
 

 

 

  

 Abstract—This paper proposes three tools to facilitate the 

verification of the output-persistently exciting (OPE) 

condition and simultaneously, provides new asymptotic 

stability criteria for uniformly globally stable switched 

systems. By introducing some related reference systems, the 

OPE condition of the original system can be reduced or 

simplified. Both the ideas of classic LaSalle invariance 

principle and nested Matrosov theorem are used to generate 

such reference systems. The effectiveness and flexibility of 

the proposed methods are demonstrated by two applications. 

From these applications, it can be seen that the flexibility of 

the proposed method produces a novel set of tools for 

checking uniform asymptotic stability of switched 

time-varying systems. 

I. INTRODUCTION 

 his paper presents some new tools to help the verification 

of the output-persistently exciting (OPE) condition and 

simultaneously, provides new stability criteria for  uniformly 

globally stable (UGS) switched systems. The OPE condition 

is a generalization of weak zero-dectability [8] and !-PE 

condition [14, 15], which are widely used to ensure uniform 

attractivity of nonlinear time-varying systems [5, 7-10, 

14-15].   

Stability analysis of switched systems has been a 

popular research area [1-2, 4, 7, 9, 11-12, 16]. Due to the 

complex behaviors of switched systems, the traditional 

Lyapunov functions based theory is often not very effective 

for switched systems [1, 11]. Several possible extensions 

have been proposed to help stability analysis, for instance, the 

use of multiple Lyapunov functions [1, 2],  the extension of 

LaSalle invariance principle [4, 7, 12] and a type of Matrosov 

theorem [16]. It is worth to notice that the notion of 

output-persistent excitation (OPE) was proposed in [9] and 

used to derive a generalized Krasovskii-LaSalle theorem. 

This paper further contributes to stability of switched systems 

based on three novel tools for the verification of the OPE 

condition. 
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As discussed in [9], OPE plays an important role when 

we want to verify uniform global asymptotic stability (UGAS) 

for a UGS switched system. In fact, it is possible to show that 

OPE is a necessary condition to ensure uniform global 

attractivity of the original system.  Furthermore, it can be 

used as a sufficient condition to guarantee uniform global 

attractivity under a (necessary) assumption for UGS switched 

systems. Therefore, it is important to investigate the OPE 

condition.  

In general, it is hard to verify the OPE condition directly 

by its definition. To overcome this difficulty, the key 

technique used in this paper is to provide some easily checked 

conditions so that we can guarantee the OPE condition of the 

original system by verifying the OPE condition of a reduced 

and simpler reference system. Moreover, by continuing this 

process, a sequence of reference systems can be generated 

such that the OPE condition of the next system is more easily 

verified than the former. As soon as the OPE condition for 

one of reference systems is verified, the OPE condition of the 

original system can then be guaranteed.  

More precisely, a stability criterion proposed in [9] is 

revisited, see Theorem 1 below. Then, three different ways 

are proposed to generate reference systems.  First, a reference 

system is generated by keeping the same dynamics while 

changing the output function. Second, we provide a reference 

system by simplifying the dynamics of the system while 

keeping the same output. These methods are proposed in the 

spirit of LaSalle Invariance Principle. Third, a reference 

system can be obtained by augmenting output functions and 

keeping the same dynamics. This is consistent with the 

insight provided by the well-known Matrosov-type Theorem 

[14-16]. Two illustrative examples show the effectiveness of 

the proposed methods. From these applications, it can be seen 

that the proposed framework provides alternative ways to 

guarantee the UGAS property for UGS switched systems. 

This paper is organized as follows. Preliminary results 

are provided in Section II, including a stability criterion 

proposed in [9]. In Section III, three tools are proposed and 

they are followed by two examples in Section IV. Section V 

summarizes this work. 

Notations 

1. Throughout this paper, " denotes a finite set and 
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2. For any function qp RRRg  !""#:  and any ,!$%  

denote .,0),,,(),( pRxtxtgxtg $&'( %%   

3. For any function qp RRR  "#:)  , let 

),,,,(
21 pt

xxxt  )*  and ,1),,,,,(
21

pixxxt
pxi

++*  )  

denote the partial derivatives of )  w. r. t. the parameters t 

and 
i

x , respectively.  Moreover, let  

.),,,(),,,,(
2121

pT

pxxxx
Rxxxx

p
$('***(*   ))))  

4. A function qp RRRg  "#:  is said to be uniformly 

bounded if for any 01 ,r , there exists a 02 ,r  such that 

  2),( rxtg + , 0&'t  , 
1

rx +' .  

