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Abstract—This paper proposes three tools to facilitate the
verification of the output-persistently exciting (OPE)
condition and simultaneously, provides new asymptotic
stability criteria for uniformly globally stable switched
systems. By introducing some related reference systems, the
OPE condition of the original system can be reduced or
simplified. Both the ideas of classic LaSalle invariance
principle and nested Matrosov theorem are used to generate
such reference systems. The effectiveness and flexibility of
the proposed methods are demonstrated by two applications.
From these applications, it can be seen that the flexibility of
the proposed method produces a novel set of tools for
checking uniform asymptotic stability of switched
time-varying systems.

I. INTRODUCTION

his paper presents some new tools to help the verification

of the output-persistently exciting (OPE) condition and
simultaneously, provides new stability criteria for uniformly
globally stable (UGS) switched systems. The OPE condition
is a generalization of weak zero-dectability [8] and 8-PE
condition [14, 15], which are widely used to ensure uniform
attractivity of nonlinear time-varying systems [5, 7-10,
14-15].

Stability analysis of switched systems has been a
popular research area [1-2, 4, 7, 9, 11-12, 16]. Due to the
complex behaviors of switched systems, the traditional
Lyapunov functions based theory is often not very effective
for switched systems [1, 11]. Several possible extensions
have been proposed to help stability analysis, for instance, the
use of multiple Lyapunov functions [1, 2], the extension of
LaSalle invariance principle [4, 7, 12] and a type of Matrosov
theorem [16]. It is worth to notice that the notion of
output-persistent excitation (OPE) was proposed in [9] and
used to derive a generalized Krasovskii-LaSalle theorem.
This paper further contributes to stability of switched systems
based on three novel tools for the verification of the OPE
condition.
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As discussed in [9], OPE plays an important role when
we want to verify uniform global asymptotic stability (UGAS)
for a UGS switched system. In fact, it is possible to show that
OPE is a necessary condition to ensure uniform global
attractivity of the original system. Furthermore, it can be
used as a sufficient condition to guarantee uniform global
attractivity under a (necessary) assumption for UGS switched
systems. Therefore, it is important to investigate the OPE
condition.

In general, it is hard to verify the OPE condition directly
by its definition. To overcome this difficulty, the key
technique used in this paper is to provide some easily checked
conditions so that we can guarantee the OPE condition of the
original system by verifying the OPE condition of a reduced
and simpler reference system. Moreover, by continuing this
process, a sequence of reference systems can be generated
such that the OPE condition of the next system is more easily
verified than the former. As soon as the OPE condition for
one of reference systems is verified, the OPE condition of the
original system can then be guaranteed.

More precisely, a stability criterion proposed in [9] is
revisited, see Theorem 1 below. Then, three different ways
are proposed to generate reference systems. First, a reference
system is generated by keeping the same dynamics while
changing the output function. Second, we provide a reference
system by simplifying the dynamics of the system while
keeping the same output. These methods are proposed in the
spirit of LaSalle Invariance Principle. Third, a reference
system can be obtained by augmenting output functions and
keeping the same dynamics. This is consistent with the
insight provided by the well-known Matrosov-type Theorem
[14-16]. Two illustrative examples show the effectiveness of
the proposed methods. From these applications, it can be seen
that the proposed framework provides alternative ways to
guarantee the UGAS property for UGS switched systems.

This paper is organized as follows. Preliminary results
are provided in Section II, including a stability criterion
proposed in [9]. In Section III, three tools are proposed and
they are followed by two examples in Section IV. Section V
summarizes this work.

Notations
1. Throughout this paper, A denotes a finite set and
R, =[0,0).

+
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2. For any function g:R, xR”xA — R? and any v € A,
denote g (¢,x)=g(t,x,0),Vt>0,x € R".

