matrix exponential [19], is of great use when dealing
with positive systems.

Definition 2: Given h ≥ 0, the SSP approximation to
the exponential matrix is the map SSp : Ach→ Ad given
by

SSp(Ach) =

[(
I +

Ach

2p

)(
I − Ach

2p

)−1
]p

, p ∈ N (7)

Writing Aad =
(
I + Ach

2p

)p (
I − Ach

2p

)−p

, and

applying the binomial expansion to each of the two

factors in that expression, we find readily that Aad

converges to eAch as p → ∞. The scaling and squaring
method (sse [19]) exploits the fact that for a square
matrix M and j ∈ N, eM = (eM/2j )2

j

. Accordingly,
the scaling and squaring method proceeds by scaling
the original matrix by a power of two, computing a
Padé approximant of the resulting matrix, and then
successively squaring that approximant to produce an
approximation to the exponential of the original matrix.

Comment : Observe that for p = 1 the SS1 trans-
formation (7) is the bilinear transformation (6). Even
though the bilinear transformation is the lowest order
Padé approximant, it has very special properties. These
properties make it very useful in the context of positive
systems.

III. Lyapunov stability and positivity
preservation of the SSp approximation

Recently, it was shown in [11] that quadratic Lyapunov
functions are preserved under discretization for sets of
matrices that arise in the study of systems of the form of
Equation (1). We now ask whether co-positive Lyapunov
functions are preserved when discretising an LTI positive
system using the SSp approximations. In particular, our
attention focuses on co-positive Lyapunov functions, lin-
ear and quadratic. Since trajectories of positive systems
are constrained to lie in the positive orthant, the stability
of such a system is completely captured by Lyapunov
functions whose derivative is decreasing for all such pos-
itive trajectories and one can always associate a linear,
or a quadratic co-positive Lyapunov function, with any
given stable linear time-invariant positive system [1].

A. Bilinear transformation for positive time-invariant
systems

Here we consider the bilinear transformation, or,
equivalently the SS1 transformation. The results will be
instrumental for the main result concerning the effect
of the SSp discretisation on switched positive linear
systems. We begin with the following elementary result
that establishes the preservation of linear co-positive and
linear quadratic Lyapunov functions under a bilinear
transformation.

Lemma 1: [13] Let Ac be a Metzler and Hurwitz stable
matrix and let α be a positive real number. Define
Ad(h) = (α(h)I +Ac) (α(h)I −Ac)

−1
, where α(h) = α

h
and h > 0, and assume that Ad(h) is a nonnegative
matrix. Then the following statements are true.

1) If v(x) = x′Px, with P = P ′ � 0, is a quadratic
Lyapunov function for Ac, that is

x′(A′cP + PAc)x < 0, ∀ x ≥ 0, x �= 0; (8)

then v(x) is a quadratic Lyapunov function for
Ad(h); that is

x′(A′dPAd − P )x < 0, ∀ x ≥ 0, x �= 0. (9)
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2) If v(x) = w′x, w > 0 is a linear co-positive
Lyapunov function for Ac; that is w′Ac < 0, then
v(x) is a linear co-positive Lyapunov function for
Ad(h); namely, w′Ad < w′.

We now turn our attention to providing sufficient
conditions under which, for a given Metzler and Hurwitz
matrix A, the bilinear transformation results in a
nonnegative matrix.

Lemma 2: [13] Let Ac = {aij} be the Metzler and
Hurwitz stable matrix. Suppose that α0 > 0, set α(h) =
α0

h , and define Ad by

Ad = (α(h)I +Ac) (α(h)I −Ac)
−1

. (10)

If

h ≤ min
i : aii �=0

α0

|aii| (11)

then Ad is nonnegative and Schur stable.

Corollary 1: Let Ac be a Metzler and Hurwitz matrix.
If h ≤ min

i : aii �=0

2
|aii| , then C1(hAc) is a nonnegative and

Schur stable matrix.