5. A function qp RRRg  "#:  is said to satisfy the local 

Caratheodory condition if the following hold: 

a) For any x in Rp, ),( xg -  is measurable. 

b) For almost all t in #R , ),( -tg  is continuous.  

c) For any closed interval #.( RbaI ],[  and any compact 

subset pRK / , there is a Lebesgue integrable function 

# RI
KI

:
,
)  such that  

                   )(),(
,

txtg
KI

)+ , It$'  , .Kx$'  

II. PRELIMINARIES 

A. The OPE condition and uniform global asymptotic 

stability 

In this subsection, we revisit some necessary notations 

and a key stability result presented in [9]. We refer readers to 

that paper for more details.  

Throughout this paper, we study a switched 

time-varying system described as follows:  

                                       ),,( 0xtfx (!                                 (1) 

                                       ),,( 0xthy (                                 (2) 

where #$Rt , pRx$  is the state vector and 0  is a 

! -valued switching signal; qp RRRh  !""#:  is an 

output function  and pp RRRf  !""#:  is a function with 

the property that for each ),,(),(, %% % --(--!$ ff  satisfies the 

local Caratheodory condition.  

Let 1  denote a set of pairs ),( 0x  with ! 2),[:
0

t0  

being a switching signal and x , starting at 0
0
&( tt , being a 

complete solution of (1) w. r. t. 0 . For convenience, we 

denote the initial time instant 
0

t  as )(
0

xt . Moreover, a time 

instant )(
0

xtt ,  is said to be a jump time if 

)()(lim t
t

030
3

45 
. Following [9], we denote  

 67 00 someforxxst 1$(1 ),(   

and            67 xsomeforxsw 1$(1 ),( 00 . 

Several definitions of stability are recalled as 

follows.  

Definition 1. a) The origin is said to be uniformly 

Lyapunov stable (ULS) w. r. t. 1  if, for any 0,8  there 

exists a 0)( ,89  such that for any stx 1$  with 

9:)(sx , we have 8:)(tx  for any tsxt ++)(
0

. 

b) All solutions are uniformly globally bounded (UGB) w. r. t. 

1  if, for any 0,M  there exists a 0)(
~

,MM  such that for 

any stx 1$  with Msx :)( , we have Mtx
~

)( :  for any 

tsxt ++)(
0

. 

c) The origin is said to be uniformly globally stable (UGS) w. 

r. t. 1  if, it is ULS w. r. t. 1 , and all solutions are UGB w. r. 

t. 1 . 

d) The origin is said to be uniformly globally attractive (UGA) 

w. r. t. 1  if for any 0,8  and any 0,r , there exists a 

0),( ,rT 8  such that for any stx 1$  and any )(
0

xts & with 

rsx +)( , we have 8:)(tx  for any Tst #& .  

e) The origin is said to be uniformly globally asymptotically 

stable (UGAS) w. r. t. 1  if, it is UGS and UGA w. r. t. 1 . 

In this paper, the following definition related to 

persistent excitation (PE) condition plays a central role  

Definition 2. The pair ),( fh  is output-persistently exciting 

(OPE) w. r. t. 1  if, for any 0,a  and any ab , , there exist 

two positive constants ),( baT and ),( bar  such that for any 

1$),( 0x  and any ),(
0

xtt &  the following implication 

holds: 

,,)( Tttbxa #++'++ 33 rdxh
Tt

t
&; <

#
33033

2

))(),(,( .  

(3) 

To state the main result presented in [9], the following 

assumption is needed. 

Assumption 1. For any ba ::0  and any 0,c , there exists 

a positive constant ),,( cbaM  such that for any 1$),( 0x  

and any ,)(
0

tsxt ++  with bxa ++ )(3 , ,ts ++' 3  the 

following integral inequality holds:  

)())(),(,(
2

stcMdxh
t

s
5#+< 33033 .     (4) 

The following result presented in Theorem 1 of [9] is 

recalled. It can be viewed as a generalized 

Krasovskii-LaSalle theorem, see more detailed discussions in 

that paper.  

