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Abstract— In this paper, we present a joint state and adaptive
parameter identification scheme for the cases when all the states
of the system are measured and when only some states of the
system are measured. When all the states are measured, we
show that, in the presence of process and measurement noise,
the state and parameter estimation errors are bounded. To this
end, we show that this is possible only through the appropriate
design of a virtual input which ensures that the system error
signals are bounded. As a special case of all the states being
measured, we show that in the case of a noise free system,
the state estimation errors converge to the origin. For the case
when only some states are measured, we show that for a linear
system with n states, m inputs and p measurements, we can
estimate at most p2 entries of the system matrix and pm entries
of the input matrix.

I. INTRODUCTION

Having an accurate physics based mathematical model

that accurately captures the behavior of a real system is

most desired for estimation or control applications. How-

ever, constructing such a mathematical model is a tedious

process, involving time and frequency based techniques, and

often times control system engineers have to look at non-

conventional methods for obtaining robustness in control

design applications. A common practice is to obtain an

approximate mathematical description of the real system

and then augment this model with sufficient intelligence

so that it can modify its behavior to adapt to any change

in the environment. Such a system is an adaptive system

that changes its behavior according to the change in the

environment or the circumstance under which the system

operates. The phrases adaptive system, adaptive estimation

and adaptive control were used as early as 1950 [1].

Given the structure of the model, the model response is

determined by the values of the model parameters [1], [2],

[3], [4]. Thus the problem of parameter estimation is to

identify the values of the unknown parameters of a system

either online or off-line via available system measurements

and inputs. In some applications these parameters may be

calculated using the laws of physics, properties of materials,

and such methods, while in other applications the parameters

have to be calculated by observing the system’s response to

certain inputs. In the case of a linear time invariant, stable

system, frequency or time domain based off-line techniques

are used to deduce the unknown parameters via the available

measurements. However, in cases where the system might
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be linear but the unknown parameters are allowed to change

with time, such off-line techniques need not necessarily yield

good results. The need to be able to estimate parameters

that can potentially change with time has paved the way

for online parameter estimation techniques. To account for

modeling errors in the process adaptive parameter estimation

schemes have been proposed [1], [5], [6], [7], [8].

Any control system has to meet the twin requirements of

robustness to plant uncertainty and performance. However

given the constraints on the sensitivity and complimentary

sensitivity, by the relation S + T = I (where S is the

sensitivity of the closed-loop system to an infinitesimal

perturbation in the system dynamics [12]), it is not possible

to achieve both these requirements simultaneously. Parameter

identification, reduces plant uncertainty, thereby allowing us

to reduce the robustness requirements, and achieve better

performance.

In this paper, we propose a methodology for a linear time

invariant system whereby we jointly estimate the unknown

states and the unknown parameters of the system using either

full or partial state measurement. We develop the parameter

adaptation laws and show boundedness of the system in the

presence of adaptation via the direct method of Lyapunov.

To the best of our knowledge, the novelty in this paper is in

appropriately choosing a pseudo control input, u2, to show

that the state and parameter errors are bounded even in

the presence of a disturbance that corrupts the available

measurements. As a special case, with noise/disturbance free

measurements, we invoke Barbalat’s lemma and use the fact

that the system is observable to show convergence of the

state estimation error to the origin on an infinite time horizon

scale. In order to establish convergence to the origin for

the unknown parameters, a persistently exciting (PE) input1

is required to excite the system at a pre-computed number

of frequencies as determined by the order of the system.

However, since a PE input is not verifiable apriori, we

shift our focus to bounded parameter errors and state error

convergence. Finally, we show that when only some states

of a system are measured, the number of parameters of the

system matrix and the input matrix that can be estimated is

a function of the number of measurements. The remainder

of this paper is organized as follows: In Section II, an

adaptive parameter identification problem is formulated when

all states are measured, and a scheme of stability analysis

for this framework is presented. In Section III, we formulate

1An input is said to be persistently exciting over a time interval if the
integral of the square of the input over that time interval is always lower
bounded by a positive number [9], [10].
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the problem of adaptive parameter identification when only

some states are measured. In Section IV, we present some

simulation results to show the efficacy of the approach

proposed and finally in Section V some concluding remarks

are presented. Throughout the paper, bold symbols are used

for vectors, CAPITAL letters for MATRICES, small, non-

bold letters for scalars, Dα denotes a compact domain in α

and unless otherwise specified, ‖ · ‖ stands for 2 norm.