3. For any p:R xR —>R* , let
V,p(t,xl,x2,~~~,xp) and Vx‘p(t,xl,xz,---,xp),léiﬁp,

denote the partial derivatives of o w. r. t. the parameters ¢

function

and x, , respectively. Moreover, let
V=N pV, p,-V, p)Vx=(x,x,x,) eR
4. A function g:R xR’ — R? is said to be uniformly
bounded if for any r >0, there exists a », >0 such that
||g(t,x)|| <r,vtz20, V”x" <.
5. A function g: R, xR” — R? is said to satisfy the local

Caratheodory condition if the following hold:
a) For any x in R?, g(-,x) is measurable.

b) For almost all #in R_, g(¢,-) is continuous.
c¢) For any closed interval / =[a,b] < R, and any compact

subset K — R” , there is a Lebesgue integrable function
P, x 1 — R, such that

g(t,x)" <p(),Vtel , Vxek.

II. PRELIMINARIES

A. The OPE condition and uniform global asymptotic
stability

In this subsection, we revisit some necessary notations
and a key stability result presented in [9]. We refer readers to
that paper for more details.

Throughout this paper, we study a switched
time-varying system described as follows:

x=f(t,x,4) (©)

y = h(t,x,2) 2

x€eR’

A -valued switching signal; #:R, xR”xA — R* is an

where teR is the state vector and A is a

output function and f: R, xR” x A — R” is a function with
the property that for each v e A, f, () = f(-,v) satisfies the
local Caratheodory condition.

Let @ denote a set of pairs (x,4) with A:[f,,0) > A
being a switching signal and x, startingat =7, >0, being a
complete solution of (1) w. r. t. 4. For convenience, we
denote the initial time instant ¢, as 7,(x) . Moreover, a time

t>t,(x) is to be
lim_ _ A(7) # A(7) . Following [9], we denote

instant said a jump time if

O = {x|(x,/1)e O for some /1}

(OB {/1| (x,A) e D for some x} .

Several definitions of stability are recalled as
follows.

and

Definition 1. a) The origin is said to be wuniformly
Lyapunov stable (ULS) w. r. t. ® if, for any & >0 there
exists a 0(¢)>0 such that for any xe®” with
||x(s)|| <0, we have ||x(t)|| <¢ forany £, (x)<s<t.

b) All solutions are uniformly globally bounded (UGB) w.r. t.
@ if, forany M >0 there exists a M (M) >0 such that for
any x € ®” with ||x(s)||<M , we have ||x(t)||<M for any
t,(x)<s<t.

c¢) The origin is said to be uniformly globally stable (UGS) w.
r.t. @ if,itis ULS w.r.t. @, and all solutions are UGB w. r.
t. O.

d) The origin is said to be uniformly globally attractive (UGA)
w. r. t. @ if for any € >0 and any r >0, there exists a

T'(g,r) >0 such that for any x € ®" and any s > ¢, (x) with
||x(s)|| <r,we have ||x(t)|| <eg forany t>s+7T.

e) The origin is said to be uniformly globally asymptotically
stable (UGAS) w.r. t. @ if, itis UGS and UGA w.r. t. @ .

In this paper, the following definition related to
persistent excitation (PE) condition plays a central role
Definition 2. The pair (h, f) is output-persistently exciting
(OPE) w.r.t. @ if, forany a >0 and any b > a, there exist
two positive constants 7'(a,b) and r(a,b) such that for any
(x,A)e® and any t=t,(x), the following implication
holds:

a S"x(r)"Sb,VtS r<t+T, :>J':+T

h(z, x(0), A(0)) dr > 7 .
3)

To state the main result presented in [9], the following
assumption is needed.

Assumption 1. Forany 0 <a <b and any ¢ > 0, there exists
a positive constant M (a,b,c) such that for any (x,1) e ®
and any f,(x)<s<¢, with a< ||x(r)|| <b, Vs<r<t, the

following integral inequality holds:
[ x@.A@) dr <M +c(t-s).  (4)

The following result presented in Theorem 1 of [9] is
recalled. It can be viewed as a generalized
Krasovskii-LaSalle theorem, see more detailed discussions in
that paper.

Theorem 1. Consider the switched time-varying system
(1)-(2). Let @ denote a set of pairs (x,4) with 4 being a
switching signal and x being a complete solution of (1) w. r.
t. A .Suppose the origin is UGS w. r.t. ® and Assumption 1
holds. If the pair (4, ) is OPE w. r. t. @, then the origin is

UGASw.r.t. ©.

