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Abstract

Gossip protocol is a randomized broadcast protocol
proposed in the field of communication engineering.
Gossip protocol is applicable to, for example, a routing
protocol on the ad hoc networks. In this paper, we
propose an extended gossip protocol which can deal
with the multiple messages broadcasting, and analyze
the percolation probability of the extended gossip pro-
tocol through the percolation theory. In the analysis,
we compare 2 cases, one is the case where the source
node broadcasts messages in the same time slot, and
the other where the source node divides the messages
into some groups and broadcasts the messages one after
another. Finally, we show some numerical simulation of
extended gossip protocol and investigate the property
of its percolation probability.

1. Introduction

Recently, probabilistic broadcast protocol called gos-
sip protocol attracts much attention. Gossip protocol is
proposed in the field of communication engineering (e.g.,
[1, 2]), and it propagates information by broadcasting a
single packet in a probabilistic manner. Gossip proto-
col is applicable to, for example, a routing protocol on
the ad hoc networks as a protocol which is executable on
the network whose detailed structure is unknown [3]. As
autonomous distributed network has attracted much at-
tention recently, gossip protocol is regarded as an impor-
tant [4] method to spread the messages across the field,
and there are some researches to increase the efficiency
of gossip protocol in various ways (e.g., [5–8]). Even
though these gossip protocols are designed to broadcast
a single message, multiple message cases are not consid-
ered explicitly.

In this paper, we propose an extended gossip proto-
col which can deal with multiple messages broadcasting,
and analyze the property of the protocol through the
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percolation theory. The method is predicated on our
preceding result for a single massage case [9] and the
extended protocol turns out to be more practical than
the protocol in [9] in that the case where different kinds
of messages would collide can be handled.

The contents of the paper is as follows: In Section 2,
some of the basic fact in percolation theory are stated.
In Section 3, we define the extended gossip protocol and
its critical probability. Finally, we draw conclusions for
this paper in Section 4.

2. Mathematical Preliminaries

In this section we introduce notation, several defini-
tions, and some key results concerning (site) percolation
theory that are necessary for developing the main results
of this paper.

2.1. Percolation Theory and Site Percolation

Consider a graph G = (V,E), where V = {v1, v2, . . . }
is the collection of the vertices (nodes or sites) and
E = {e1, e2, . . . } is the collection of edges of the graph.
Here we assume that the graph G may contain infinite
number of vertices. Furthermore, consider the opera-
tion of assigning each vertex as open with probability p

and as closed with probability 1 − p, where p ∈ [0, 1],
independent of the choice for the other vertices. For
the vertex v ∈ V , the random variable Xv is defined to
take 1 if the vertex v is open and 0 if closed. We call the
set of connected open sites an open cluster and denote
the open cluster containing the vertex v as Cv. Note
that if v ∈ V and v′ ∈ V belong to the same cluster,
then Cv = Cv′ . Furthermore, if v ∈ V is not open, then
Cv = ∅ is assumed. We frequently use C0 (Fig. 2.1)
throughout the paper, where the vertex 0 is assumed to
be the origin of the lattice and belong to V .

Let Ξ be the sample space of this operation. For
vertices ui ∈ V , i = 1, . . . , n, and the corresponding
values δi ∈ {0, 1}, i = 1, . . . , n, of openness/closedness
assigned, a subset A of Ξ given by

A =
{

ξ ∈ Ξ : Xu1
(ξ) = δ1, . . . , Xun

(ξ) = δn
}

, (1)

is called a cylindrical set. We denote the number of
vertices (resp., open vertices) in A as ⌈A⌉ (resp., ⌊A⌋).
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Figure 2.1: An example of C0 on the square lattice

In this case, it follows that ⌊A⌋ ,
∑⌈A⌉

i=1 δi, and hence
⌈A⌉ ≥ ⌊A⌋. Furthermore, let B(Ξ) be the smallest σ-
algebra generated by the cylindrical sets on Ξ, which is
assumed to be the σ-algebra for this operation.

Based on the definitions above, the probability mea-
sure for the operation is given by

Pp(A) = p⌊A⌋(1− p)⌈A⌉−⌊A⌋, (2)

on the measurable space (Ξ,B(Ξ)). Note that such a
probability measure uniquely exists [10]. Henceforth,
we consider the probability space give by (Ξ,B(Ξ),Pp).