Theorem 1. Consider the switched time-varying system 

(1)-(2). Let 1  denote a set of pairs ),( 0x  with 0  being a 

switching signal and x  being a complete solution of (1) w. r. 

t. 0 .Suppose the origin is UGS w. r. t. 1  and Assumption 1 

holds. If the pair ),( fh  is OPE w. r. t. 1 , then the origin is 

UGAS w. r. t. 1 .  

B. Zeroing and nonpositive pairs             

In this subsection, we give some definitions and results 

that are needed in next section. First, the following definition 

characterizes some relationships between two functions. 

Definition 3. Let qp RRRh  "#:  and qp RRRh
ˆ

:ˆ  "#  be 

given.   
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a) The pair )ˆ,( hh  is said to be a nonpositive pair if, for any 

time sequence  !nt , any constants ba ""0  and any 

sequence 
p

n
Rx #}{ , with bxa

n
$$ , Nn%& , the 

following implication holds: 

,ˆ1,0),(ˆsuplim0),(lim qixthxth
nninnnn

$$&$'(
 ! !

 (5) 

where iĥ  is the ith component of ĥ .  

b) The pair )ˆ,( hh  is said to be a zeroing pair if, for any time 

sequence  !nt , any constants ba ""0  and any sequence 

p

n
Rx #}{ , with bxa

n
$$ , Nn%& , the following 

implication holds:  

0),(ˆlim0),(lim ('(
 ! ! nnnnnn

xthxth .      (6) 

As will be shown later, both nonpositive pair and zeroing 

pair will play an important role in verifying the OPE 

condition. The following result presents some related 

properties. The proof is omitted to save space. 

Proposition 1. Let 1:1

qp RRRh !)* , 2:2

qp RRRh !)*  

and 3:3

qp RRRh !)*  be three functions.  Then, the 

following conditions hold.   

a) (Transitivity) Assume that ),( 21 hh  is a zeroing pair. If 

),( 32 hh  is a zeroing (nonpositive) pair, then ),( 31 hh  is also a 

zeroing (nonpositive) pair.  

b) Suppose 32 qq (   and for any ba ""0 , there is a 

function *! RR
q

ba
1:,+ , zero at zero and continuous at zero, 

such that )),((),(),(
1,32

xthxthxth
ba

+$, , 0-&t , 

bxa $$& . Then, ),( 21 hh  is a zeroing (nonpositive) pair if 

and only if ),( 31 hh  is a zeroing (nonpositive) pair.  

c) Assume that 11 (q , 1h  is uniformly bounded, and ),( 31 hh  

and ),( 32 hh  are both zeroing (nonpositive) pairs. Then 

),(
321

hhh  is also a zeroing (nonpositive) pair.                    . 

III. VERIFYING THE OPE CONDITION: THREE TOOLS    

In view of Theorem 1, we need to check three things to 

verify UGAS of the origin for switched time-varying system: 

(1) uniform global stability, (2) Assumption 1 and (3) the 

OPE condition. Generally speaking, it is possible to verify the 

first two conditions through some Lyapunov-like functions as 

shown in [9]. Therefore, checking the OPE condition 

becomes crucial. In that paper, several criteria have been 

proposed to check the OPE condition. In this section, three 

different tools will be proposed to verify the OPE condition. 

Then, two interesting examples will be presented in Section 

IV to illustrate the merits of the proposed new tools.  

A. The first tool: Changing output functions 

In this subsection, the first tool is presented. It shows 

that by changing the output function in (2), the OPE condition 

of the original system can be verified by checking the OPE 

condition of a “new” system with the new output. 

To this end, we need the following definition. 

Definition 4. Let qp RRRh !)*:  be given. It is said to be 

almost uniformly bounded if for any 0// ab , there exist a 

positive constant ),( ba0  and a measure zero subset baS ,  of 

*R  such that ),(),( baMxth $ , baSRt ,,%& * , 

bxa $$& .                                                                 

    The following result provides the first tool for the 

verification of OPE conditions. To save space, the proof is 

omitted. 

Theorem 2. (Changing output functions) Consider the 

switched time-varying system (1)-(2) and a set 1  of pairs 

),( 2x  where x is a complete solution of (1) w. r. t. 2 . Let 

qp RRRh
ˆ

:ˆ !3))*  be any function. Suppose for each 

3%4 , )ˆ,( 44 hh  is a zeroing pair, 
4

ĥ  satisfies the local 

Caratheodory condition and is almost uniformly bounded. 

Then, ),( fh  is OPE w. r. t. 1  provided that ),ˆ( fh  is OPE 

w. r. t. 1 .                                                                                     . 

