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Abstract— This paper presents a novel approach to the
longitudinal guidance and control issue for an aircraft in
presence of wind shear. The main contribution concerns the
adaptive estimation of the wind shear disturbances affecting
the aircraft and the development of a control scheme suitable
to compensate these effects during a precision approach pro-
cedure. The work proposes the design, based on the Nonlinear
Geometric Approach, of three adaptive filters providing the
estimate of the wind shear disturbance components. These
estimates are exploited, in an original way, by a BackStepping
based controller, thus resulting in an Adaptive BackStepping
Controller. Simulation results, obtained by means of a detailed
flight simulator implementing the real wind shear condition
which caused the 1975 crash of Eastern Flight 066 at JFK
airport and a Montecarlo robustness test, demonstrates the
effectiveness of the proposed method.

I. INTRODUCTION

Low–altitude microburst wind shear represents a signif-

icant and potentially catastrophic hazard to aircraft taking

off or landing. Wind shear consists essentially in a spatial

and temporal abrupt change of wind speed and direction. In

recent decades, many efforts have been undertaken to develop

accurate Wind Shear (WS) models and to develop proper

control strategies to face unknown and even severe wind

shear situations. These models exploit different wind shear

representations modelled through mathematical functions

(for example sinusoidal functions) or real data observations.

Until now, robust control methods have been proposed

to determine optimal trajectories which allow the aircraft

to complete safe abort–landing or take–off procedures [5]–

[8]. However, these methods do not permit to complete

precision procedures with adequate safety level and desired

performance. Again, wind shear estimation methods, based

on Extended Kalman Filter (EKF) and Unscented Kalman

Filters (EKF/UKF), have been proposed e.g. in [9] and [10]

respectively.

In this paper a novel approach is proposed. Its goal is to

develop a longitudinal guidance and control system which

allows the aircraft to follow the glide slope trajectory during

a precision approach. The method is focused on the design

of three independent Adaptive Filters (AF) providing the

estimates of the wind shear disturbance components. These

estimates are exploited, in an original way, in a Backstepping
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based controller, thus resulting in an Adaptive BackStepping

(ABS) control scheme, able to compensate wind shear ef-

fects. It is worth observing that the AF, whose design is based

on the Nonlinear Geometric Approach (NLGA) [3], exploit

only attitude and height measures and allow to estimate

and compensate wind shear effects in a quick and effective

manner.

The paper is organized as follows. Section II provides a

brief description of the aircraft longitudinal dynamics model

and the WS model used. The WS model is based on an

available set of experimental data collected during a real

situation. Section III illustrates the application of the NLGA

to the AF design. Section IV deals with the design of the

ABS control scheme. Section V shows the results achieved

in simulation. Concluding remarks are finally presented in

Section VI.

II. AIRCRAFT DYNAMIC MODEL

This section provides a brief description of the longitudinal

aircraft model considered in this paper. Moreover, the model

of the wind shear disturbance is discussed.

A. Aircraft Equations of Motion

In this study only the longitudinal dynamics is considered.

With this assumption, the aircraft equations of motion are

defined in the form:

V̇ = 1
m

[

T cosα −D−mgsinγ −m
(

Ẇx cosγ +Ẇh sinγ
)]

γ̇ = 1
mV

[

T sinα +L−mgcosγ +m
(

Ẇx sinγ −Ẇh cosγ
)]

α̇ = q− γ̇
q̇ = M/Iy

(1)

The elements of the state vector x = [V,γ ,α,q]T are the

airspeed, the flight path angle, the angle of attack and the

pitch rate respectively. The aircraft mass is denoted by m.