B. Zeroing and nonpositive pairs

In this subsection, we give some definitions and results
that are needed in next section. First, the following definition
characterizes some relationships between two functions.

Definition 3. Let h: R, xR” — R? and fz:R+ xR” = R? be

given.
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a) The pair (h,fz) is said to be a nonpositive pair if, for any
time sequence f, — o, any constants 0 <a <b and any
sequence {x,}c R’ , with a< ||x|| <b, VneN , the
following implication holds:

lim,_ A(t,,x,)=0= limsup,  A(,,x,)<0,VI<i<q, (5)

n—»0 n—o "

where /4, is the i component of / .

b) The pair (h,fz) is said to be a zeroing pair if, for any time
sequence f, — oo, any constants 0 <a < b and any sequence
{x,} <R, with a<|x|<b, VaeN , the following
implication holds:

lim,  h(t,,x,)=0=lim,__h(z,,x)=0. (6)

n—w

As will be shown later, both nonpositive pair and zeroing
pair will play an important role in verifying the OPE
condition. The following result presents some related
properties. The proof is omitted to save space.

Proposition 1. Let h: R, xR” - R" | h,: R, xR" — R*

and 7;: R, xR” — R* be three functions. Then, the
following conditions hold.

a) (Transitivity) Assume that (%4,,%,) is a zeroing pair. If
(hy,hy) is a zeroing (nonpositive) pair, then (4,,4;) is also a
zeroing (nonpositive) pair.

b) Suppose ¢, =¢; and for any O<a<b , there is a
function «,, : R" — R, zero at zero and continuous at zero,
such that |a,(t,x)—h(t,0)|<a,, (h(t,x) , Viz0 ,
Va< ||x|| <b.Then, (h,h,) is a zeroing (nonpositive) pair if
and only if (/,h,) is a zeroing (nonpositive) pair.

c¢) Assume that ¢, =1, A, is uniformly bounded, and (#,,5,)
and (h,,h;) are both zeroing (nonpositive) pairs. Then

(hh,,h,) is also a zeroing (nonpositive) pair. O

III. VERIFYING THE OPE CONDITION: THREE TOOLS

In view of Theorem 1, we need to check three things to
verify UGAS of the origin for switched time-varying system:
(1) uniform global stability, (2) Assumption 1 and (3) the
OPE condition. Generally speaking, it is possible to verify the
first two conditions through some Lyapunov-like functions as
shown in [9]. Therefore, checking the OPE condition
becomes crucial. In that paper, several criteria have been
proposed to check the OPE condition. In this section, three
different tools will be proposed to verify the OPE condition.
Then, two interesting examples will be presented in Section
IV to illustrate the merits of the proposed new tools.

A. The first tool: Changing output functions

In this subsection, the first tool is presented. It shows
that by changing the output function in (2), the OPE condition

of the original system can be verified by checking the OPE
condition of a “new” system with the new output.

To this end, we need the following definition.
Definition 4. Let h: R, xR” — R be given. It is said to be
almost uniformly bounded if for any b > a > 0, there exist a
positive constant 7(a,b) and a measure zero subset S, of

R, such that |a(t,x)|<M(a,b) , VieR,-S,, ,

+

Ya < "x" <bh.

The following result provides the first tool for the
verification of OPE conditions. To save space, the proof is
omitted.

Theorem 2. (Changing output functions) Consider the
switched time-varying system (1)-(2) and a set ® of pairs
(x,4) where x is a complete solution of (1) w. r. t. 1. Let

hA:R+><R”><A—>R‘§ be any function. Suppose for each

veA, (hu,fzu) is a zeroing pair, hAU satisfies the local
Caratheodory condition and is almost uniformly bounded.
Then, (A, f) is OPE w. r. t. ® provided that (/Az,f) is OPE
w.r.t. ®. O

B.  The second tool: Simplifying the dynamics of systems

Theorem 2 shows how to generate a reference system by
selecting different output functions. In this subsection,
another tool is proposed to simplify the dynamics of a system.
Let

D ={(c,A)|ceR", 1D }, (7)
where for any (¢, A1) € @, ¢ is viewed as a solution of x =0

w. 1. t. 4. Now, the following criterion is stated. Its proof is
omitted to save space.