B. The second tool: Simplifying the dynamics of systems 

Theorem 2 shows how to generate a reference system by 

selecting different output functions. In this subsection, 

another tool is proposed to simplify the dynamics of a system. 

Let  

                            5 6,,),( swpRcc 1%%(1 22               (7) 

where for any 1%),( 2c , c is viewed as a solution of 0(x  

w. r. t. 2 . Now, the following criterion is stated. Its proof is 

omitted to save space.   

Theorem 3. (Simplifying the dynamics) Consider the 

switched time-varying system (1)-(2) and a set 1  of pairs 

),( 2x  where x is a complete solution of (1) w. r. t. 2 . Let 1  

be the set defined in (7). Suppose that for each 3%4 , 

),( 44 fh  is a zeroing pair, TTT fh ),( 44  is almost uniformly 

bounded, 
4

h  satisfies the local Caratheodory condition and 

for all 
*

%% RtRx p , , ),( xth
4

is continuous in x, uniformly in 

t. Then, ),( fh is OPE w. r. t. 1  provided that )0,(h  is OPE 

w.r.t. 1  where pp RRR !3))
*

:0  represents the zero 

function.                                                                                 . 

C. The third tool: Extending output functions 

Besides changing output functions, it is possible to 

generate a reference system by augmenting outputs functions. 

This follows the same idea as the Matrosov-type theorems 

[14-16]. 

Consider the switched time-varying system (1)-(2) and 

the following condition where a function 
qp RRRg
ˆ

: !3))*  is said to be almost uniformly bounded 
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and continuously differentiable if for each , !" "g  is 

almost uniformly bounded and continuously differentiable. 

(C1) Suppose there exist a uniformly bounded and 

continuously differentiable function RRRV p # $$%: , 

and an almost uniformly bounded function 

RRRh p # $$
%

:ˆ  such that the following conditions hold.   

a) For any &!),( 'x  and any jump time t, we have  

))(),(,(lim))(),(,( ('(('
(

xVttxtV
t)#

* .          (8) 

b) The following inequality holds:  

.,,0                                            

),,,(ˆ),(),(),,(

 !+!+,+

*-%-.

"

""
""

n

xt

Rxt

xthxtVxtVxtV 
     (9) 

c) For any , !" the pair )ˆ,( "" hh  is a nonpositive pair.  

Now, the following theorem can be proposed. Its proof 

is omitted  

Theorem 4. (Extending output functions) Consider the 

switched time-varying system (1)-(2) and a set &  of the 

pairs ),( 'x  where x  is a complete solution of (1) w. r. t. ' .  

Let  .),(
~ TT Vhh  . Suppose (C1) holds. Then, ),( fh is 

OPE w. r. t. &  provided that ),
~

( fh  is OPE w. r. t. & .         / 

Remark 1. Suppose 00f . In this case, several assumptions 

could be relaxed. For example, the assumption that V  is 

continuously differentiable can be relaxed as V  is uniformly 

bounded and Vt-  exists and is bounded.                            / 

Remark 2. Theorem 4 can be recursively used to derive a 

“nested Matrosov theorem.” Due to limited space, we omit 

the detailed discussion and refer readers to [10] for some 

related discussion, also see [14-16].                                    /  

In addition to some regularity assumption, the following 

result is obtained.  

Corollary 1. Consider the switched time-varying system 

(1)-(2) and a set &  of pairs ),( 'x  where x  is a complete 

solution of (1) w. r. t. ' .  Suppose (C1) holds. Let 

TT hhh )ˆ,(. . If for each  !" ,
"

h  satisfies the local 

Caratheodory condition and is almost uniformly bounded, 

then ),( fh  is OPE w. r. t. &  provided that ),( fh  is OPE w. 

r. t. & .                                                                                  / 

IV. EXAMPLES  

Two examples are presented to demonstrate the use of 

the developed new tools. The first example considers a 

time-varying system. It can also be treated as a special case of 

a switched system with a single point index set. This example 

demonstrates how to generate appropriate reference systems 

using well selected Lyapunov-like functions to guarantee 

UGAS. The second example is used to illustrate how to 

obtain stability results to systems with arbitrary switching 

case. For this case, it is in general difficult to use LaSalle-type 

invariance principle. By constructing a sequence of reference 

systems, it is not necessary to search for common Lyapunov 

functions that are not easily found for the considered systems. 