It is worth observing that the aircraft dynamics is affected

by the wind shear disturbances through the terms Ẇx and

Ẇh. The aerodynamic effects are the lift and drag forces, L

and D, and the pitching moment M. These effects can be

expressed in term of aerodynamic coefficients as follow:

D = q̄SCD = q̄S
(

CD0 +CDα α +CDδe
δe

)

L = q̄SCL = q̄S
(

CL0 +CLα α +CLqq̂+CLδe
δe

)

M = q̄Sc̄Cm = q̄Sc̄
(

Cm0 +Cmα α +Cmqq̂+Cmδe
δe

)

(2)

where q̄ = ρV 2/2 is the dynamic pressure, ρ is the air

density, q̂ = qc̄/(2V ) is the dimensionless pitch rate, S is the

wing surface and c̄ is the mean aerodynamic chord. Finally,

the elements of the input vector u = [T,δe]
T

are the thrust

and the elevator command respectively.
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B. Wind Shear Model

The microburst model is obtained from a reconstruction

of the available data referring to the crash of a Boeing 727

occurred on 24 June 1975 at JFK International Airport in

New York [1]. The evolution of the wind shear components

are shown in Fig. 1. This model of Wx and Wh represents

an example of one of the worst conditions that an aircraft

may encounter and it represents a valid benchmark to test

the validity of the proposed method.
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Fig. 1. Wind shear model.

Remark 1: For filter design purpose, we assume that

the wind shear components can be approximated by their

trapezoidal envelops, i.e. we assume that their first time

derivatives, Ẇx and Ẇh, are piecewise constant functions.

III. WIND SHEAR ESTIMATION FILTER DESIGN

In order to develop an accurate control on the aircraft

descent trajectory during an instrumental landing procedure,

the estimates of the unknown wind shear disturbance com-

ponents are necessary. Indeed, these estimates are used to

compensate the effects of the wind shear on the aircraft, as

shown in Section IV.

This section recalls the design methodology and imple-

mentation scheme of the NLGA Adaptive Filters providing

the estimates of the disturbance components.

A. Nonlinear Geometric Approach

The NLGA for Fault Detection and Isolation (FDI) is

formally developed in [3]. Its aim is to find, by means of

a coordinate change in the state space and in the output

space, an observable subsystem that is affected by the fault

and not affected by disturbances. Hence, for our purpose, it

is assumed that the wind shear disturbance components can

be alternatively viewed as faults acting on the system and

have to be reciprocally decoupled. More precisely, we need

to estimate the wind shear components derivative Ẇx and

Ẇh, which affects the state dynamics in (1), and the wind

shear vertical component Wh, which affects the aircraft rate

of climb as shown in Section IV.

The proposed approach considers a nonlinear model in the

form:
{

ẋ = n(x)+g(x)u+ l(x) f + p(x)d
y = h(x)

(3)

in which the state vector x ∈ X (an open subset of R
ln ),

u(t) ∈ R
lu is the control input vector, f (t) ∈ R is the signal

to be estimated (i.e. the fault in [3]), d(t) ∈R
ld is the vector

embedding the signals which have to be decoupled, and y ∈
R

lm is the output vector, whilst n(x), l(x), the columns of g(x)
and p(x) are smooth vector fields. Finally, h(x) is a smooth

map. Therefore, if P represent the distribution spanned by the

column of p(x), the NLGA method can be stated as follows.

First, determine the minimal conditioned invariant distri-

bution containing P (denoted with ΣP
∗ ). By using (ΣP

∗ )
⊥ (i.e.,

the maximal conditioned invariant co–distribution contained

in P⊥), determine the largest observability co–distribution

contained in P⊥ (denoted with Ω∗). If l(x) /∈ (Ω∗)⊥, the

design procedure can continue, otherwise, the fault is not

detectable. If this condition is satisfied, it can be found

a function Φ1 and a surjection Ψ1 respectively fulfilling

Ω∗ = span{d(Φ1)} and Ω∗∩ span{dh}= span{d(Ψ1 ◦h)}.

The functions Ψ(y) and Φ(x) defined as:

Ψ(y) =

(

ȳ1

ȳ2

)

=

(

Ψ1(y)
H2y

)

Φ(x) =





x̄1

x̄2

x̄3



=





Φ1(x)
H2h(x)
Φ3(x)



 (4)

are (local) diffeomorphisms, where H2 is a selection matrix

, x̄1 = Φ1(x) represents the measured part of the state which

is affected by f and not affected by d, while x̄2 and x̄3

represents the measured and not measured part of the state

which are affected by f and d. In many cases x̄3 it is not

present.