Theorem 3. (Simplifying the dynamics) Consider the
switched time-varying system (1)-(2) and a set @ of pairs
(x,4) where x is a complete solution of (1) w.r.t. A.Let @
be the set defined in (7). Suppose that for each ve A,
(h,, f,) is a zeroing pair, (h',f)" is almost uniformly
bounded, /, satisfies the local Caratheodory condition and
forall xe R”,te R _, h(t,x)is continuous in x, uniformly in
t. Then, (h, f)is OPE w. r. t. ® provided that (4,0) is OPE
w.rt. ® where 0:R, xR’ xA — R” represents the zero

function. O

C. The third tool: Extending output functions

Besides changing output functions, it is possible to
generate a reference system by augmenting outputs functions.
This follows the same idea as the Matrosov-type theorems
[14-16].

Consider the switched time-varying system (1)-(2) and
the following condition where a function

giR XR'xA— R is said to be almost uniformly bounded
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and continuously differentiable if for each ve A, g, is
almost uniformly bounded and continuously differentiable.
(C1) Suppose there exist a uniformly bounded and
continuously differentiable function V:R, xR’ xA —> R ,
and an bounded
h: R, xR” x A — R such that the following conditions hold.
a) For any (x,1) € ® and any jump time ¢, we have
V(t,x(), A1) Slim_ _V(z,x(7),A(7)) . ®)

almost  uniformly function

b) The following inequality holds:
V(t,x,0) =V V. (t,x)+V V (t,x) < h(1,x,0),
Vt>0,Vxe R",VveA.

©)

¢) For any v € A, the pair (hu,l;u) is a nonpositive pair.

Now, the following theorem can be proposed. Its proof
is omitted

Theorem 4. (Extending output functions) Consider the
switched time-varying system (1)-(2) and a set @ of the
pairs (x,4) where x isacomplete solution of (1) w.r.t. 4.

Let / :(hf,,/"V’ )". Suppose (C1) holds. Then, (h, f) is
OPE w.r.t. ® provided that (E,f) iSOPEw.r.t. . O

Remark 1. Suppose f =0. In this case, several assumptions

could be relaxed. For example, the assumption that V' is
continuously differentiable can be relaxed as V' is uniformly
bounded and V, V' exists and is bounded. 0

Remark 2. Theorem 4 can be recursively used to derive a
“nested Matrosov theorem.” Due to limited space, we omit
the detailed discussion and refer readers to [10] for some
related discussion, also see [14-16]. 0
In addition to some regularity assumption, the following
result is obtained.
Corollary 1. Consider the switched time-varying system
(1)-(2) and a set @ of pairs (x,4) where x is a complete

Suppose (C1) holds. Let

If for each veA , h, satisfies the local

solution of (1) w. r. t. 4.
h=h",h)" .
Caratheodory condition and is almost uniformly bounded,

then (4, /) isOPEw.r.t. ® provided that (4, /) is OPE w.

r.t. d. O

IV. EXAMPLES

Two examples are presented to demonstrate the use of
the developed new tools. The first example considers a
time-varying system. It can also be treated as a special case of
a switched system with a single point index set. This example
demonstrates how to generate appropriate reference systems
using well selected Lyapunov-like functions to guarantee
UGAS. The second example is used to illustrate how to
obtain stability results to systems with arbitrary switching
case. For this case, it is in general difficult to use LaSalle-type

invariance principle. By constructing a sequence of reference
systems, it is not necessary to search for common Lyapunov
functions that are not easily found for the considered systems.
A. The first example
A third order system is considered as follows:
z, =Kk(t,2,,2,,23)
z, = 2:x(t,2,,2,,25) (10)
Z.3 = _ZZK(tstZZsZ}) —Z3
where «=-z +al(t,z,,z;) with a:R xR*—> R being
continuously differentiable and satisfying the following
regularity assumption:

(C2) a(t,0,0)=0 , V>0,

(@,V,a,VV,a,V, a,V, «a) are uniformly bounded.

