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Abstract— The accessibility of the class of driftless single-
input nonlinear time-delay systems is fully characterized for
the first time. This result is obtained through the introduction
of new tools within a geometric approach recently introduced
in the literature. Moreover, all those possible autonomous
elements, which can depend on the variables with time-delay,
are also characterized when the system is not accessible and in
consequence, a canonical form of those systems is deduced.

I. INTRODUCTION

The accessibility of nonlinear time-delay systems was

considered for the first time in [8] where a suitable definition

of accessibility has been proposed and a sufficient condition

to test whether or not a given system is accessible has been

given. However the problem to characterize completely the

accessibility of nonlinear time-delay systems, by identifying

the non accessible part is still an open problem.

The goal of this paper is to show how it is possible through

the introduction of new tools within a new approach recently

introduced in the literature [2], [3] to easily characterize

the accessibility properties of driftless time–delay systems

with constant commensurate delay. As an example, in such

a framework it becomes immediately clear that the following

simple system

ẋ(t) =

(

x2(t −D)
1

)

u(t),

with D ≥ 0 a constant delay, is accessible whenever D > 0

and non accessible when D = 0.

The paper is organized as follows. In Section II, some fun-

damental notions on time-delay systems are given as well as

the definition of accessibility which were introduced in [2],

[8], [13]. In Section III, the new geometric notion of closure

of the module spanned by a single element is introduced and

by use of it, we propose a sufficient and necessary condition

for the accessibility for this class of systems. In Section IV,

when the original system is not accessible, we show how to

characterize all its autonomous functions (which can depend

on the variables with time-delay). Based on the computations

of the autonomous functions determined in Section IV, a
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iosto 25, 00185 Rome, Italy claudia.califano@uniroma1.it

standard decomposition into an autonomous subsystem and

an accessible subsystem is deduced in Section V. Finally,

some concluding remarks are given in Section VI.

II. PRELIMINARIES AND NOTATIONS

In this paper, we characterize the accessibility property of

the driftless single-input nonlinear time-delay system

Σ : ẋ(t) = g(x[s])u(t) (1)

where xT
[s] = (xT (t),xT (t −1), . . .,xT (t − s)), s ≥ 1, with x ∈

R
n, u ∈ R and the entries of g(x[s]) are analytic functions.

As it is well known, when s = 0 and n ≥ 2, the system Σ
is clearly never accessible because a single vector field in

R
n is always involutive and thus its Lie algebra has rank 1.

However, for the case s ≥ 1, it becomes much more involved

since a single vector field is not always involutive anymore

[2]. Despite some sufficient conditions given in [8], [9], the

characterization of accessibility is an open problem for this

class of systems.

The following notations will be used [3], [7],[13]:

• K is the field of meromorphic functions of a finite

number of variables in {x(t − i),u(t − i), . . .,u(k)(t −
i), i,k∈N};

• δ represents the backward time-shift operator defined

as

δ (ϕ(t)d f (t)) = ϕ(t −1)d f (t−1), ϕ(·), f (·)∈ K ;

• d is the standard differential operator;

• Given a function f (x(t), . . .,x(t− s)), we will denote by

f (−l) = f (x(t − l), . . .,x(t − s− l));
• K (δ ] is the left ring of polynomials in δ with coeffi-

cients in K . Every element of K (δ ] may be written as

α(δ ] = α0(t)+α1(t)δ + · · ·+αrα (t)δ rα , αi ∈K , where

rα = deg(α(δ ]);
• We will denote by X = spanK (δ ]{dxi, i∈ [1,n]}. Let us

recall that the elements of this space are called 1-forms;

• For convenience, we will denote by Ei the extended

space Ei = R
(i+1)n with the coordinates x(t), . . .,x(t− i).

• Let D be a distribution defined in space Ei = R
(i+1)n

with coordinates x(t), . . .,x(t − i), we denote by D̄ its

involutive closure. In other words, D̄ is the smallest

distribution such that D ⊂ D̄ and for any f ∈ D̄ , g ∈ D̄ ,

we have [ f ,g]∈ D̄ .
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A. Autonomous Elements

Definition 2.1: A 1-form ω in X is said to be an au-

tonomous element of the system Σ, given by (1), if there

exists an integer ν and not all zero coefficients αi ∈ K (δ ],
for 1 ≤ i ≤ ν , such that

α0ω + · · ·+αν ω(ν) = 0.