It is important to note that the probability measure
Pp has an important property called FKG inequality,
that is, if events A and B satisfy 1A(ω) ≤ 1A(ω

′) and
1B(ω) ≤ 1B(ω

′) for all ω, ω′ ∈ Ω such that ω ≤ ω′, then

Pp (A ∩B) ≥ Pp (A) Pp (B) , (3)

where 1A denote the indicator function of event A and
ω ≤ ω′ means Xv(ω) ≤ Xv(ω

′), v ∈ V . The proof of
FKG inequality is found in [11].

2.2. Critical Probability

Let θ(p) be the probability such that the open cluster
C0 containing the origin has infinite number of vertices;
that is,

θ(p) , Pp

(

|C0| = ∞
)

, (4)

where |C0| denotes the cardinal number of the set C0.
It is important to note that the relationship between p

and θ(p) is numerically calculated to be depicted in the
plot given in Fig. 2.2, where there are two phases such
that if p < pc with a threshold pc ∈ (0, 1), then θ(p) = 0
so that the probability of having an infinite cluster is
zero. This threshold pc, defined as

pc , sup
{

p ∈ [0, 1] : θ(p) = 0
}

, (5)

is called the critical probability of site percolation and
its value depends on the graph G under consideration.
Some representative values of the critical probability is
given in Table 2.1. Note that the values for the triangle
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Figure 2.2: Sketch of p-θ(p) graph

Table 2.1: Critical probabilities of site percolation
Type of graph Critical probability
Square lattice 0.593

Triangular lattice 1
2

Hexagonal lattice 0.696
Kagome lattice 1− 2 sin π

18
Penrose lattice 0.584
Diamond lattice 0.428

Body-centered cubic lattice 0.246
Face-centered cubic lattice 0.198

and the Kagome lattices are exact through analytical
evaluation [12, 13].

By contrast, in the case whereG is given by the square
lattice, it is known that the number of infinite clusters
is at most one for any p > pc[10]. Denoting by N the
random variable representing the number of infinite clus-
ters, it follows that for p < pc,

Pp(N = k) =

{

1, k = 0,
0, otherwise,

(6)

and, alternatively for p > pc,

Pp(N = k) =

{

1, k = 1,
0, otherwise.

(7)

Note that N ∈ N ∪ {∞}.

3. Extended Gossip Protocol

In this section, we first describe the extended gossip
protocol proposed in this paper. Next, we give a math-
ematical representation of the extended gossip protocol
on 2-dimensional square lattice with 2 messages and dis-
cuss the notable properties of the protocol.

3.1. Description of Extended Gossip Protocol

The extended gossip protocol used in this paper is
predicated on the conventional gossip protocol proposed
by Hass et al. [3], and we give additional rules to it.
Most important point of the additional rule is the man-
agement of multiple messages. If multiple messages are
broadcasted from the neighbor of a node, the node may
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receive different messages at the same time slot. Here
we assume that any node can deal with multiple mes-
sages at the same time slot because, in wireless sensor
networks which gossip protocol is likely to applied, each
node should have low performance. As such, we con-
sider the case if multiple messages are broadcasted from
the neighbor of a node at the same time slot, then the
node actually select and receive one of these messages
randomly.

In this paper, the extended gossip protocol on the
graph G = (V,E) is implemented by following rules:

Rule 1: There is only one source node in the network
and all the other nodes do not have messages to
be spread. (Without loss of generality, the source
node is placed at the origin 0.) At the first step,
the source node broadcasts the message with prob-
ability 1.

Rule 2: If a neighbor node of v ∈ V broadcasts a mes-
sage, then node v can receive it. A node other than
origin cannot deal with multiple messages at the
same time slot, so that if multiple messages are sent
from a neighbor of v, then v randomly select and
receive only one of them with uniform distribution.

Rule 3: A node which receive a message broadcasts
the message in the next step with probability q,
and it does not with probability 1− q.

Rule 4: Once a node receive a message, it dose not
receive the same message again (so that it dose not
broadcast the same message more than once).