In the new (local) coordinate the so–called x̄1–subsystem

written in the form:
{

˙̄x1 = n1(x̄1, x̄2)+g1(x̄1, x̄2)u+ l1(x̄1, x̄2, x̄3) f

ȳ1 = h(x̄1)
(5)

is affected by the single fault f and decoupled from the

disturbance vector d.

In particular, for the estimation of the two wind shear

components derivative Ẇx and Ẇh, since the whole state

vector is assumed measurable and thus h(x) = I4, it is

possible to find two new independent variables. The first

x̄1–subsystem is given by the variable x̄1 =V cosγ , which is

affected by f = Ẇx and decoupled from d = Ẇh; its dynamic

equation is:
˙̄x1 = V̇ cosγ −V γ̇ sinγ (6)

Again, the second x̄1–subsystem is characterized by the

variable x̄1 = V sinγ , which is affected by f = Ẇh and

decoupled from d = Ẇx; its dynamic equation is:

˙̄x1 = V̇ sinγ +V γ̇ cosγ (7)

Finally, the vertical component of the wind shear can be

obtained by a numerical integration of its derivative estima-

tion. Clearly, the integrated quantity differs from the true

wind shear component Wh by a constant bias. To estimate

this bias a further filter can be added to the design. It is

based on the following dynamic equation:

˙̄x1 = Ḣ =V sinγ +Wh (8)

Equations (6)–(8), obtained from the exploitation of atti-

tude and height measures, are at the basis of the design of

three independent and independently trimmable estimation

filters of Wh, Ẇh and Ẇx.
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B. NLGA Adaptive Filters

With reference to (5), the NLGA Adaptive Filters (NLGA–

AF) can be designed if the detectability condition and the

following constraints are satisfied [4]:

• the x̄1–subsystem is independent from the x̄3 state

components;

• the fault (i.e. the wind shear component in this work

point of view) is a step function of the time, hence the

parameter f is a constant to be estimated;

• there exists a proper scalar component x̄1s of the state

vector x̄1 such that the corresponding scalar component

of the output vector is ȳ1s = x̄1s and the following

relation holds:

˙̄y1s(t) = M1(t) · f +M2(t) (9)

with M1(t) 6= 0,∀t ≥ 0. Moreover M1(t) and M2(t) can

be computed ∀t, since they are functions only of input

and output measurements.

The relation (9) describes the general form of the system

under diagnosis.

Since (6)–(8), with the assumption made in Remark 1, ful-

fill the above requirements, the design of the AF is achieved,

with reference to system model (9), in order to provide a

fault estimation f̂ (t) which asymptotically converges to the

magnitude of the signal (fault) f (in our case the magnitude

of Wh, Ẇx and Ẇh). The proposed adaptive filter is based on a

least–squares algorithm with forgetting factor [4]. described

by the following adaptation law:
{

Ṗ = βP− 1
N2 P2M̆2

1 P(0) = P0 > 0
˙̂f = PεM̆1 f̂i(0) = 0

(10)

with the following equations representing the output estima-

tion, and the corresponding normalized estimation error:

{

ˆ̄y1s = M̆1 f̂ + M̆2 +λ ˘̄y1s

ε = 1
N2 (ȳ1s − ˆ̄y1s)

(11)

where all the involved variables are scalar. In particular, λ >
0 is a parameter related to the bandwidth of the filter, β ≥ 0

is the forgetting factor and N2 = 1+M̆2
1 is the normalization

factor of the least–squares algorithm.

Moreover, the proposed adaptive filter adopts the signals

M̆1, M̆2, ˘̄y1s which are obtained by means of a low–pass

filtering of the signals M1, M2, ȳ1s as follows:











˙̆M1 =−λM̆1 +M1 M̆1(0) = 0
˙̆M2 =−λM̆2 +M2 M̆2(0) = 0
˙̄̆y1s =−λ ˘̄y1s + ȳ1s ˘̄y1s(0) = 0

(12)

Thus, the considered NLGA–AF is described by the systems

(10)–(12). Moreover, it can be proved that the adaptive filter

provides an estimation f̂ (t) that asymptotically converges

to the size of f (t). The proofs above can be obtained

analogously as shown in [4].