B. SSp approximation for positive switched systems

We now show that the SSp approximation that has
the following important properties: one can always find
a sampling time such that positivity is preserved, and in
addition, for any h, both linear and quadratic co-positive
Lyapunov functions are preserved. Here is a key result.

Theorem 1: Let {Ac,1, . . . , Ac,m} be a set of Metzler
and Hurwitz stable matrices. For each i = 1, . . . ,m,
let Aad,i(h) = SSp(Ac,ih) be the p − th order of the
approximation to exponential matrix eAc,ih defined in
Equation (7). Then the following properties hold:

1. Fix an i between 1 and m, and suppose that

0 < h ≤ hi =min
j

2p

|ajj,i| , (12)

where ajj,i are the elements on the main diagonal of the
matrix Ac,i. Then Aad,i is both nonnegative and stable.

2. Consider the following continuous-time switching
positive system

ẋ(t) = Ac(t)x(t), x(0) = x0, (13)

where x(t) ∈ R
n
+ , x0 ∈ R

n
+ is the initial condition

and Ac(t) belongs to {Ac,1, . . . , Ac,m}. Suppose that (12)
holds. Then the discretised system

x(k + 1) = A(k)x(k) (14)

is positive, where A(k) ∈ {SSp(Ac,1h), ...., SSp(Ac,mh)}.
Moreover, if there exists a common quadratic or linear

co-positive Lyapunov function for system (13), then the
origin x = 0 is globally uniformly exponentially stable
for system (14).

Note that if p is chosen as a power of 2, then (7)
coincides exactly with the scaling and squaring method,
where the Padé approximant computed is the first order
diagonal Padé approximant. Following the analysis given
in section 11.3.1 of [19], we find that if p = 2j is chosen
so that ||hAc||∞ ≤ 2j−1, then taking Aad equal to the
matrix SSp(Ach) of (7) has the property that

||eAc −Aad||∞
||eAc ||∞ ≤ h

6
||Ac||∞e

h
6 ||Ac||∞ .

In particular, for small values of h,Aad approximates
ehAc with high relative accuracy, in addition to the
above mentioned features that Aad preserves both
positivity and linear/quadratic co-positive Lyapunov
functions.

C. A computational algorithm

We can now propose a computational scheme for defin-
ing a sampling time h such that the discretised switched
system is stable under arbitrary switching. Consider
a switched system in continuous-time characterized by
Metzler and Hurwitz matrices Ac,i, i = 1, 2, ...,m. It fol-
lows that there are positive vectors c′i, i = 1, . . . ,m such
that c′iAc,i < 0′, i = 1, . . . ,m. Since each Ac,i is Hurwitz,
we find that eAc,ih → 0 as h→∞. Consequently, we can
find an h0 > 0 such that for any h > h0 and any pair of
indices i and j between 1 and m, we have that

c′je
Ac,ih < c′i. (15)

Now fix an h > h0. As noted after Definition 2, for
each i = 1, . . . ,m, SSp(Ac,ih) → eAc,ih as p → ∞.
Consequently, it follows from (15) that there is a p0
(depending on h) such that for any pair of indices i and
j between 1 and m, we have c′jSSp0

(Ac,ih) < c′i. Set
Ad,i equal to SSp0(Ac,ih), and consider the Lyapunov
function

V (x) = c′σx, σ = 1, 2, · · · ,m.

Since c′jAd,i − c′i < 0′ for any i and j between 1 and m,
we see that that

V
(
x(k + 1)

)− V
(
x(k)

)
=

(
c′σ(k+1)Ad, σ(k)− c′σ(k)

)
x(k)

< 0,

for each possible switching sequence σ(k). Thus the
discrete time switched system obtained for sampling
time h is stable under arbitrary switching. This system is
also positive if it is possible to choose an h guaranteeing
that the matrices Ad,i are nonnegative. Notice that c′σx
defines a piecewise linear co-positive Lyapunov function
that is preserved by sampling.
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Comment : Note also from the discussion in the pre-
vious subsection that a sufficient condition for positivity
preservation by the SSp transformation is that

h < 2p min
j

1

|ajj,i| := hSSp

Then, it is always possible to find p such that h0 < hSSp

and choose h ∈ (h0, hSSp). These values are such that
the resulting positive discrete-time switched system is
positive and stable under arbitrary switching.