II. ALL STATES MEASURED

We consider the case where all the states of the system

are available as measurements.

A. System Dynamics

Consider the dynamics of a bounded, observable, linear,

time invariant system as

ẋ (t) = Ax (t) +Bu (t) +w (t) , x (0) = x0

y (t) = x (t) + v (t) (1)

where, x ∈ Dx ⊂ Rn denotes the n−dimensional unknown

state vector of the system, u ∈ Du ⊂ Rm denotes the

m−dimensional known input vector, A ∈ Rn×n denotes

the unknown, time invariant system matrix, B ∈ Rn×m

denotes the unknown, time invariant input matrix, y ∈
Dy ⊂ Rn denotes the known system measurement vector,

w denotes the n−dimensional zero mean random Gaussian

process noise of known standard deviation and v denotes the

n−dimensional zero mean random Gaussian measurement

noise of known standard deviation.

B. Assumptions, Remarks and Mathematical Preliminaries

Assumption 2.1: The known input vector u evolves on a

compact domain Du and the known system measurement

vector y is assumed to be bounded. With system observabil-

ity, this implies that the unknown state vector evolves on a

compact domain which is denoted as Dx.

Assumption 2.2: The unknown system matrix A in Eq. (1)

is bounded by its maximum singular value such that ‖A‖ ≤
σ̄A, where σ̄A = σmax (A), where σ̄A is known.

Assumption 2.3: Typically, system-identification is not

done online, but after the system outputs have been recorded

in a test-phase, during which the system is excited with

sufficiently rich signals. Therefore it is reasonable to assume

that the recorded state estimate denoted as x̂f (t) differs from

the true state, x (t), by a time-varying quantity, denoted as

d (t), i.e., d (t) = x (t)− x̂f (t), such that d (t) is uniformly

bounded. Thus supt≥0 d (t) = d̄ < ∞.

Remark 2.4: The process noise vector, w (t), is bounded

by a value of 3 times its standard deviation, i.e., ‖w‖ ≤ 3σw,

where σw is the standard deviation of w.

Remark 2.5: Denote the maximum of d (t), ḋ (t) and

w (t) as d∗ = max
(

‖d‖, ‖ḋ‖, ‖w‖
)

, for all t ≥ 0, where

we assume that the bound holds true uniformly.

Theorem 2.6: [11] Consider the system ζ̇ (t) = Aζ (t)
where ζ ∈ Rn is the n−dimensional state vector of the

system and A ∈ Rn×n is the system matrix. Let ζ = 0 be

the equilibrium point of the above system. Then the matrix

A is a stability matrix, i.e., all eigen values of A have strictly

negative real parts, if and only if for any given positive

definite, symmetric matrix Q, there exists a unique, positive

definite, symmetric matrix P such that PA+ATP = −Q.

Lemma 2.7: [11] Let V : R → R be a uniformly contin-

uous function on [ 0, ∞) . Suppose that limt→∞

∫ t

0
V (τ) dτ

exists and is finite. Then V (t) → 0 as t → ∞.

C. Adaptive Observer Dynamics

For the system in Eq. (1), we propose the following

adaptive observer

˙̂x (t) = AH x̂ (t) + B̂ (t)u (t) + (Â (t)−AH)ŷf (t)− u2

ŷ (t) = x̂ (t) (2)

where, Â (t) and B̂ (t) are respectively the adaptive estimates

of the unknown matrices A and B in Eq. (1), ŷf (t) = x̂f (t)
and x̂f (t) is obtained based on Assumption 2.3, x̂0 is

the value at which the adaptive estimator is initialized and

u2 (t) is a pseudo control input (which will be defined

subsequently) fed to the estimator so as to ensure that the

system error signals are bounded outside a compact domain.

The matrix AH is chosen to be a stability matrix or a

Hurwitz2 matrix. Furthermore, according to Theorem 2.6,

with a Q > 0, there exists a unique P = PT > 0 such that

PAH +AT
HP = −Q (3)

Remark 2.8: Denote the maximum singular value of P as

σ̄P = σmax (P ), such that ‖P‖ ≤ σ̄P .