Suppose and

System (10) represents a closed-loop system of a 3"
order chained-form system and was studied in [14] to
illustrate the use of the nested Matrosov theorem. Here, each
of our main results is applied to show uniform global
attractivity of the system. In the remainder of this subsection,
@ denotes the set of all complete solutions of (10). The
following steps are needed.

e Stepl: Let V, =(z3 +z;)/2. Differentiating ¥; along the
trajectories of (10), we get V1 =—z; <0. Using Condition

(C2), it is not difficult to check that uniform global stability
holds [5, 14]. Particularly, @ consists of all solutions of (10).

Integrating the two sides of ¥, =—z2, it can be seen that

Assumption 1 holds with the virtual output function being
chosen as s =z, . To apply Theorem 1, the OPE condition is

needed to guarantee UGAS of the origin.

The proposed new tools will be used to check the OPE
conditions by generating a sequence of reference systems. In
this example, all involved output functions will satisfy the
local Caratheodory condition and be uniformly bounded
under condition (C2). Thus, the required regularity
assumptions hold. Let

[ = (K(t,2,,2,23),23K(E: 21,2, 23 )= 2, K (8,2, 25,23 ) — 23) |
e Step 2: Extending the output function z, to (z,,z,x)" .
Take V, =z,z,x(t,z,,2,,2z;) . Differentiating ¥, along the
trajectories of (10), we get
(1)

for some uniformly bounded function 7. It is trivial that

; 2
V, =-z,x(t,2,,2,,23)] +z,0(t,2,,2,,25)

(z,,-z;x*) is a nonpositive pair. Since 7 is uniformly
bounded, we have that for any »>0 , there is a positive

constant M, satisfying |V, (1.2)-(-z2x*)| < M b”z}" for any

[ CEREN
also a nonpositive pair Thus, (C1) holds. According to
Corollary 1, it is sufficient to show that ((z,, VZ)T, f) is OPE.

<b . By (b) of Proposition 1, (23,1)2) is
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)') is a
that
Thus,

Again by (b) of Proposition 1, ((z,.V,)".(z,,2 K"
zeroing pair. It is straightforward to see
((z,,2:6*)" ,(z,,2,6)") is a zeroing pair.
((zB,VZ)T,(zp z,k)") is a zeroing pair according to (a) of
Proposition 1. Employing Theorem 2, the output function can

then be changed as (z;,2,x)" .

e Step 3: Changing the output function (z;,z,k)"
(z,,x)". Choosing ¥V, =z /2 and differentiating 7, along
the trajectories of (10), we get

(12)

It is claimed that ((z,,z,&)",V,)=((z,,z,c) ,z,K) is a

V3 = ZIK(tnzlazZnZ3))

nonpositive pair. First, it is easy to see that (x,z,x) is a
zeroing pair and particularly, it is a nonpositive pair.
Moreover,

((Zw z) 1K):((23= 2)
is a nonpositive pair by (C2) and (b) of Proposition 1. Thus,
is a nonpositive pair using (c) of

z +alt,z,,z,)z,)

((z,,2,6)", z,K)
Proposition 1. By definition, it is straightforward to see that
((z,,2,6)",(z,x,2,k)") is a zeroing pair. According to (a) of
Proposition 1, ((z,,z,x)",z,«) is also a nonpositive pair. So
the claim is true and hence (C1) holds. By Corollary 1, it is
sufficient to show that the pair ((z,,z,x,z,x)", f) is OPE. It
is easy to verify that ((z,,z,,z,)",x) and (x,x) are both
Thus,
((z,x,z,x,2,k)",K) is a zeroing pair in view of (¢) of

zeroing pairs by (C2) and (b) of Proposition 1.