IV. Padé Approximations

Lemma 1 says that the first order diagonal Padé
approximation is a robust approximation to the original
system. That is, for every h, linear and quadratic
stability is preserved. This result seems like good news
since it says that the most basic Padé approximation to
the matrix exponential, preserves stability and (under
certain conditions) positivity, and consequently one
might hope, as is the case for general matrices, that
higher orders of diagonal Padé approximations will also
preserve co-positive linear and quadratic stability and
positivity. Unfortunately, rather surprisingly, this is not
true as we shall now see. We begin with a surprising
example that illustrates that not even positivity is a
robust property of Padé approximations.

Example 1: Consider a chain of first order linear sys-
tems. Such systems are are of interest in the context
of biological systems in the systems community [20],
[4], and appear in the design of cascade filters [21].
Specifically: we consider a chain of n linear first order
systems described by

ẋ = Ax

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−α1 k1 0 · · · · · · 0
0 −α2 k2 0 · · · 0
0 0 −α3 k3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · kn−1

kn 0 0 0 −αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

By choosing αi ≥ 0 and ki ≥ 0 one obtains that
A is Metzler. For convenience we assume n = 8,
k1 = k2 = ... = k7 = 1, k8 = α1 = ..... = α8 = 0. In
this case our system becomes a chain of homogeneous
integrators connected in open loop. In spite of the fact
that this is a very elementary system, it turns out that
preserving positivity of this elementary system is far
from trivial. Specifically, we shall now consider the
second order diagonal Padé approximation C2(hA) =
(I+ 1

2hA+ 1
12h

2A2)(I− 1
2hA+ 1

12h
2A2)−1. Notice that the

function C2(x) = (1+ 1
2x+ 1

12x
2)(1− 1

2x+ 1
12x

2)−1, can
be written as a power series in x as C2(x) =

∑∞
j=0 βjx

j .
Computing the first few coefficients in that power series,
we find that β0 = 1, β1 = 1, β2 = 1

2 , β3 = 1
6 , β4 =

1
24 , β5 = 1

144 , β6 = 0, and β7 = − 1
1728 . Since A8 = 0, it

now follows that for every h > 0, C2(hA) has a negative
entry and that positivity is lost.

The previous example illustrates a fact that Padé
approximations do not take special care of positivity.
One might ask whether it is true that stability is
preserved (assuming that positivity has been ensured).
As we shall now see, concrete statements concerning
stability can only be made under stringent assumptions
(a full discussion of the following results can be
found in [13]). Indeed, as one increases the order of
approximation to the matrix exponential, one can in fact
lose preservation of a given Lyapunov function of the
original system, even when positivity is preserved. To
analyse this phenomenon, we decompose a generic Padé
map Cp into a suitable product of bilinear functions. We
summarise some evident results in this direction with
the next lemma.

Lemma 3: [13] Let Ac be a Metzler and Hurwitz ma-
trix, and suppose that λ̂ is a complex number with

positive real part. For each h > 0, let λ(h) = λ̂
h , and

consider the following matrices:

Θ1 = (λ(h)I +Ac) (λ
∗(h)I +Ac) ; (17)

Θ2 = (λ(h)I −Ac) (λ
∗(h)I −Ac) ;

Ad(h) = (λ(h)I +Ac) (λ
∗(h)I +Ac)

× (λ∗(h)I −Ac)
−1

(λ(h)I −Ac)
−1

= Θ1Θ
−1
2 .

Suppose that there is an h0 > 0 such that for all 0 <
h ≤ h0,Θ2 is an M-matrix and Ad(h) is a nonnegative
matrix. Then, the following statements are true.