D. Adaptation Update Laws

We propose the following adaptation update laws for the

unknown matrices A and B as:

˙̂
A (t) = ΓAP ê (t) x̂T

f (t) ,
˙̂
B (t) = ΓBP ê (t)uT (t) (4)

where, ê (t) ≡ x̂ (t) − x̂f (t), ΓA = ΓT
A > 0 and ΓB =

ΓT
B > 0 are respectively the learning rates of the adaptive

laws in Eqs. (4) and P is the solution of Eq. (3).

E. Error Dynamics

Denote the following error signals as e (t) ≡ x (t)− x̂ (t),
Ã (t) ≡ A− Â (t) and B̃ (t) ≡ B − B̂ (t). Thus, taking the

difference between Eqs. (1) and (2), we obtain

ė (t) = AHe (t) + B̃ (t)u (t) + Ã (t)x (t) +w (t)

+
(

Â (t)−AH

)

d (t) + u2 (t) (5)

Furthermore, denoting ê (t) ≡ e (t)− d (t), we arrive at

˙̂e (t) = AH ê (t) + B̃ (t)u (t) + Ã (t) x̂f (t)

+Ad (t) + u2 (t)− ḋ (t) +w (t) (6)

The adaptation error dynamics can be obtained as follows:

˙̃
A (t) = −ΓAP ê (t) x̂T

f (t) , ˙̃
B (t) = −ΓBP ê (t)uT (t) (7)

2A square matrix is called a Hurwitz matrix if every eigenvalue of the
square matrix has a strictly negative real part.
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F. Lyapunov Analysis

We ignore the argument t for ease of analysis. Consider

the following candidate Lyapunov function for the dynamics

in Eqs. (6) and (7) as

V
(

ê, Ã, B̃
)

= êTP ê+ tr
(

ÃTΓ−1
A Ã

)

+ tr
(

B̃TΓ−1
B B̃

)

(8)

where, tr denotes the trace operator. Taking the derivative

of the candidate Lyapunov function in Eq. (8) along Eqs. (6)

and (7), we obtain

V̇ = ˙̂e
T
P ê+ êTP ˙̂e+ 2tr

(

ÃTΓ−1
A

˙̃
A
)

+ 2tr
(

B̃TΓ−1
B

˙̃
B
)

=
(

êTAT
H + x̂T

f Ã
T + uT B̃T + dTAT + uT

2 − ḋT

+wT
)
P ê+ êTP

(

AH ê+ Ãx̂f + B̃u+Ad+ u2

− ḋ+w
)

− 2tr
(

ÃTP êx̂T
f

)

− 2tr
(

B̃TP êuT
)

= êT
(
AT

HP + PAH

)
ê+ 2x̂T

f Ã
TP ê

︸ ︷︷ ︸

uncty. term 1

+ 2uT B̃TP ê
︸ ︷︷ ︸

uncty. term 2

+2dTATP ê+ 2uT
2 P ê− 2ḋTP ê

+2wTP ê− 2tr
(

ÃTP êx̂T
f

)

︸ ︷︷ ︸

adap. term 1

− 2tr
(

B̃TP êuT
)

︸ ︷︷ ︸

adap. term 2

(9)

Since the term marked as uncty. term 1 in Eq. (9) is a scalar,

it can be written as 2tr
(

x̂T
f Ã

TP ê
)

= 2tr
(

ÃTP êx̂T
f

)

.

Similarly, the term marked as uncty. term 2 in Eq. (9)

can be written as 2tr
(

uT B̃TP ê
)

= 2tr
(

B̃TP êuT
)

.

Thus, uncty. term 1 cancels with adap. term 1 and

uncty. term 2 cancels with adap. term 2 in Eq. (9) and

with Eq. (3), Eq. (9) reduces to

V̇ = −êTQê+ 2dTATP ê+ 2uT
2 P ê− 2ḋTP ê+ 2wTP ê

Further, the Lyapunov derivative can be upper bounded as

V̇ ≤ −λmin (Q) ‖ê‖2 + 2‖d‖‖A‖‖P‖‖ê‖ (10)

+2‖ḋ‖‖P‖‖ê‖+ 2‖w‖‖P‖‖ê‖+ 2uT
2 P ê

Using Assumption 2.2 and Remark 2.8, the Lyapunov deriva-

tive in Eq. (10) can be further upper bounded as

V̇ ≤ −λmin (Q) ‖ê‖2 + 2‖d‖σ̄Aσ̄P ‖ê‖ (11)