A. The first example 

A third order system is considered as follows:  

332123

32132

3211

),,,(

),,,(

),,,(

zzzztzz

zzztzz

zzztz

)).

.

.

1

1

1

 

 

 

                  (10) 

where ),,( 321 zztz 21 %).  with RRR #$%
2:2  being 

continuously differentiable and satisfying the following 

regularity assumption:  

(C2) Suppose 0)0,0,( .t2 , ,0,+t  and 

),,,,(
32
22222 zzttt -----  are uniformly bounded.   

System (10) represents a closed-loop system of a 3rd 

order chained-form system and was studied in [14] to 

illustrate the use of the nested Matrosov theorem. Here, each 

of our main results is applied to show uniform global 

attractivity of the system.  In the remainder of this subsection, 

&  denotes the set of all complete solutions of (10).  The 

following steps are needed. 

3 Step1: Let 2/)( 2

2

2

21 zzV %. . Differentiating 1V   along the 

trajectories of (10), we get 02

31 *). zV . Using Condition 

(C2), it is not difficult to check that uniform global stability 

holds [5, 14]. Particularly, &  consists of all solutions of (10). 

Integrating the two sides of 2

31 zV ). , it can be seen that 

Assumption 1 holds with the virtual output function being 

chosen as 
3

zh . . To apply Theorem 1, the OPE condition is 

needed to guarantee UGAS of the origin.  

The proposed new tools will be used to check the OPE 

conditions by generating a sequence of reference systems. In 

this example, all involved output functions will satisfy the 

local Caratheodory condition and be uniformly bounded 

under condition (C2). Thus, the required regularity 

assumptions hold. Let 
Tzzzztzzzztzzzztf )),,,(),,,,(),,,,(( 332123213321 )). 111  

3 Step 2: Extending the output function 
3

z  to Tzz ),( 23 1 . 

Take ),,,( 321232 zzztzzV 1. . Differentiating 2V  along the 

trajectories of (10), we get   

),,,()],,,([ 3213

2

32122 zzztzzzztzV 41 %).       (11) 

for some uniformly bounded function 4 . It is trivial that 

)-,( 22

23
1zz  is a nonpositive pair. Since 4 is uniformly 

bounded, we have that for any 05b  , there is a positive 

constant 
b

M satisfying 
3

22

22
)(--)( zMzt,zV

b
*1  for any 

bzzzz T *. ),,(
321

. By (b) of Proposition 1, ),(
23

Vz   is 

also a nonpositive pair Thus, (C1) holds. According to 

Corollary 1, it is sufficient to show that ),),((
23

fVz T  is OPE.  
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Again by (b) of Proposition 1, )),(,),(( 22

2323

TT zzVz    is a 

zeroing pair. It is straightforward to see that  

)),(,),((
23

22

23

TT zzzz    is a zeroing pair. Thus, 

)),(,),((
2323

TT zzVz    is a zeroing pair according to (a) of 

Proposition 1. Employing Theorem 2, the output function can 

then be changed as Tzz ),( 23  .   

! Step 3: Changing the output function Tzz ),( 23   to 

Tz ),(
3
 . Choosing 2/2

13 zV "  and differentiating 3V  along 

the trajectories of (10), we get   

)),,,( 32113 zzztzV  "                       (12) 

It is claimed that ),),((),),((
123323
   zzzVzz TT "  is a 

nonpositive pair. First, it is easy to see that ),(
1
  z  is a 

zeroing pair and particularly, it is a nonpositive pair. 

Moreover,  

)),,(,),((),),((
132

2

123123
zzztzzzzzz TT # $%"  