Definition 2.2: The relative degree r of a 1-form ω ∈ X

is defined by

r = min{k ∈ N | ω(k) 6∈ X }.

Proposition 2.3: A 1-form ω in X is an autonomous

element if and only if it has an infinite relative degree.

Proposition 2.4: The function ϕ ∈K and the 1-form dϕ
have the same relative degree.

Definition 2.5: A nonzero function ϕ ∈K is said to be an

autonomous element of Σ if the 1-form dϕ is an autonomous

element of Σ.

B. Accessibility

In this paper, we use the following definition of accessibil-

ity of nonlinear time-delay systems introduced in [8], which

generalizes the accessibility of nonlinear systems without

time-delay [5].

Definition 2.6: The system Σ, given by (1), is said to

be accessible if there does not exist any nonconstant au-

tonomous function.

Lemma 2.7: For any driftless system (1), the relative

degree of a function ϕ ∈ K is greater than 1 if and only if

it is infinite.

Proof: Let ϕ = ϕ(x(t),x(t −1), . . .,x(t − k)), k ≥ 0, be

a meromorphic function depending on a finite number of

variables, we have

ϕ̇ =
k

∑
i=0

∂ϕ

∂ x(t − i)
ẋ(t − i) =

k

∑
i=0

∂ϕ

∂ x(t − i)
g(−i)u(t− i).

Notice that the relative degree of ϕ is greater than one

if and only if it satisfies
∂ ϕ̇

∂ u(t − i)
= 0, ∀ i ≥ 0 which is

equivalent to

∂ϕ

∂ x(t − i)
g(−i) = 0, ∀ i ≥ 0,

which implies that ϕ̇ = 0 and consequently its relative

degree is infinite.

Remark 2.8: It follows from Proposition 2.3-2.4 and

Lemma 2.7 that the system Σ is accessible if there does not

exist any nonzero function whose relative degree is greater

than one. For the system without time-delays, i.e., s = 0, the

problem of accessibility has a simple answer. In fact, it is

well known that the module spanned by a single vector field

g(x(t)) is always involutive and thus there always exist n−1

functions ϕ1(x(t)), . . .,ϕn−1(x(t)) such that

∂ ϕ̇l

∂ u(t)
= dϕl ·g(x(t)) = 0, 1 ≤ l ≤ n−1,

where dϕl is defined as follows

dϕl =

(

∂ϕl

∂ x1(t)
, . . .,

∂ϕl

∂ xn(t)

)

.

These n − 1 functions ϕi, 1 ≤ i ≤ n − 1, can be ob-

tained just by solving the above equation and they sat-

isfy span{dϕ1, . . .,dϕn−1} = g⊥. However for the nonlinear

system with time-delay, this is not true any more since

the module spanned by a single vector field is not always

involutive any longer [2], [3].

In the next sections, we will study the following problem

for nonlinear time-delay system Σ: how to construct the

closure(s) of the module spanned by a single element g =
g(x(t), . . .,x(t− s)); how does the closure(s) characterize the

accessibility property and all the autonomous functions of Σ.

III. CHARACTERIZATION OF THE ACCESSIBILITY

A. The Closure of g(x[s]) in E0

To the time-delay system Σ, given by (1), we associate

naturally the following infinite dimensional system

Σ̃ :

ẋ(t) = g(x[s])u(t)

ẋ(t −1) = g(x[s](−1))u(t −1)
...

Consider the series development of g(x[s]) with respect to

the parameters x(t− i), i≥ 1, around the point (x(t),0,0, . . .),

g = g0 +
s

∑
i=1

n

∑
j=1

g1
i jx j(t − i)+

1

2

s

∑
i,k=1

n

∑
j,l=1

g2
i j,klx j(t − i)xl(t − k)+ · · ·

(2)

for 1 ≤ j ≤ n, where

g0 = g(x(t),0, . . .,0)

g1
i j =

[

∂ g

∂ x j(t − i)

]

x(t−l)=0, l≥1

...