+2‖ḋ‖σ̄P ‖ê‖+ 2‖w‖σ̄P ‖ê‖+ 2uT
2 P ê

With ‖ê‖ > max
(

‖d‖, ‖ḋ‖, ‖w‖
)

, Eq. (11) reduces to

V̇ ≤ −λmin (Q) ‖ê‖2 + 2 (σ̄Aσ̄P + 2σ̄P ) ‖ê‖
2 + 2uT

2 P ê (12)

Furthermore, if the pseudo control input is chosen as u2 =
− (σ̄Aσ̄P + 2σ̄P )P

−1ê, Eq. (12) simplifies to

V̇ ≤ −λmin (Q) ‖ê‖2 + σ∗‖ê‖2 − σ∗êT ê (13)

which implies that V̇
(

ê, Ã, B̃
)

≤ −λmin (Q) ‖ê‖2 ≤ 0 for

all ‖ê‖ > d∗, where σ∗ = 2σ̄P (σ̄A + 2). Thus, the error

signals ê (t), Ã (t) and B̃ (t) are uniformly bounded for t ≥ 0
[1]. Further, with ê uniformly bounded and Assumption 2.3,

e is uniformly bounded. This further implies that with e

uniformly bounded and with Assumption 2.1, x̂ is uniformly

bounded. Thus we have proved that with the adaptation laws

as given in Eq. (4) and the pseudo control as chosen below

Eq. (12), the estimate x̂ of the unknown state vector in Eq.

(1) is bounded. Furthermore, the estimates of the unknown

parameters are also bounded.

G. Lyapunov analysis for a noise free system

We specialize the results in Section II-F for the case

when the process and the measurements are noise free, i.e.,

w (t) = 0, v (t) = 0, ∀ t ≥ 0. For such a case, we

assume that d (t) = 0, for all t ≥ 0. Thus, ê = e. for

this case, x (t) can be used in place of x̂f (t). Furthermore,

a pseudo control input need not be designed since we are

interested in showing that the state estimation error converges

to the origin. By observing Eq. (10), it can be seen that with

d = 0, ḋ = 0, w = 0 and u2 = 0, V̇
(

e, Ã, B̃
)

≤ 0.

Thus, the equilibrium point defined by
(

e, Ã, B̃
)

= 0 is

uniformly stable. However, to show convergence of e (t)
to 0 as t → ∞, we invoke Lemma 2.7. We need to first

show that V̇
(

e, Ã, B̃
)

is uniformly continuous on [ 0, ∞) .

To show this, we need to show that V̈
(

e, Ã, B̃
)

is finite.

This is evident from V̈
(

e, Ã, B̃
)

= −2eTQė. Now with e

bounded and from Assumption 2.1, notice that ė in Eq. (5)

is also bounded. Thus V̈
(

e, Ã, B̃
)

is finite. Furthermore,

notice that limt→∞

∫ t

0
V̇
(

e (τ) , Ã (τ) , B̃ (τ)
)

dτ is given

by limt→∞ (V (0)− V (∞)). This limit exists and is finite

because V
(

e, Ã, B̃
)

is a non-increasing function of time.

Thus from Lemma 2.7, V̇
(

e, Ã, B̃
)

→ 0 as t → ∞, which

implies that e → 0 as t → ∞. Further, if the input u is

persistently exciting then Ã, B̃ converge to 0 as t → ∞ [1].

III. SOME STATES MEASURED

We consider the case where some states of the system are

available as measurements.

A. System Dynamics

Consider the dynamics of a bounded, observable, linear,

time invariant system as

ẋ (t) = Ax (t) +Bu (t) +w (t) , x (0) = x0

y (t) = Cx (t) (14)

where, x ∈ Dx ⊂ Rn denotes the n−dimensional unknown

state vector of the system, u ∈ Du ⊂ Rm denotes the

m−dimensional known input vector, A ∈ Rn×n denotes the

unknown, time invariant system matrix, B ∈ Rn×m denotes

the unknown, time invariant input matrix, y ∈ Dy ⊂ Rp

denotes the known system measurement, C ∈ Rp×n denotes

the measurement matrix w ∈ Rn denotes the n−dimensional

zero mean random Gaussian process noise of known standard

deviation. Furthermore, Assumption 2.1 and Remark 2.4 hold

true here.
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Assumption 3.1: We assume that the unknown sys-

tem matrix, A, in Eq. (14) is in the form A =[
A∗

1p×p
A2p×n−p

A3n−p×p
A4n−p×n−p

]

, and B =

[
B∗

1p×m

B2n−p×m

]

, where

n denotes the number of system states, m denotes the

number of inputs and p denotes the number of measurements.