Proposition 1. By definition, ((z,,z,x,z,k)",(z,k, z,k,z,k)")
is a zeroing pair. Therefore ((z,,z,k,z,x)",k) is also a
zeroing pair employing (a) of Proposition 1. This results that
((z,,2,x,2,k)" ,(z,,k)") is a zeroing pair. Based on Theorem
2, the output function can be changed as (z,,x)".

o Step 4. Simplifying the dynamics as z=0 and changing

the output function (z,,x)" to (z,,—z, + a(t,z,,0))" . Notice
that ((z,,x)", f) is a zeroing pair. By Theorem 3, we only
need to show that ((z,,x)",0) is OPE. According to (C2) and
(b) of Proposition 1, ((z,,x)",(z,,—z, +a(t,2,,0))") is a
zeroing pair. Therefore, we may change the output function
as (z,,—z, +a(t,z,,0))" by Theorem 2.

o Siep 5: Extending (z,,—z, +a(t,z,,0))" to the following
output function:
h=(z,-z +a(t,z,,0),V.a,z20) .  (13)
Define V, =(z,—a(t,z,,0))V,a(t,z,,0) and differentiate V,
along with z=0. Then,
V, = |V,a(t,2,0) +(z -a(t,z,,0)V V,a(,2,0).

Using a similar argument as in Step 2, it can be checked that
((z,,—z, + a(t,2,,0))", V4) is a nonpositive pair. By Corollary
1, Theorem 2

(zy,—z, + a(t, z,,0),

and changing the output function

V,)" as the function h defined in (13),
we only need to show that (};,0) is OPE.

o Step 6:Using a reduced PE condition to check the original
OPE condition. In the following, let us show that the required
OPE condition can be deduced by the following PE
condition.

(C3) For any constants 0 <a <b, there exist a T(a,b) >0

and a r(a,b) >0 such that
1+T (14)
Indeed, for any constants 0 < a < b , we can choose a small
positive constant a<a/2 such that |a(t,4’,0)| <al2 ,
V|¢|<a. in view of (C1). Let

#(a,b) = min(r(a,b),a’T(a,b)/ 4,
It can be checked that with ||(z

<h= |

& (W2 -1)T(a,b)/4)> 0.
2)| b, if |z 2 ar2

12 27

or

z || > a, then the following inequality holds:

J-t+T

according to (C3). So we may assume that ||za|| <al/2 and

dr > min(r(a,b),a’T(a,b)/ 4) = #(a,b),Vt > 0,

122>

12 2’

|z.|2 V272 and |z, - a(z, 2,0)|| >a(\2-1)/2,
by the choice of the constant a. Consequently,
[z, =, (2 =1 T(a,h)/ 4> r(a,b),¥t > 0.

Therefore (4,0) is OPE under (C3).
Hence, we have the following result.

||z || <a<al/2.Inthiscase, if 4< ||(z

2
dr>a

2973

Proposition 2. Consider the third order system (10). Suppose
Conditions (C2) and (C3) hold. Then, the origin is uniformly
globally asymptotically stable. 0

Remark 3. The stability analysis of (10) can also be done
using two approaches. One is based on the nested Matrosov
theorem proposed in [14] where the main idea is to extend
output functions such that they are more and more
approaching to “being negative definite.” Another one is
applying a generalized Krasovskii-LaSalle theorem presented
in [8]. This approach is to reduce “the size or dimension of
the invariant set” to the zero. The former needs to employ
some nontrivial Lyapunov functions (see Equations (72)-(73)
in that paper), while the latter requires a limiting process (the
so-called limiting system) to guarantee UGAS. Based on our
approach, different tools, such as changing output functions,
extending output functions and simplifying the dynamics of
systems, are used to check the OPE condition. These methods
combine the ideas of Krasovskii-LaSalle theorem with the
classic Matrosov theorem, but in a hybrid way and unified
manner. Based on this example, we demonstrate that our
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methods can avoid using complex Lyapunov functions and
need no limiting systems to guarantee UGAS. O

B. The second example

Next, the following switched time-varying system is
considered:
Xz =o(t,2,2,)2Z, — 2

z, ==a(1,2,,2,)z,
. (15)
X0z =—a,(t,z,2,)z,
Z, =0,(t,2,,2,)z; — 2,
where ¢« : R, x R* >R , i=12 , are continuously

differentiable functions with («,,V,2,,V, @,V ;) being
uniformly bounded. First consider the following condition.
(C4) There is a continuously differentiable function
7:R xR* = R, with (7,V,7,V_7,V_ y) being uniformly
bounded and such that yo, , i=12 , are nonpositive
functions, and (y,¢,), i =1,2, are zeroing pairs.