Thus, substituting (1) in (6)–(8), it is possible to make the

three dynamics of interest explicit. The first adaptive filter,

which is sensitive only to f = Ẇx, is based on the following

dynamics:















˙̄y1s(t) = M1(t) ·Ẇx +M2(t)
M1(t) =−1

M2(t) =
T
m
[cosγ cosα − sinγ sinα]+

− q̄S
m
[CD cosγ +CL sinγ ]

(13)

The second filter, which is sensitive only to f = Ẇh, is based

on the following dynamics:















˙̄y1s(t) = M1(t) ·Ẇh +M2(t)
M1(t) =−1

M2(t) =
T
m
[sinγ cosα + cosγ sinα]+

− q̄S
m
[CD sinγ −CL cosγ ]−g

(14)

Finally, the third filter is based on:







˙̄y1s(t) = M1(t) ·WhBIAS +M2(t)
M1(t) = 1

M2(t) =V sinγ +
∫ t

0
ˆ̇Wh (t)dt

(15)

It is worth observing that the three adaptive filters,

based on the dynamics (13)–(15), are completely indepen-

dent and independently trimmable. Moreover, as previously

highlighted, they exploit only attitude and height measures

resulting fast and accurate as shown in Section V.

IV. BACKSTEPPING CONTROL DESIGN SCHEME

To develop the aircraft longitudinal guidance and control

system, we make use of a backstepping based control scheme

[11]. The autopilot have to maintain the aircraft on the glide

path during a precision approach procedure, even in presence

of wind shear. The measure of the distance between the

aircraft and the reference trajectory d is precisely computed

by the on–board Instrument Landing System (ILS). We also

denote the reference path inclination with γR.

Since to follow the reference path the aircraft has to

maintain a certain Rate of Climb RoC = Ḣ =V sinγ , it seems

appropriate to realize both airspeed and flight path angle

control. Thus, we can apply a backstepping procedure as

follows. First, the last equation in (1) can be written in the

form:

q̇ = fq +gqδe (16)

where:

fq =
q̄Sc̄
Iy

(Cm0 +Cmα α +Cmqq̂)

gq =
q̄Sc̄
Iy

Cmδe
6= 0

(17)

Inverting (16), we obtain the elevator control signal realizing

the desired dynamics of the pitch rate q̇c, that is:

δe =
1

Cmδe

[

−Cm0 −Cmα α −Cmqq̂+ q̇c

Iy

q̄Sc̄

]

(18)

In order to proceed with the dynamic inversion algorithm,

a simplification of the model is needed. Hence, neglecting
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some aerodynamic contribution, we obtain the following

synthesis model:

V̇ = T cosα
m

− q̄S
m
(CD0 +CDα α)−gsinγ

γ̇ = 1
V

[

T
m

sinα + q̄S
m
(CL0 +CLα α)−gcosγ

]

α̇ = q− 1
V

[

T
m

sinα + q̄S
m
(CL0 +CLα α +CLqq̂)−gcosγ

]

(19)

Finally, from (19), we obtain the backstepping control signals

as follows:

qc = α̇c +
q̄S

mV

(

CL0 +CLα α +CLqq̂
)

+T
sinα

mV
−

gcosγ

V
(20a)

αc =
1

CLα

[

−CL0 +
mV

q̄S

(

γ̇c −T
sinα

mV
+

gcosγ

V

)]

(20b)

T =
1

cosα

[

q̄S (CD0 +CDα α)+mgsinγ +mV̇c

]

(20c)

The desired output signals ẏc in (18) and (20), can be

obtained by means of a PI controller, that is:

ẏc = Kp(yc − y)+Ki

∫ t

0
(yc − y)dt (21)

where the gain coefficients are determined by applying a

linear theory. In Fig. 2 the longitudinal backstepping control

scheme is shown.

Thus, it is possible to obtain the input control signals T (t)
and δe(t) that allow the aircraft to follow the correct glide

path by controlling the two reference input γc(t) and Vc(t).
The signal Vc(t) can be set constant during the descent, while

the signal γc(t) is a function of the aircraft distance from the

glide path through the relation:

γc = arcsin
ḋc

V
(22)

where, similarly to (21):

ḋc =−Kpdd −Kid

∫ t

0
d dt (23)

In such a way, the control system acts to maintain the aircraft

at a zero–distance from the glide path.