Furthermore, A∗
1 ∈ Rp×p and B∗

1 ∈ Rp×m are the only

unknowns. As the number of measurements increase, i.e., as

p → n, the sizes of the unknown matrices also increase.

B. Mathematical Preliminaries

Fact 3.2: In this paper we only consider a measurement

matrix of the form C =
[
Ip×p 0p×n−p

]
∈ Rp×n,

where n denotes the number states of the continuous, linear

time invariant dynamical system, p denotes the number of

measurements, Ip×p denotes an identity matrix of size p× p

and 0p×n−p denotes a zero matrix of size p× n− p. From

the form of C we see that CCT = Ip×p.

Fact 3.3: A real symmetric matrix (or Hermitian matrix)

M ∈ Rn×n is positive definite if and only if the determinant

of M is positive and the successive principal minors of the

determinant of M are positive [13]. This is also called as

Sylvester’s criterion for positive definiteness. Thus M =




m11 . . . m1n

...
. . .

...

mn1 . . . mnn




 is positive definite if and only if

m11 > 0,

∣
∣
∣
∣

m11 m12

m21 m22

∣
∣
∣
∣
> 0, . . . . . . , |M | > 0 (15)

Fact 3.4: Consider a positive definite, symmetric matrix

M ∈ Rn×n. Let C ∈ Rp×n be a matrix as suggested in

Fact 3.2. Then CMCT is a positive definite matrix.

Proof: Let M ∈ Rn×n be represented as

M =

[
M1p×p

M2p×n−p

M3n−p×p
M4n−p×n−p

]

. From Fact 3.2 C =
[
Ip×p 0p×n−p

]
. Furthermore, CMCT = M1p×p

. Given

that M is positive definite and from Fact 3.3, M1p×p
should

also be positive ⇒ CMCT is a positive definite matrix.

Remark 3.5: The system in Eq. (14) can be written as

ẋ (t) = Āx (t) + B̄u (t) +A∗
0y (t) +B∗

0u (t)

+w (t) + φ (t) , x (0) = x0

y (t) = Cx (t) (16)

where, x =

[
x1p×1

x2n−p×1

]

, Ā =

[
A1p×p

0p×n−p

A3n−p×p
A4n−p×n−p

]

,

B̄ =

[
B1p×m

B2n−p×m

]

are known matrices, A∗
0 =

[
A∗

1p×p
−A1p×p

0n−p×p

]

, B∗
0 =

[
B∗

1p×m
−B1p×m

0n−p×m

]

are

unknown matrices that need to identified, φ (t) =[
A2p×n−p

x2

0n−p×1

]

and C takes the form shown in Fact 3.2.

Assumption 3.6: We modify Assumption 2.3 such that

y (t) = ŷf (t) + d (t), where d ∈ Dd ⊂ Rp×1 and ŷf (t) is

the estimate of the available measurement.

Assumption 3.7: The time varying quantity d (t) is uni-

formly bounded implying that supt≥0 d (t) = d̄ < ∞.

Remark 3.8: Denote the maximum of d (t), w (t) and

φ (t) as d∗ = max (‖d‖, ‖w‖, ‖φ‖), for all t ≥ 0, where

we assume that the bound holds true uniformly.

Definition 3.9: Consider a convex compact set with

a smooth boundary as Dc ≡ {θ ∈ Rn|G (θ) ≤

c}, 0 ≤ c ≤ 1 and G (θ) : (Rn → R) =
θT θ−θ2

max

ǫθ
,

where ǫθ is a user defined convergence tolerance. The

projection operator is defined as Proj (θ, ξ) = ξ if

G (θ) < 0 or (G (θ) ≥ 0, & ∇GT (θ) ξ ≤ 0) and

Proj (θ, ξ) = ξ − ∇G(θ)∇GT (θ)ξ
‖∇G(θ)‖2 G (θ) if G (θ) < 0 or

(G (θ) ≥ 0, & ∇GT (θ) ξ > 0), where ∇G (θ) =
[

∂G
∂θ1

· · · ∂G
∂θn

]T
.