1) If v(x) = x′Px, with P = P ′ � 0, is a co-positive
quadratic Lyapunov function for Ac, i.e.,

x′(A′cP + PAc)x < 0, ∀ x ≥ 0, x �= 0 (18)

then there is an h1 > 0 such that for all 0 < h ≤ h1,
v(x) is a quadratic Lyapunov function for Ad(h), i.e.,

x′(A′dPAd − P )x < 0, ∀ x ≥ 0, x �= 0. (19)

2) If v(x) = w′x, w > 0, is a linear co-positive
Lyapunov function for Ac, that is w

′Ac < 0 then for
0 < h ≤ h0, v(x) is a linear co-positive Lyapunov
function for Ad(h); namely, w′Ad < w′.

We can now state the following result, which formalises
the intuition that stability, for a switched linear system,
is indeed preserved provided h is chosen to be small
enough (fast enough sampling), for diagonal Padé ap-
proximations. To state this result, recall the continuous-
time switched linear positive system

ẋc(t) = Ac(t)xc(t), xc(0) = x0, (20)

where xc(t) ∈ R
n
+, x0 ∈ R

n
+ is the initial condition, and

Ac(t) belongs to the set {Ac,1, . . . , Ac,m}. We then have
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the following result.

Theorem 2: [13] Consider the system (20). Suppose
that Ac,i is a Metzler and Hurwitz stable matrix for each
i = 1, . . . ,m and let Adi(h) = Cp (Ac,ih) be the p − th
order diagonal Padé approximation of eAc,ih. Suppose
also that there is an h0 > 0 such that for all 0 < h ≤ h0,
and each complex pole λ of Cp(x), and each i = 1, . . . ,m,
we have that (λhI − Ac,i)(

λ∗
h I − Ac,i) is an M-matrix

and Adi(h) is a nonegative matrix, as is all Padé factors
of the form given in 1 and Lemma 3 associated with
the real and complex poles of Cp (Ac,ih) respectively.
Finally, suppose there exists a common linear co-positive
Lyapunov function for system (20). Then, for all 0 < h ≤
h0, the system

x(k + 1) = A(k)x(k), μ =∈ {1, 2, . . . ,m}, (21)

with A(k) ∈ {Cp(Ac,1h), ..., Cp(Ac,mh)}, shares the same
common linear co-positive Lyapunov function.

Comment : An analogous statement may be made for
co-positive quadratic stability.

The hypotheses of Lemma 3 include the condition that
Θ2 is an M-matrix for all sufficiently small h > 0. It is
natural to wonder when that condition holds. To do this
suppose that λ0 is a complex number with Re(λ0) > 0.
Set λ(h) = λ0

h , and define Ad via

Ad = (λ(h)I +Ac) (λ
∗(h)I +Ac) (22)

× (λ(h)I −Ac)
−1

(λ∗(h)I −Ac)
−1

. (23)

Set

Θ1 =
(|λ(h)|2I + 2Re(λ(h))Ac +A2

c

)
(24)

Θ2 =
(|λ(h)|2I − 2Re(λ(h))Ac +A2

c

)
, (25)

so that Ad = Θ1Θ
−1
2 . Define Ac = {aij} and A2

c = {bij}
then let P be the set of indices i, j, i �= j, such that
bij �= 0. Then we have the following result.

Lemma 4: [13] Let Ac = {aij} be a Metzler and Hur-
witz stable matrix and Ad the matrix achieved through
the transformation (22). If

h ≤ 2Re(λ0) min
i,j∈P

aij
|bij | , (26)

then Θ1 of (24) is a nonnegative matrix, Θ2 of (24) is
an M-matrix, and Ad is nonnegative and Schur stable.

Comment : Note that if Ac has a zero entry in an
off-diagonal position where B has a positive entry, then
the right-hand side of (26) is 0. Clearly in that situation,
Lemma 4 does not yield a useful conclusion.

Lemmas 2 and 4 will now yield the following result
regarding the nonnegativity of a p-th order diagonal
Padé approximation.