is a nonpositive pair by (C2) and (b) of Proposition 1. Thus, 

),),((
123
   zzz T  is a nonpositive pair using (c) of 

Proposition 1. By definition, it is straightforward to see that 

)),(,),((
2323

TT zzzz     is a zeroing pair. According to (a) of 

Proposition 1,  ),),((
123
  zzz T  is also a nonpositive pair. So 

the claim is true and hence (C1) holds. By Corollary 1, it is 

sufficient to show that the pair ),),,((
123

fzzz T   is OPE. It 

is easy to verify that ),),,((
123

 Tzzz and ),(    are both 

zeroing pairs by (C2) and (b) of Proposition 1. Thus, 

),),,((
123

    Tzzz  is a zeroing pair in view of (c) of 

Proposition 1. By definition, )),,(,),,((
123123

TT zzzzzz       

is a zeroing pair. Therefore ),),,((
123

   Tzzz  is also a 

zeroing pair employing (a) of Proposition 1. This results that 

)),(,),,((
3123

TT zzzz     is a zeroing pair. Based on Theorem 

2, the output function can be changed as .),(
3

Tz    

! Step 4: Simplifying the dynamics as 0"z  and changing 

the output function Tz ),(
3
  to Tztzz ))0,,(,(

213
#$% . Notice 

that ( ),),(
3

fz T  is a zeroing pair. By Theorem 3, we only 

need to show that )0,),((
3

Tz   is OPE.  According to (C2) and 

(b) of Proposition 1, )))0,,(,(,),((
2133

TT ztzzz # $%  is a 

zeroing pair. Therefore, we may change the output function 

as Tztzz ))0,,(,(
213

#$%  by Theorem 2. 

! Step 5: Extending Tztzz ))0,,(,(
213

#$% to the following 

output function: 

.))0,,(),0,,(,(ˆ
2213

T

t
ztztzzh ## &$%"        (13) 

Define )0,,())0,,(( 2214 ztztzV t## &%"  and differentiate 4V  

along with 0"z . Then, 

)0,,())0,,(()0,,( 221

2

24 ztztzztV ttt ### &&%$&%" . 

Using a similar argument as in Step 2, it can be checked that   

),))0,,(,((
4213

Vztzz T  #$%  is a nonpositive pair. By Corollary 

1, Theorem 2 and changing the output function 
TVztzz )),0,,(,(

4213
 #$%  as the function ĥ  defined in (13), 

we only need to show that )0,ˆ(h  is OPE. 

! Step 6:Using a reduced PE condition to check the original 

OPE condition. In the following, let us show that the required 

OPE condition can be deduced by the following PE 

condition.  

(C3) For any constants ba ''0 , there exist a 0),( (baT  

and a 0),( (bar  such that                                    

.,0,)0,,(
T 2

Rtrdba
t

t t
)*+*+&,-- .

$
/0/0#/     (14) 

Indeed, for any constants ba ˆˆ0 '' , we can choose a small 

positive constant 2/âa -  such that 2/ˆ)0,,( at -/# , 

a-* / , in view of (C1). Let  

0)4/)ˆ,()12(ˆ,4/)ˆ,(ˆ),ˆ,(min()ˆ,ˆ(ˆ 222 (%" baTabaTabarbar . 

It can be checked that with bzzz T ˆ),,(
321

-  , if 2/ˆ
3

az +  

or ,
2

az +  then the following inequality holds:                   

,0,)ˆˆ(ˆ)4/)ˆ(ˆ),ˆ,(min(),,,(ˆ 2
2

321
+*++.

$
tb,arba,Tabardzzzh

Tt

t
00

 according to (C3). So we may assume that 2/ˆ
3

az '  and 

2/ˆ
2

aaz -' . In this case, if ,ˆ),,(ˆ
321

bzzza T --  we have  

2/2ˆ
1

az +  and  2/)12(ˆ)0,,(
21

%+% azz 0# , 

by the choice of the constant a. Consequently,  

.0,)ˆˆ(4/)ˆ,()12(ˆ),,,(ˆ 22
2

321
+*+%+.

$
tb,arbaTadzzzh

Tt

t
00  

Therefore )0,ˆ(h  is OPE under (C3).  

Hence, we have the following result.   

Proposition 2. Consider the third order system (10). Suppose 

Conditions (C2) and (C3) hold. Then, the origin is uniformly 

globally asymptotically stable.                                                           1 

Remark 3. The stability analysis of (10) can also be done 

using two approaches. One is based on the nested Matrosov 

theorem proposed in [14] where the main idea is to extend 

output functions such that they are more and more 

approaching to “being negative definite.” Another one is 

applying a generalized Krasovskii-LaSalle theorem presented 

in [8]. This approach is to reduce “the size or dimension of 

the invariant set” to the zero. The former needs to employ 

some nontrivial Lyapunov functions (see Equations (72)-(73) 

in that paper), while the latter requires a limiting process (the 

so-called limiting system) to guarantee UGAS. Based on our 

approach, different tools, such as changing output functions, 

extending output functions and simplifying the dynamics of 

systems, are used to check the OPE condition. These methods 

combine the ideas of Krasovskii-LaSalle theorem with the 

classic Matrosov theorem, but in a hybrid way and unified 

manner. Based on this example, we demonstrate that our 
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methods can avoid using complex Lyapunov functions and 

need no limiting systems to guarantee UGAS.                         