At this point, we can consider also wind shear effects,

taking into account that the aircraft “true” Rate of Climb

(RoC) is affected by the wind shear vertical component Wh

as follows:

Ḣ =V sinγ +Wh (24)

Solving for γ we obtain:

γ = arcsin
Ḣ −Wh

V
(25)

or, from a control point of view:

γc = arcsin
ḋc −Ŵh

V
(26)

Equation (26) highlights that the reference control signal

γc(t) is obtained by means of two contributions: the first

one belong to the so–called glide slope autopilot and make

use of the distance measure d provided by the ILS system,

whereas the second contribution exploits the estimate Ŵh(t)

provided by the adaptive filter, in order to compensate wind

shear effects in real–time.

Moreover, for further performance improvements, the de-

sired output signals V̇c, γ̇c and α̇c can be corrected through

the feedback of the wind shear derivative estimates ˆ̇Wx(t)

and ˆ̇Wh(t). By defining:

ûV =− ˆ̇Wx cosγ − ˆ̇Wh sinγ

ûγ =
1
V

(

ˆ̇Wx sinγ − ˆ̇Wh cosγ
)

ûα =−ûγ

(27)

we obtain the final formulation for the desired output signals

as follows:

V̇c = KpV (Vc −V )+KiV

∫ t
0(Vc −V )dt − ûV

γ̇c = Kpγ(γc − γ)+Kiγ
∫ t

0(γc − γ)dt + ûγ

α̇c = Kpα(αc −α)+Kiα
∫ t

0(αc −α)dt − ûa

(28)

Fig. 2 clearly shows how the estimates provided by the

AF are used as feedback in the overall system.

V. SIMULATION RESULTS

In order to test the performances brought by the applica-

tion of the proposed estimation and control scheme, a RQ–2

Pioneer UAV simulator is used.

TABLE I

SIMULATION PARAMETERS

m = 190.512 [kg] CD0 = 0.060

Iy = 90.948 [kg m2] CL0 = 0.385

S = 2.826 [m2] Cm0 = 0.194

c̄ = 0.548 [m] CDα = 0.430 [rad-1]

H0 = 500 [m] CDδe
= 0.018 [rad-1]

ρ = 1.168 [kg m-3] CLα = 4.780 [rad-1]

g = 9.779 [m s2] CLδe
= 0.410 [rad-1]

V0 = 35 [m s-1] CLq = 8.050 [rad-1]

γR =−3 [deg] Cmα =−2.120 [rad-1]

Tmax = 667.230 [N] Cmδe
=−1.760 [rad-1]

δemax =+20 [deg] Cmq =−36.600 [rad-1]
δemin

=−20 [deg] tsim = 300 [s]

The geometric and aerodynamic characteristics of the

aircraft and the simulation parameters are summarized in

Table I, while the following assumptions are made:

• the aircraft mass is constant;

• the air density is constant;

• a first order dynamics has been introduced to simulate

the engine response;

• input and output sensors are characterized by Gaussian

additive white noises, whose standard deviations can be

obtained by values given in Table II.

TABLE II

SIMULATED SENSOR NOISES

3σV = 1.5 [m/s] 3σγ = 1.5 [deg]
3σα = 1.0 [deg] 3σq = 1.0 [deg/s]
3σH = 1.0 [m] 3σT = 10 [N]

3σδe
= 1.0 [deg]
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Fig. 2. Longitudinal dynamics controller scheme.

The designed bank of adaptive filters demonstrates to have

good transient response and provides asymptotic unbiased es-

timates ˆ̇Wx(t),
ˆ̇Wh(t) and Ŵh(t). It is worth observing that the

estimation filters are robust under working condition (actual

wind) that differs from the design assumptions (trapezoidal

wind, i.e. wind with constant derivative).