Let G be the distribution spanned by all the coefficient vector

fields of the development (2), i.e.,

G = span{g0(x(t)),g1
i j(x(t)),g2

i j,kl(x(t)), . . .}. (3)

We define the involutive distribution Ḡ as the closure of

g(x[s]) in space E0.
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Proposition 3.1: For the system Σ, given by (1), we have

(i) rankḠ = r0 ≤ n if and only if there exist n − r0

functions ϕ1, . . .,ϕn−r0
, depending on the x(t)

variables only, such that
∂ ϕ̇l

∂ u(t − i)
= 0, 1 ≤ l ≤ n− r0,

∀ i ≥ 0;

(ii) rank Ḡ = r0 = n if and only if there doesn’t exist

any function ϕ = ϕ(x(t),x(t −1), . . .,x(t − k)), k ≥ 0,

which satisfies
∂ ϕ̇

∂ u(t − i)
= 0, ∀ i ≥ 0.

Remark 3.2: Proposition 3.1 shows that the distribution Ḡ

characterizes all these autonomous functions which depend

on the x(t) variables only. It is important to emphasize

that if rank Ḡ = r0 < n, besides the n − r0 autonomous

functions depending on the x(t) variables only, there maybe

exist still other ones which depend also the variables with

time-delay. However, if rankḠ = r0 = n, there doesn’t exist

any autonomous function.

Example 3.3: Consider the following nonlinear time-

delay system

Σ1 : ẋ(t) = g(x[1])u(t) =





3x3[x1(t −1)− x3
2(t −1)]

1

x1(t −1)− x3
2(t −1))



u(t).

The development of g(x[1]) with respect to the parameters

x(t −1), around the point (x(t),0), is given by

g(x[1]) =





0

1

0



+





3x3(t)
0

1



x1(t −1)

+





−3x3(t)
0

−1



x3
2(t −1),

and thus

G = span











0

1

0



 ,





3x3(t)
0

1











.

It is clear that rank Ḡ = 2 and then there exists one func-

tion ϕ, which depends only the x(t) variables, such that
∂ ϕ̇

∂ u(t − i)
= 0, i ≥ 0. By a simple computation, we get

ϕ = x1(t)−
3

2
x2

3(t).

Corollary 3.4: If there exist some function with relative

degree greater than one, then there exists at least one of

them which depends on the x(t) variables only.

Proof: Assume that there exists no function ϕ =
ϕ(x(t)) with relative degree greater than 1, then by (i) of

Proposition 3.1, rank Ḡ = r0 = n. But by (ii), there doesn’t

exist any other function with relative degree 2, which gives

a contradiction.

B. Main result

Theorem 3.5: The system Σ, defined by (1), is accessible

if and only if rankḠ = n.

Proof: Recall that for the system Σ, the relative degree

of a function ϕ ∈K is greater than 1 if and only if ϕ satisfies

the condition
∂ ϕ̇

∂u(t−i) = 0, ∀ i≥ 0. If Σ is accessible, then there

does not exist any function whose relative degree is greater

than 1 and thus according to (ii) of Proposition 3.1, we get

rankḠ = n which proves the necessity. The sufficiency is

obvious.

Remark 3.6: Theorem 3.5 shows that the distribution Ḡ

characterizes completely the accessibility property of the

original nonlinear time-delay system Σ, given by (1). Notice

that the distribution Ḡ is defined on space E0 = R
n with

coordinates x(t). Therefore this result reduces the problem of

verifying the accessibility of an infinite dimensional system

to the computation of the rank of the distribution Ḡ on E0 =
R

n. Moreover, together with Proposition 3.1, it follows that

when Σ is not accessible, the closure Ḡ of g(x[s]) character-

izes all the independent autonomous functions ϕ1, . . .,ϕn−r0

with relative degree 2 depending on the x(t)-variables only

(there maybe exist still other ones, see Section IV) and

(Ḡ)⊥ = span{dϕ1, . . .,dϕn−r0
}.

Example 3.3 cont’d. By Theorem 3.5, system Σ1 is

not accessible and possesses an autonomous function

ϕ = x1(t)−
3
2

x2
3(t).

Example 3.7: Consider the following nonlinear time-

delay system

Σ2 : ẋ(t) = g(x[2]) ·u(t) =





x2(t −1)
sinx1(t −2)

x3(t −1)x2(t)



u(t).