If (C4) holds, let @ denote the set of all pairs (z,4)
where z is a complete solution of (15) w. r. t. 4 with
A:t,(2),0) = {1,2} being a piecewise constant function.
Otherwise, let @ denote the set of all pairs (z,41) where
z=(z,,z,)" is a complete solution of (15) w.r.t. A with
A:[t,(z),0) > {,2} being a piecewise constant function
satisfying z,(¢)z,(t) =0 at any jump time ¢. Since arbitrary
switching signals are considered, it is reasonable to assume

that the individual systems are stable [11]. Notice that
%,,i=12, are well-studied systems. For such systems, a

necessary and sufficient condition of achieving uniform
global asymptotic stability is the following PE condition.

(C5) Let &,,i =1,2, be defined as

a,(,0,0),Vte R N eR,if i=1,

. (16)
a,(t,¢,0),VteR VS eR,if i=2.

a,(t,¢) = {
Assume that ¢,,i =1,2, satisfy the following PE condition:
For any constants 0 <a < b, there exist a T(a,b) >0 and a
r(a,b) > 0 such that

1+T

a<|¢|<b=["|a (.0 dr=r.VieR VS R (17)

In the following, we would like to show that the origin is
UGAS w. 1. t. @ under (C5). First, let us denote the system

function f: R, x R*x{1,2} - R* as
f(l‘,Zl,Zz,l) = (0!1([,21,22)22 I, (t’ZI’ZZ)Z])T’
f(t’zl’z2’2) = (_az(t’zl’Z2)Zz’a2(t’zl’zz)zl _Zz)r’

for all £>0, z,z, € R. Choose the Lyapunov function

V=(z{+23)/2 . Then, we have Vzl:—szO and

14 s, = —z; <0. This implies that the origin is UGS w. . t.

® and simultaneously, Assumption 1 holds with
h:R xR>x{1,2} — R*> being defined as h(t,z,,z,,i) =z,
forall t>20,z,z, e R, i=12[9]. According to Theorem 1,
it remains to show that (%4, ) is OPE w. r. t. @ . In the

following, we divide the discussion into two cases to prove
this fact. First consider the case that (C4) holds. Let

W =zy(tz,z2,)z, . Then, W ., =raz, +¢z for some

uniformly bounded functions ¢,,i=1,2. It is not difficult to
check that for each i e {1,2}, (zi,W

Moreover, W is continuous and independent to the switching
signals. Thus, (C1) holds. According to Corollary 1, it is

sufficient to check that ((h,W)’, f) isOPEw.r.t. @ .Since
(77ai) B
((zyazi, +4z) (z,,2,2,,)")), i =12, are zeroing pairs

. ) 18 a nonpositive pair.

i=12, are zeroing pairs, we have
in view of (C4). Hence, we can change the output function
(h,W)" as

h(t,2,,2,,0) = (2,,0,(t,2,,2,)z, ), ¥i=12 , (18)
for all £>0,z,z, e R, based on Theorem 2. When (C4)
hold, let Vi=12,

does not W,=-zz,0,(t,2,,z,) ,

Vt>0,Vz,z, € R . Then, W,|z =—a’zl +y,z for some

uniformly bounded functions y,, i=12. It is easy to see

that for each i € {1,2}, (z,,W,

;,) is a nonpositive pair. Since
z,(t)z,(¢) =0 at any jump time ¢, (C1) also holds. Based on

Theorem 4 and changing the output function as the function

h defined in (18), it remains to show that (}7 ,f) isOPEw.r.
t. @ for both cases. Notice that for each i € {1,2}, (E.,f,.) is
a zeroing pair. By Theorem 3, we only need to check that
(17 ,0) is OPE w. r.,t. ® where