As an example, Fig. 3 shows the wind shear vertical

component estimate in comparison with its actual values. The

estimation error is given in the lower subplot. Similar results

were obtained for the wind shear components derivative.
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Fig. 3. Comparison of the simulated and estimated wind shear vertical
component.

Fig. 4 shows the comparison between the glide path

tracking error d for the aircraft provided or not with the wind

shear estimates. It is clear how the deviation is higher in the

case of a guidance system without the compensation of the

wind shear effects, even if the guidance system is capable to

restore the right descent trajectory and annihilate the tracking

error in any case. Indeed, the maximum tracking error is

about 22.5 meters for the guidance system without the wind

shear compensation, whilst it is considerably reduced to

about 4.5 meters by means the wind shear compensation in

the control law.

Fig. 5–7 depicts the evolution of the states V , γ and α ,

for the controller with and without wind shear compensation.

The figures highlight also the differences between the actual

output of the system and the measured output. The latter

is clearly deteriorated by the simulated sensor noises and

affects both the AF estimates (see Fig. 3) and the actual

state itself, since it is used for control purpose. It is worth

observing that, although the aircraft behavior is completely
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Fig. 4. Aircraft distance (tracking error) from the glide path.
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Fig. 5. Comparison of the airspeed evolution, with and without wind shear
compensation.
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Fig. 6. Comparison of the flight path angle evolution, with and without
wind shear compensation.

modified by the wind shear compensation, the control system

is able to maintain the state variables within the normal

operative range, and with adequate safe margin, in both
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cases. Similar consideration can be done also for the pitch

rate, whose evolution is not showed due to a lack of space.

As a matter of facts, even though the maneuver is quite

aggressive, the angle of attack α , for example, never gets

larger than approximately 10◦ and the airspeed never drops

under 32 m/s. This values are far enough from the stall

condition, which is at about 13◦ for an airspeed of 27 m/s.

Substantial improvements of the performances are achieved

for the whole state vector, thanks to the introduction of wind

shear compensation in the control loops.

Moreover, it has been verified that the thrust and the

elevator angle values never exceeded the operative limits

reported in Table I.

Finally, it can be paid attention to the differences between

the actual evolution of the states and the references shown in

Fig. 5–7. Indeed, these reference signals refer to the steady

condition, that is the windless condition. So, for t ∈ [0,30]∪
[260,300] s, the whole state vector tracks the reference with

zero–error. However, during the windy transient, the aircraft

behavior completely matches the control objectives, since

the distance from GS is maintained small (see Fig. 4), and

reflects the physics of the problem.

A. Montecarlo Robustness Test

The purpose of this section is to demonstrate, by means

of Montecarlo simulations, the robustness of the presented

control scheme to parameter uncertainties. The uncertainties

are modeled as random variables with uniform distribution.

An error in the range ±5% is associated to the aerodynamic

coefficients C(·) and the geometric parameters m and Iy,

whereas the quantities b, c̄ and S are assumed to be exactly

known.

The system has been tested by means of a campaign of

100 Monte Carlo simulations. As an example, Fig. 8 shows

the trend of the maximum deviation from the glide path. It

can be seen that system performance is weakly deteriorate

and the mean deviation from the glide path is approximately

equal to the maximum deviation achieved in Fig. 4, which

refers to the system without uncertainties.

VI. CONCLUSION

This paper presented a novel longitudinal guidance and

control system, for an aircraft affected by wind shear distur-

bances. The main point of the proposed approach consists
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Fig. 8. Maximum glide path tracking error for the uncertain system.

of developing three independently designed Adaptive Filters

(AF), which provide the estimate of the wind shear distur-

bance components, and their exploiting in a Backstepping

control scheme, thus resulting in an Adaptive BackStepping

(ABS) control scheme. The AF design is based on the

Nonlinear Geometric Approach (NLGA).

Differently from other filtering methods, this approach

exploits only attitude and height measures, thus allowing the

prompt and effective estimate of the wind shear disturbance

components . Thanks to these good wind shear estimates, the

controller can thus correct the aircraft behavior in real–time.

Finally, an accurate aircraft model and wind shear data

from a simulated actual crash situation showed the effective-

ness of the overall guidance and control system in worst case

conditions and in presence of model uncertainties.
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