The development of g(x[2]) with respect to the parameters

x(t −1),x(t −2), around the point (x(t),0,0), is given by

g(x[2]) =





1

0

0



x2(t −1)+





0

0

x2(t)



x3(t −1)

+





0

1

0



x4(t −2)+





0

− 1
3

0



x3
4(t −2)+ · · ·

We get

Ḡ = span











1

0

0



 ,





0

0

1



 ,





0

1

0











1070



since 







0

0

x2(t)



 ,





0

1

0







 =





0

0

1



 .

Thus rank Ḡ = 3 at any point (x(t),0,0) which implies that

Σ2 is accessible at any point (x(t),0,0).

Example 3.8: (The chained form) Consider the family of

nonlinear time-delay systems

Σc : ẋ(t) = g(x[1]) ·u(t) =





















x2(t)
...

xk(t −1)
...

xn(t)
1





















·u(t),

where xk(t −1) denotes the (k−1)-th element of g(x[1]). If

k = n, it is easy to check that rank Ḡ = n and moreover the

distribution G satisfies the conditions rankG
(i) = i + 2, for

0 ≤ i ≤ n−2, where G(i) is defined by G(0) = G et G(i) =
G(i−1) +[G(i−1),G(i−1)].

If k < n, then this system is not accessible since rank Ḡ =
k and thus there exist n − k autonomous functions (ϕ =
xn−1(t)−

1
2

x2
n(t), etc.).

Remark 3.9: Note that the system defined in R
n

Σ3 : ẋ(t) = g(x(t)) ·u(t) =











x2(t)
...

xn(t)
1











u(t).

is never accessible. Example 3.8 shows an interesting phe-

nomenon, that is Σ3 becomes completely accessible when

we add a time-delay to the (n− 1)-th element of g and it

becomes partially accessible if we add a time-delay to the

k-th element of g, for 1 ≤ k ≤ n−2.

IV. AUTONOMOUS FUNCTIONS IN Ei , i ≥ 1

Example 4.1: Consider the following nonlinear time-

delay system

Σ4 : ẋ(t) =





1

0

x2(t −1))



u(t).

It is easy to calculate that

Ḡ = span











1

0

0



 ,





0

0

1











.

Since rankḠ = 2, this system is not accessible and there

exists one autonomous function depending on the x(t)
variables only that is given by ϕ1 = x2(t).

It is interesting to note that besides ϕ1 = x2(t), the

system Σ4 possesses still other autonomous functions.

On one hand, obviously all the functions with time-

delay ϕ1(−l) = x2(t − l), ∀ l ≥ 0, satisfy the conditions
∂ ϕ̇

∂ u(t − i)
= 0, ∀ i ≥ 0, in other words, they are autonomous

functions of Σ4. But they can be seen as trivial ones since

for any autonomous function ϕ of system Σ, given by

(1), it is obvious that all the functions ϕ(−l), l ≥ 0, are

also autonomous ones. On the other hand, there exists still

another independent non trivial autonomous function of

Σ4 given by ϕ2 = x1(t)x2(t − 1)− x3(t) which can not be

characterized by the closure Ḡ in E0. One question arises:

which distribution can determine this new autonomous

function? More generally, when r0 < n, i.e ., the considered

system Σ is not accessible, how to find all its autonomous

functions ϕ = ϕ(x(t), . . .,x(t − k)) such that
∂ ϕ̇

∂ u(t − i)
= 0,

i≥ 0? In this section, we will construct the closures of g(x[s])
in the extended space Ei, i ≥ 0, which can characterize all

the autonomous functions.

Now consider the following elements defined in the ex-

tended space Ei = R
n(i+1)















g

0
...

0

0















,















0

g(−1)
...

0

0















, . . .,

















0
...
...

0

g(−i)

















and express them by their development with

respect to the parameters x(t − l), l ≥ i + 1, around

x(t − i − 1) = x(t − i − 2) = · · · = 0. Denote by GEi
the

distribution spanned by all the coefficient vector fields,

which depend on obviously the (x(t), . . .,x(t − i)) variables

only. Clearly, GE0
coincides with G, defined by (3). We

define the distribution ḠEi
as the extended closure of g(x[s])

in space Ei.