Property 3.10: Definition 3.9 means that θ (0) ∈ Dc ⇒
θ (t) ∈ Dc, ∀ t ≥ 0. Furthermore, given Y,Θ ∈ Rq1×q2 , we

have tr ((Θ−Θ∗) (Proj (Θ, Y )− Y )) ≤ 0.

C. Adaptive Observer Dynamics

For the system in Eq. (16), we propose the following

adaptive observer

˙̂x (t) = Āx̂ (t) + B̄u (t) + Â0 (t) ŷf (t) + B̂0 (t)u (t)

+L (ŷ (t)− ŷf (t))− u2 (t) , x̂ (0) = x̂0

ŷ (t) = Cx̂ (t) (17)

where, Â0 (t) and B̂0 (t) are respectively the adaptive esti-

mates of the unknown matrices A∗
0 and B∗

0 in Eq. (16), x̂0

is the value at which the adaptive estimator is initialized,

u2 (t) is a pseudo control input (which will be defined

subsequently) fed to the estimator so as to ensure that the

system error signals are bounded outside a compact domain

and L ∈ Rn×p is a gain matrix such that AH = Ā + LC

is Hurwitz. Furthermore, according to Theorem 2.6, with a

Q > 0 and a Hurwitx matrix AH , there exists a unique

P̃ = P̃T > 0 such that

P̃AH +AT
H P̃ = −Q (18)

Remark 3.11: Denote the maximum singular value of P̃

as σ̄P̃ = σmax

(

P̃
)

, such that ‖P̃‖ ≤ σ̄P̃ .

Fact 3.12: If the gain matrix L in Eq. (17) is chosen such

that L =

[
L1p×p

−A3n−p×p

]

, then the matrix AH = Ā + LC

is a block diagonal matrix, where C is given by Fact 3.2.

Furthermore, the solution matrix P̃ is block diagonal.

Proof: Notice that AH is formed as follows:

AH =

[
A1p×p

0p×n−p

A3n−p×p
A4n−p×n−p

]

+

[
L1p×p

−A3n−p×p

]

C

=

[
A1p×p

0p×n−p

0n−p×p A4n−p×n−p

]

(19)

which proves that AH = Ā + LC is a block

diagonal matrix. Furthermore, pre and post multiply

Eq. (18) with eA
T
Ht and eAHt respectively to obtain

eA
T
Ht

(

P̃AH +AT
H P̃

)

eAHt = −eA
T
HtQeAHt. This can

also be written as d
(

eA
T
HtP̃ eAHt

)

= −eA
T
HtQeAHtdt,
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which upon integration yields
∫∞

0
d
(

eA
T
HtP̃ eAHt

)

=

−
∫∞

0
eA

T
HtQeAHtdt. Since AH is Hurwitz, we obtain

P̃ =

∫ ∞

0

eA
T
HtQeAHtdt, since eA

T
H∞ = 0 (20)

Notice that since AH is block diagonal, eA
T
Ht and eAHt are

also diagonal. Choosing a diagonal Q matrix ensures that P̃

is also block diagonal and can be represented in the form

P̃ = blkdiag
[

P̃1p×p
P4n−p×n−p

]
.

D. Adaptation Update Laws

We propose the following projection based adaptation laws

[14] for the unknown matrices A∗
0 and B∗

0 in Eq. (16) as:

˙̂
A0 (t) = Γ̄AProj

(

Â0 (t) , C
TP ỹ (t)yT

)

, Γ̄A = Γ̄T
A > 0

˙̂
B0 (t) = Γ̄BProj

(

B̂0 (t) , C
TP ỹ (t)uT

)

, Γ̄B = Γ̄T
B > 0 (21)

where, ỹ (t) ≡ y (t) − ŷ (t) and P is a positive definite

matrix such that P = CP̃CT , which can be seen from Fact

3.4. Furthermore, the matrix P is such that P = P̃1p×p
and

from Fact 3.4 P̃1p×p
> 0. From the property of projection,

Â0 (t) and B̂0 (t) are always confined to compact sets [14].

E. Error Dynamics

Denote the following error signals as e (t) ≡ x (t)− x̂ (t),
Ã0 (t) ≡ A∗

0 − Â0 (t) and B̃0 (t) ≡ B∗
0 − B̂0 (t). Taking the

difference between Eqs. (16) and (17), we obtain

ė (t) = AHe (t) + B̃0 (t)u (t) + Ã0 (t)y (t) +w (t)

+Â0L (t)d (t) + φ (t) + u2 (t) , Â0L (t) = Â0 (t)− L (22)

and Â0L (t) is bounded from Property 3.10.