B. The second example 

Next, the following switched time-varying system is 

considered:   
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where RRRi %&'
2:$ , 2,1"i , are continuously 

differentiable functions with ),,,(
21 iziziti $$$$ (((  being 

uniformly bounded. First consider the following condition.   

(C4) There is a continuously differentiable function 

RRR %&'
2:) , with  ),,,(

21
)))) zzt (((  being uniformly 

bounded and such that i)$ , 2,1"i , are nonpositive 

functions, and ),(
i

$) , ,2,1"i  are zeroing pairs.  

If (C4) holds, let *  denote the set of all pairs ),( +z  

where z is a complete solution of (15) w. r. t. +  with 

}2,1{)),([:
0

%,zt+  being a piecewise constant function. 

Otherwise, let *  denote the set of all pairs ),( +z  where 

Tzzz ),( 21"  is a complete solution of (15) w.r.t. +  with 

}2,1{)),([:
0

%,zt+  being a piecewise constant function 

satisfying  0)()( 21 "tztz  at any jump time t. Since arbitrary 

switching signals are considered, it is reasonable to assume 

that the individual systems are stable [11]. Notice that 

,2,1, "# ii  are well-studied systems. For such systems, a 

necessary and sufficient condition of achieving uniform 

global asymptotic stability is the following PE condition.  

(C5) Let ,2,1,ˆ "i
i

$  be defined as  

         
-
.
/

"0101

"0101
"

'

'
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),(ˆ
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i 22$
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Assume that ,2,1,ˆ "i
i

$  satisfy the following PE condition: 

For any constants ba 330 , there exist a 0),( 4baT  and a 

0),( 4bar  such that   

.,,),(ˆ
2

RRtrdba
Tt

t i
01015677 '

'

8 2929$2    (17) 

In the following, we would like to show that the origin is 

UGAS w. r. t. *  under (C5). First, let us denote the system 

function 22 }2,1{: RRRf %&&'  as     

,)),,(,),,(()2,,,(

,)),,(,),,(()1,,,(

21212221221

12111221121

T

T

zzzztzzztzztf

zzztzzzztzztf

!!"
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$$
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for all 05t , Rzz 021, . Choose the Lyapunov function 

2/)( 2

2

2

1 zzV '" . Then, we have 02

11
7!"# zV  and 

02

22
7!"# zV . This implies that the origin is UGS w. r. t. 

*  and simultaneously, Assumption 1 holds with 
22 }2,1{: RRRh %&&'  being defined as izizzth "),,,( 21  

for all 05t , Rzz 021, , 2,1"i [9].  According to Theorem 1, 

it remains to show that ),( fh  is OPE w. r. t. *  . In the 

following, we divide the discussion into two cases to prove 

this fact. First consider the case that (C4) holds. Let 

2211
),,( zzztzW )" . Then, 

iiii
zzW

i
:)$ '" !#

2

3
  for some 

uniformly bounded functions i: , 2,1"i . It is not difficult to 

check that for each }2,1{0i , ),(
i

Wz
i #

  is a nonpositive pair. 

Moreover, W is continuous and independent to the switching 

signals. Thus, (C1) holds. According to Corollary 1, it is 

sufficient to check that ),),(( fWh T  is OPE w. r. t. *  . Since 

),( i$) , ,2,1"i  are zeroing pairs,  we have 

))),(,),((
3

2

3

T

iii

T

iiiii
zzzzz !! ' $:)$ , ,2,1"i  are zeroing pairs 

in view of (C4). Hence, we can change the output function 
TWh ),(  as 

T

iii
zzztzizzth )),,(,(),,,(

~
32121 !" $ , 2,1"1i  ,   (18) 

for all 05t , Rzz 021, , based on Theorem 2. When (C4) 

does not hold, let ),,( 2121 zztzzW ii $!" , ,2,1"1i  

051t , Rzz 01
21

, . Then, iiiii zzW
i

;$ '!" !#
2

3

2  for some 

uniformly bounded functions i; , 2,1"i . It is easy to see 

that for each }2,1{0i , ),(
iii

Wz #
  is a nonpositive pair. Since 

0)()( 21 "tztz  at any jump time t, (C1) also holds. Based on 

Theorem 4 and changing the output function as the function 

h
~

 defined in (18), it remains to show that ),
~

( fh  is OPE w. r. 