Proposition 4.2: Assume that the system Σ, given by (1),

is not accessible, i.e., it satisfies rankḠE0
= r0 < n, then

(i) The extended closures ḠEk
, k ≥ 0, characterizes

completely all those autonomous functions, which

depend on the x(t), . . .,x(t − k) variables only, by the

equation dϕ · ḠEk
= 0.

(ii) Assume that (ḠE0
)⊥ = span{dϕl(x(t)), 1 ≤ l ≤ n− r0}

and for arbitrary k ≥ 1,

(ḠEk
)⊥ = (ḠEk−1

)⊥+ span{dψ j(x[k]), j ≥ 0},

then we have

dψ j(x[k]) ∈ span{dx(t), . . .,dx(t − k−1),

dϕl(x(t − k)), 1 ≤ l ≤ n− r0}.

(iii) The system Σ possesses at most n−1 independent (on

K (δ ]) autonomous functions.
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(iv) There exists an index γ ≥ 0 such that the extended

closure ḠEγ = 0 characterizes completely all the in-

dependent autonomous functions of Σ by the equation

dϕ · ḠEγ = 0. Moreover

ḠEγ =







Gγ ,0

. . .

Gγ ,γ






, (4)

and denoting by rγ = rank(Gγ ,0) there exist n − rγ

independent autonomous functions which satisfy

dϕ j · Gγ ,i = 0, i = 0, · · · ,γ, j ∈ [1, · · ·n − rγ ], and

any other autonomous function ϕ of Σ satisfies

dϕ ∈ spanK (δ ]{dϕ1, · · · ,dϕn−r0
}.

Remark 4.3: The rank of ḠEγ is a constant and thus

due to the structure of ḠEγ , there always exist distributions

Gγ ,0,Gγ ,1, . . .,Gγ ,γ that are of constant rank and satisfy (4).

Example 4.4: Consider the following nonlinear time-

delay system

Σ5 : ẋ(t) =









1

x3(t −2)
0

x3(t −1)









u(t).

The involutive closure ḠE0
of g(x[2]) is given by

ḠE0
= span























1

0

0

0









,









0

1

0

0









,









0

0

0

1























,

which gives an autonomous function depending on the x(t)
variables only, that is

ϕ11 = x3(t)

since (ḠE0
)⊥ = span{dx3(t)}.

The extended closure ḠE1
of g(x[2]) is given by

ḠE1
= span







































































1

0

0

x3(t −1)
0

0

0

0

























,

























0

1

0

0

0

0

0

0

























,

























0

0

0

0

1

0

0

0

























,

























0

0

0

0

0

1

0

0

























,

























0

0

0

0

0

0

0

1







































































.

Observe that (ḠE1
)⊥ = span{dx3(t),dx3(t − 1),x3(t −

1)dx1(t)−dx4(t)}, and thus we get 3 autonomous functions

depending on the (x(t),x(t −1)) variables

ϕ11 = x3(t)
ϕ12 = x3(t −1)
ϕ21 = x1(t)x3(t −1)− x4(t).

Clearly, (ḠE1
)⊥ = (ḠE0

)⊥+span{dϕ12,dϕ21} and dϕ12, dϕ21

satisfy that

dϕ12,dϕ21 ∈ span{dx(t),dϕ11(x(t −1))},

and thus satisfy item (i) and (ii) of Proposition 4.2. Now

consider the extended closure ḠE2
of g(x[2]) in E2,

ḠE2
= span























































































































1

x3(t −2)
0

x3(t −1)
0

0

0

0

0

0

0

0









































,









































0

0

0

0

1

0

0

x3(t −2)
0

0

0

0









































,









































0

0

0

0

0

1

0

0

0

0

0

0









































,









































0

0

0

0

0

0

0

0

1

0

0

0









































,









































0

0

0

0

0

0

0

0

0

1

0

0









































,









































0

0

0

0

0

0

0

0

0

0

0

1























































































































.

A simple calculation shows that (ḠE2
)⊥ = (ḠE1

)⊥ +
span{dx3(t − 2),x3(t − 2)dx1(t − 1)− dx4(t − 1) which im-

plies that we have 6 autonomous functions depending on the

(x(t),x(t −1),x(t −2)) variables

ϕ11 = x3(t)
ϕ12 = x3(t −1)
ϕ13 = x3(t −2)
ϕ21 = x1(t)x3(t −1)− x4(t)
ϕ22 = x1(t −1)x3(t −2)− x4(t −1)
ϕ31 = x1(t)x3(t −2)− x2(t).