The adaptation error dynamics is
˙̃
A0 (t) =

−Γ̄AProj
(

Â0 (t) , C
TP ỹ (t)yT

)

,
˙̃
B0 (t) =

−Γ̄BProj
(
CTP ỹ (t)uT

)
and Ã0, B̃0 respectively

are
[

ÃT
1p×p

0p×n−p

]T

and
[

B̃T
1m×p

0m×n−p

]T

.

F. Lyapunov Analysis

Consider the following candidate Lyapunov function

V = eT P̃e+ tr
(

ÃT
0 Γ̄

−1
A Ã0

)

+ tr
(

B̃T
0 Γ̄

−1
B B̃0

)

(23)

The derivative of the candidate Lyapunov function yields

V̇ =
(

eTAT
H + yT ÃT

0 + uT B̃T
0 + dT ÂT

0L +wT + φT

+uT
2

)
P̃e+ eT P̃

(

AHe+ Ã0y + B̃0u+ Â0Ld+w

+ φ+ u2) + 2tr
(

ÃT
0 Γ̄

−1
A

˙̃
A0

)

+ 2tr
(

B̃T
0 Γ̄

−1
B

˙̃
B0

)

= eT
(

AT
H P̃ + P̃AH

)

e+ 2yT ÃT
0 P̃e

︸ ︷︷ ︸

uncty. term 1

+ 2uT B̃T
0 P̃e

︸ ︷︷ ︸

uncty. term 2

+2dT ÂT
0L P̃e+wT P̃e++φT P̃e+ uT

2 P̃e

− 2tr
(

ÃT
0 Proj

(

Â0 (t) , C
TP ỹ (t)yT

))

︸ ︷︷ ︸

adap. term 1

− 2tr
(

B̃T
0 Proj

(

B̂0 (t) , C
TP ỹ (t)uT

))

︸ ︷︷ ︸

adap. term 2

(24)

Notice that by using P = CP̃CT , the term marked

as adap. term 1 in Eq. (24) can be written

as 2tr
(

ÃT
0 Proj

(

Â0 (t) , C
TCP̃CTCeyT

))

=

2tr

([

ÃT
1p×p

0p×n−p

]

Proj

(

Â0 (t) ,

[

P̃1 0
0 0

]

eyT

))

which always reduces to 2tr
(

ÃT
1 P̃1

(
eyT

)

p×p

)

or

2tr
(

ÃT
1 P̃1

(
eyT

)

p×p
− Ã1

(
yTe

)

p×p
P̃1

(
∇G(A1)∇

TG(A1)
‖∇G(A1)‖2 G

))

.

Thus, from Property 3.10, the terms marked as adap. term 1
and uncty. term 1 in Eq. (24) are ≤ 0 and hence can

be removed from Eq. (24). Similarly, the terms marked

as adap. term 2 and uncty. term 2 in Eq. (24) can be

removed. Thus, with Eq. (18), Eq. (24) reduces to

V̇ = −eTQe+ 2dT ÂT
0L P̃e+wT P̃e+ φT P̃e+ uT

2 P̃e (25)

Further, the Lyapunov derivative can be upper bounded as

V̇ ≤ −λmin (Q) ‖e‖2 + 2‖d‖‖Â0L‖‖P̃‖‖e‖

+2‖w‖‖P̃‖‖e‖+ 2‖φ‖‖P̃‖‖e‖+ 2uT
2 P̃e(26)

Using Remark 3.11 and ‖e‖ > max (‖d‖, ‖w‖, ‖φ‖), Eq.

(26) can be further upper bounded as

V̇ ≤ −λmin (Q) ‖e‖2 + 2σ̃∗‖e‖2 + 2uT
2 P̃e (27)

where, σ̃∗ =
(

‖Â0L‖ σ̄P̃ + 2σ̄P̃

)

. Choosing u2 =

−P̃−1CT ỹσ̃∗ and Q such that λmin (Q) > 2σ̃∗, ⇒ V̇ < 0.

Thus, e (t), Ã0 (t) and B̃0 (t) are uniformly bounded for

t ≥ 0 [1]. Further, with e bounded and with Assumption

2.1, x̂ is bounded. Thus, the estimates of the unknown states

and parameters are bounded.