Theorem 3: Let Ac be a Metzler and Hurwitz stable
matrix and Ad(h) = Cp(Ach) be the p−th order diagonal
Padé approximation to eAch. Let αl, l = 1, . . . ,m denote
the real poles of Cp(x), and let λk, λ

∗
k, k = 1, . . . , n

2
denote the complex conjugate pairs of poles Cp(x). If

m ≥ 1, we define α̂ = min
l=1,...,m

αl, and if n ≥ 2, we

define λ̂ = min
k=1,...,n2

Re(λk). Then Ad(h) is nonnegative

and Schur stable for every h ≤ h∗, where

h∗ = min
i ,: aii �=0

α̂

|aii| , if n = 0, m ≥ 1 (27)

h∗ = 2λ̂ min
i,j∈P

aij
|bij | , if m = 0, n ≥ 2 (28)

h∗ = min
i : aii �=0

α̂

|aii| , 2λ̂ min
i,j∈P

aij
|bij | , if m ≥ 1, n ≥ 2(29)

where aij and bij denote the (i, j) element of Ac and A2
c

respectively.

Proof: We begin by noting that αl > 0, l = 1, . . . ,m
and Re(λk) > 0, k = 1 . . . , n

2 , and that m + n = p. De-
composing the p− th order diagonal Padé approximation
into real and complex conjugate pairs of poles [11], we
have:

Ad(h) =

m∏
l=1

(αl(h)I +Ac)

×
n/2∏
k=1

(|λk(h)|2I + 2Re(λk(h))Ac +A2
c

)

×
m∏
l=1

(αl(h)I −Ac)
−1

×
n/2∏
k=1

(|λk(h)|2I − 2Re(λk(h))Ac +A2
c

)−1
,

(30)

where αl(h) =
αl

h , l = 1, . . . ,m and λk(h) =
λk

h , λ∗k(h) =
λ∗
k

h , k = 1, . . . , n
2 . For each l, we may apply Lemma 2

to the factor (αl(h)I + Ac)(αl(h)I − Ac)
−1 to deduce

that it is nonnegative. Similarly, for each k we apply
Lemma 4 to the factor (|λk(h)|2I + 2Re(λk(h))Ac +
A2

c)(|λk(h)|2I − 2Re(λk(h))Ac + A2
c)
−1 to find that it

is also nonnegative. We find immediately that Ad(h)
is nonnegative. Finally, since Ad(h) is a diagonal Padé
approximation, it is necessarily Schur stable [17].

Comment : We note that in the case that n ≥ 2, the
quantity h∗ in Theorem 3 is positive if and only if, for
each nonzero offdiagonal entry in A2

c , the corresponding
entry in Ac is also nonzero. A discussion in terms
of directed graphs is given in [13]. We note that the
condition is always met for 2× 2 matrices, see [18].

Example 2: We now give a somewhat contrived exam-
ple to illustrate some of the pitfalls that can arise when
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using the Padé method of approximating the matrix ex-
ponential in the context of simulating a switched system.
We are interested in simulating the following switched
system:

ẋ = A(t)x ;A(t) ∈ {A1, A2}, (31)

where

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (33)

System (31) is a positive system. We will now show
how this need not be the case when using Padé approx-
imations to construct a discrete time equivalent. To this
end, suppose we wish to simulate the periodic system
where the matrix A1 is active for 0.5s followed by the
matrix A2 for 4.5s. This system can be approximated
after one period T = 5s via

x(T ) = A9
d2Ad1x0, (34)

We then simulate the system starting from an initial
condition x(0)′ =

[
0 0 0 0 0 0 0 100

]
.

Using the second order Padé approximations, it is easy
to check that the evolution of the first component of
the state vector x is takes negative values, and so the
discrete time approximation is not a positive system.

We now repeat the above simulation using the SS2

method to approximate the matrix exponential. It follows
that the discrete-time system is a positive system for all
initial conditions in the nonnegative orthant.

V. Conclusions

In this paper we examine the suitability of diagonal
Padé transformations for discretising positive systems.
We show that positivity and stability preservation
are only guaranteed under very restrictive conditions.
However, it is shown that the newly developed SSp

transformation exhibits performance that avoids these
pitfalls.
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