However, only three autonomous functions ϕ11, ϕ21, ϕ31 are

independent on K (δ ]. By item (iii) of Proposition 4.2, they

span a basis of all the non trivial autonomous functions of
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Σ5. Moreover, it is easy seen that ϕ11, ϕ21, ϕ31 are exactly

the solutions of the equation dϕ ·G20 = 0, where

G20 =









1

x3(t −2)
0

x3(t −1)









,

which corresponds the result of item (iv) of Proposition 4.2.

V. DECOMPOSITION OF NON-ACCESSIBLE DRIFTLESS

SINGLE-INPUT SYSTEMS

When the system Σ, given by (1), is not accessible,

i.e., it satisfies rankḠ = r0 < n, it can be decomposed

into two parts and one of them being nonaccessible. Let

rankGγ ,0 = rγ ≥ r0 ≥ 1, by item (iv) of Proposition 4.2,

there exists n − rγ independent autonomous functions, de-

noted by ϕ1, . . .,ϕn−rγ , which are determined by the equa-

tion dϕ · Gγ ,i = 0, i ∈ [0,γ] and such that any other

autonomous function ϕ(x(t), · · · ,x(t − l)) satisfies dϕ ∈
spanK (δ ]{dϕ1, · · · ,dϕn−r0

}. Obviously we have

∂ (ϕ1, . . .,ϕn−rγ )

∂ (x1(t), . . .,xn(t))
= n− rγ .

A consequence of the previous consideration is the pos-

sibility of finding an appropriate bicausal change of coordi-

nates which decomposes the system into an accessible part

and an autonomous part. This result is stated in the next

theorem while its proof is omitted for space reasons.

Theorem 5.1: Let rγ = rank(Gγ ,0), and let ϕ1, . . .,ϕn−rγ

be the n− rγ independent functions such that dϕig(·) = 0

and any other autonomous function ϕ for Σ, satisfies dϕ ∈
spanK (δ ]{dϕ1, · · · ,dϕn−r0

}. Then there exists rγ independent

functions ϕn−rγ+1, . . .,ϕn) such that the change of coordi-

nates z = (ϕ1, . . .,ϕn−rγ ,ϕn−rγ+1, . . .,ϕn)
T is bicausal and in

the new coordinates the system reads







































ż1(t) = 0
...

żn−rγ (t) = 0

żn−rγ+1
(t) = g̃n−rγ+1

(z[s̄]) ·u(t)
...

żn(t) = g̃n(z[s̄]) ·u(t).

Example 4.4 cont’d. By Proposition 4.2 any autonomous

function ϕ for Σ5 satisfies dϕ ∈ spanK (δ ]{dϕ11,dϕ21,dϕ31}.

Set now z1(t) = ϕ11 = x3(t), z2(t) = ϕ21 = x1(t)x3(t − 1)−
x4(t),z3(t) = ϕ31 = x1(t)x3(t−2)−x2(t) and note that setting

z4(t) = x1(t) the change of coordinates

z(t) =









x3(t)
x1(t)x3(t −1)− x4(t)
x1(t)x3(t −2)− x2(t)

x1(t)









which is characterized by the differential representation

dz =









0 0 1 0

x3(t −1) 0 x1(t)δ −1

x3(t −2) −1 x1(t)δ
2 0

1 0 0 0









dx

is bicausal, being T (x[2],δ ) unimodular. In the new coordi-

nates the system reads

z1(t) = 0

z2(t) = 0

z3(t) = 0

z4(t) = u(t)

VI. CONCLUSIONS

A class of driftless single-input nonlinear time-delay sys-

tems has been considered. Surprisingly, it has been shown

that they may be fully accessible. More generally, thanks to

appropriate geometric tools, it has been possible to character-

ize completely the accessibility of those systems. Moreover,

whenever the system is not accessible, then it was shown that

a standard decomposition into an autonomous subsystem and

an accessible subsystem always exists. The latter generalizes

a canonical decomposition which is well known for linear

and nonlinear delay free systems. Further research is required

for more general systems which include a drift term and

delayed input terms.
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