Special Case: C = I: We specialize the results in Section

III-F when p = n which ⇒ ỹ = e. Thus the pseudo control

input becomes u2 = −P̃−1ỹσ̃∗ = −P̃−1eσ̃∗ and with

this form of u2, Eq. (27) reduces to V̇ ≤ −λmin (Q) ‖e‖2.

Thus, the equilibrium point defined by
(

e, Ã0, B̃0

)

= 0 is

uniformly stable. Furthermore, invoking arguments similar to

Section II-G, we show that V̇
(

e, Ã0, B̃0

)

→ 0 as t → ∞,

which implies that e → 0 as t → ∞. Further, if the input u

is persistently exciting then Ã0, B̃0 → 0 as t → ∞ [1]. Thus

as the number of measurements approaches the number

of states, the number of parameters that can be treated as

unknowns (and estimated with bounded errors) in the A

matrix are n2 and in the B matrix are nm.

IV. SIMULATION RESULTS

We provide simulation results to illustrate the efficacy of

the adaptive approach when all and some state are measured.

For both cases, we sample the system at 50 Hz (dt = 0.02
seconds) and consider a white Gaussian measurement noise

of 0.1 standard deviation. Furthermore, the known input is

chosen as u (t) = sin (t) + sin (5t).
1) All States Measured: Consider the dynamics of Eq. (1)

with A =

[
−1 1
−4 −2

]

and B =
[
1 2

]T
. Choose AH =

−10I . Let x0 =
[
1 5

]T
, x̂0 = 0 and Q = 20I . For the

adaptive laws in Eq. (4), Γ̄A = 40 and Γ̄B = 1. In Figure 1,
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the first two subplots show the plots of the true state (solid)

and the estimated state (dotted) histories and the third subplot

shows the corresponding error plots. It can be seen from

these figures that the errors are bounded and the adaptive

estimator in Eq. (2) behaves similar to an unbiased estimator.

The estimates for A and B are

[
−1.429 0.98761
−4.561 −2.194

]

and

[
0.96722 2.0292

]T
respectively.
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Fig. 1. True states and corresponding error plots of the state estimates.

Furthermore, in a noise free system, if we assume

that the state estimate x̂f (t) is equal to x (t), i.e.,

d (t) = 0 and simulate the above system we obtain A =[
−1.0041 1.0005
−4.0359 −1.9959

]

and B =
[
1.0009 2.0076

]T
.

2) Some States Measured: Consider the dynamics of Eq.

(14) with A =

[
−1 1
−4 −2

]

, B =
[
1 2

]T
and C =

[
1 0

]
, where n = 2, m = 1 and p = 1. Choose A1 = 0

and B1 = 0 (below Eq. (16)) and L =
[
−5 4

]T
. Thus

Ā =

[
0 0
−4 −2

]

and B̄ =
[
0 2

]T
and with the above

choice of L, AH =

[
−5 0
0 −2

]

. Let x0 =
[
1 5

]T
,

x̂0 = 0 and Q = I . For the adaptive laws in Eq. (21), Γ̄A =
10 and Γ̄B = 1. In Figure 2 the first two subplots show the

plots of the true state (solid) and the estimated state (dotted)

histories and the third subplot shows the corresponding error

plots. It can be seen from these figures that the errors are

bounded and the adaptive estimator in Eq. (17) behaves

similar to an unbiased estimator. The estimates for A∗
1 and

B∗
1 are −1.0113 and 0.41629 respectively. Notice that since

we do not have any guarantee on the convergence of the

parameter errors, these values are at most bounded.

V. CONCLUSIONS

In this paper, a joint state and adaptive parameter identi-

fication scheme is presented for a class of unknown linear

dynamical systems for the cases when all the states of the

system are measured and when only some states of the

system are measured. When all the states are measured, we

have proven that in the presence of process and measurement

noise, the state and parameter estimation errors are bounded.
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Fig. 2. True states and corresponding error plots of the state estimates.

To this end, we show that this is possible only through the

appropriate design of a virtual input which ensures that the

system error signals are bounded. In the more general case

where only some states are measured, we have shown that

via projection based adaptation, that the state and parameter

errors are bounded. For each of the cases proposed and

solved, we have specialized the results to situations when

the bounded disturbances are absent and have shown that

the state estimation error converges to 0. Simulation results

illustrate the efficacy of this approach.
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