D= {(c,l)| ceR,1ed™ }
V.a,i=12, are bounded,

Since uniformly

((ZI > ai (t’Zl’ZZ )Z3—i ) ! )7 (Z’ > aAi (t’ ZS*[ )ZS—i )T )) 2
zeroing pairs by (b) of Proposition 1 where «,,i =1,2, are the

i=12, are

functions defined in (16). Employing Theorem 2, it is
sufficient to show the OPE condition of (i;,O) where

h(t,z,,2,,i) = (z,,8,(t,2, )z, ), i=12. (19)
According to (C5), for any O<a<b, there exist a
T(a,b)>0and a r(a,b) >0 such that (17) holds. Since «,,
i =1,2 are uniformly bounded, there is a constant M (b) >1
such that

et (t,2 2,0 < ML Vi=12, V12 0,9z,2,)" | <b.

Notice that for any # € R, any >0 and any ||(z|,zz)r|| <b,

we have

6151



A 2
M? h(t,z,,z,,1)| |

. .
h(l,z,,zz,/i(t))“ - M

n 2
a, (t,z, )" z’

A 2 A 2 ~ 2
o CACERD A PR EAE PACEY| [EA

where i = A(¢). This leads to

J'HT
t

2
z, J-1+T
i

o el

l;(f,zl,zz,/l(z'))”zdr >

Z2 +T
+ MZ(b).[‘

for any

a,(z,z)| dr = r(a/2,b)a’ /1AM (b) > 0,

teR, b>a>0 and
<b. Therefore (fz,O) is OPEw.r. t. @,

under (C5). The following result can then be proposed.

any any

a< "(zl,zz)r

Proposition 3. Consider the switched system (15). Suppose
(C5) holds. Then, the origin is uniformly globally
asymptotically stable w. r. t. @ where under (C4), ® is the
set of all pairs (z,4) with z being a complete solution of (15)

w. I. t. a piecewise constant function A:[¢,(z),») — {12},

and otherwise, ® is the set of all pairs (z,4) with

z=(z,,z,)" being a complete solution of (15) w.r. t. a
piecewise constant function A :[#,(z),%0) — {1,2} satisfying
z,(t)z,(t) =0 at any jump time 7. N
Remark 4. There are many pairs of functions satisfying
condition (C4). For instance, a, =—y and a, =—cy for
some constant ¢ >0 and some continuously differentiable
function y:R, xR>— R with (7,V,7,V.7,V.y) being
uniformly bounded. Another example is ¢, =sin¢ and

a, =sin’ t . On the other hand, if (C4) does not hold, ®*" at

least includes the following state-driven switching law:
When x,x, >0, %, is switched on, and X, is switched on in

case of x;x, <0. 0

Remark 5. The previous discussion showed that the origin is
UGS w. 1. t. arbitrary switching signals. Thus, every solution
is complete [9]. When (C4) holds, Proposition 3 tells us that
the origin of (15) is UGAS w. r. t. any switching signals. To
the best of our knowledge, such results can only be proven
using the approach of common Lyapunov functions [11].
Particularly, LaSalle-type theorem cannot be used here.
However, it is nontrivial how to find a common Lyapunov
function for the studied switched systems in general. In fact,
for the simple case with ¢, =1 and a, = -1, itis not difficult
to show that there is no common quadratic Lyapunov
function for (15). Thus, it is also hard to use the approach of
common Lyapunov functions to study (15). In contrast to
these methods, we have shown that our results can be applied
to check UGAS. 0

V. CONCLUSIONS

In this paper, three tools have been presented to help the
verification of the OPE condition. From the proposed

examples, it can be seen that our approach affords more
flexibility comparing with the existing results. Particularly,
for some well-studied systems illustrated in Example 1, our
methods can use simple Lyapunov functions to guarantee
uniform global asymptotic stability without employing
limiting systems. A class of switched systems was studied in
Example 2 to demonstrate how the proposed methods can be
applied to the arbitrary switching case without founding a
common Lyapunov function that is not an easy job in general.
Future work may involve providing more tools to help the
verification of OPE conditions and extending the derived
results to other types of dynamic systems such as hybrid
systems and time-delay systems.
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