t. *  for both cases. Notice that for each }2,1{0i , ),
~

( ii fh  is  

a zeroing pair. By Theorem 3, we only need to check that 

)0,
~

(h  is OPE w. r.,t. *  where  

< =.,),( 2 swRcc *00"* ++  

Since ,2,1, "( i
izi

$  are uniformly bounded, 

)))),(ˆ,(),))(,((
33321

T

iiii

T

iii
zztzz,zt,zz !!! $$ , ,2,1"i  are 

zeroing pairs by (b) of Proposition 1 where  ,2,1,ˆ "i
i

$ are the 

functions defined in (16). Employing Theorem 2, it is 

sufficient to show the OPE condition of )0,ˆ(h  where  

T

iiii
zztzizzth )),(ˆ,(),,,(ˆ

3321 !!" $ , 2,1"i .          (19) 

According to (C5), for any ,0 ba 33 there exist a 

0),( 4baT and a 0),( 4bar  such that (17) holds. Since i$ , 

2,1"i  are uniformly bounded, there is a constant 1)( 4bM  

such that 

 Mzzti 7),,( 21$ , 2,1"1i , 051t , bzz T 71 ),( 21 . 

Notice that for  any ,'0Rt  any 04b  and any bzz T 7),(
21

, 

we have 
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for any ,")Rt  any 0&& ab  and any 

bzza T ** ),(
21

.  Therefore )0,ˆ(h  is OPE w. r. t. + , 

under (C5). The following result can then be proposed.  

Proposition 3. Consider the switched system (15). Suppose 

(C5) holds. Then, the origin is uniformly globally 

asymptotically stable w. r. t. +  where under (C4), +  is the 

set of all pairs ),( !z  with z being a complete solution of (15) 

w. r. t. a piecewise constant function }2,1{)),([:
0

,-zt! , 

and otherwise, +  is the set of all pairs ),( !z  with 

Tzzz ),( 21#  being a complete solution of (15)  w. r. t. a 

piecewise constant function }2,1{)),([:
0

,-zt!  satisfying  

0)()( 21 #tztz  at any jump time t.                                         . 

Remark 4. There are many pairs of functions satisfying 

condition (C4). For instance, / %#
1

 and / c%#
2

 for 

some constant 0&c  and some continuously differentiable 

function RRR ,0"
2:/ with  ),,,(

21
//// zzt 111  being 

uniformly bounded. Another example is tsin1 #  and 

t3

2 sin# . On the other hand, if (C4) does not hold, sw+  at 

least includes the following state-driven switching law: 

When 021 &xx , 12  is switched on, and  22  is switched on in 

case of 021 3xx .                                                                     . 

Remark 5. The previous discussion showed that the origin is 

UGS w. r. t. arbitrary switching signals. Thus, every solution 

is complete [9]. When (C4) holds, Proposition 3 tells us that 

the origin of (15) is UGAS w. r. t. any switching signals. To 

the best of our knowledge, such results can only be proven 

using the approach of common Lyapunov functions [11]. 

Particularly, LaSalle-type theorem cannot be used here. 

However, it is nontrivial how to find a common Lyapunov 

function for the studied switched systems in general. In fact, 

for the simple case with 11 #  and 12 %# , it is not difficult 

to show that there is no common quadratic Lyapunov 

function for (15).  Thus, it is also hard to use the approach of 

common Lyapunov functions to study (15). In contrast to 

these methods, we have shown that our results can be applied 

to check UGAS.                                                                    .                               

V. CONCLUSIONS 

In this paper, three tools have been presented to help the 

verification of the OPE condition. From the proposed 

examples, it can be seen that our approach affords more 

flexibility comparing with the existing results. Particularly, 

for some well-studied systems illustrated in Example 1, our 

methods can use simple Lyapunov functions to guarantee 

uniform global asymptotic stability without employing 

limiting systems. A class of switched systems was studied in 

Example 2 to demonstrate how the proposed methods can be 

applied to the arbitrary switching case without founding a 

common Lyapunov function that is not an easy job in general. 

Future work may involve providing more tools to help the 

verification of OPE conditions and extending the derived 

results to other types of dynamic systems such as hybrid 

systems and time-delay systems.  
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