The probability q in Rule 3 is called gossip probability.
Rules 1, 3, and 4 are the same as in the protocol used
in [3] and [9], while the treatment of multiple messages
in Rule 2 is original in this framework.

3.2. Mathematical Representation of Extended

Gossip Protocol with Two Messages

Now, we give a mathematical representation of ex-
tended gossip protocol with 2 messages. In the follow-
ing discussion, we restrict the network structure to 2-
dimensional square lattice L

2 = (VL, EL).

Let q ∈ [0, 1] be the gossip probability and consider
the case where source node broadcasts 2 messages m1

and m2 in this order. Furthermore, let (Ω,F ,Pq) be the
probability space associated with the extended gossip
protocol and let Xv

1 : Ω → {0, 1} is a random variable
which represents the case where the node v broadcasts
the message m1 or not at the time the node v receive m1

from its neighbor. If the node v broadcasts the message
m1 when the node v receive it, then Xv

1 = 1. Likewise,
letXv

2 : Ω → {0, 1} be a random variable for the message

m2. Let Xv
× : Ω → {m1,m2} be a random variable

which represent that which message is received if m1

and m2 are broadcasted from the neighbor of v at the
same time slot. For example, if Xv

1 = 1 and Xv
× = m1,

then the node v select and receive the message m1 and
broadcasts m1 in the next step.

Next, let C1, C2, F
k
1 , F

k
2 be random variables which

take values in 2VL defined as

C1(ω) , Z0

(

{v ∈ VL : Xv
1 (ω) = 1}

)

,

C2(ω) , Z0

(

{v ∈ VL : Xv
2 (ω) = 1}

)

,

F k
1 (ω) ,

{

v ∈ VL : distC1(ω)(v)− distC2(ω)(v) = k,

Xv
×(ω) 6= m1

}

,

F k
2 (ω) ,

{

v ∈ VL : distC1(ω)(v)− distC2(ω)(v) = k,

Xv
×(ω) 6= m2

}

,

F k(ω) , F k
1 (ω) ∪ F k

2 (ω),

Dk(ω) , Z0

(

C1(ω)rF k
1 (ω)

)

∩ Z0

(

C2(ω)rF k
2 (ω)

)

,

where Zv(U) denote the connected component of U ⊂
VL containing v ∈ VL and such that if v 6∈ U , then Zv(U)
is defined as ∅. Also, distU (v) denote the graph distance
on U between v and the origin.

The random variables Ci, i = 1, 2, represent the set
of nodes which can receive the message mi in the case
where there is no message collision. Furthermore, the
random variables F k

i , i = 1, 2, are the set of nodes in
which message mi can be discarded by the message col-
lision due to the fact that the temporal difference of m1

and m2 being k implies that the distance of the nodes
of the messages m1 and m2 which collide is k. Note
that F k

1 and F k
1 satisfy F k

1 (ω) ∩ F k
2 (ω) = ∅, ω ∈ Ω. In

addition, the random variable F k represents the set of
nodes in which the message collision occurs and and the
random variable Dk represents the set of nodes which
can receive both messages m1 and m2.

Let the probability measure Pq satisfy the following
conditions:

• Pq (X
v
1 = 1) = q, Pq (X

v
2 = 1) = q,

• Pq

(

Xv
× = m1

)

= 1
2 ,

• Xv
1 and Xv

2 are independent, v ∈ VL,

• Xu
1 and Xv

1 are independent, u, v ∈ VL,

• Xu
2 and Xv

2 are independent, u, v ∈ VL,

• Xu
× and Xv

× are independent, u, v ∈ VL.

Now, we define the percolation probability of the ex-
tended gossip protocol using the above notations as fol-
lows:
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Figure 3.1: η∞(q) and
θ(q)

Figure 3.2: Example of v′

Definition 3.1. Consider the extended gossip proto-
col on the square lattice L2 with 2 messages m1 and m2

and let k be the temporal difference of the two messages
m1 and m2 sent at the origin. The percolation prob-

ability ηk(q) of the extended gossip protocol is defined
as

ηk(q) , Pq

(

ρ
(

Dk
)

= ∞
)

,

where
ρ(U) , max {distVL

(v) : v ∈ U} ,

and U ⊂ VL. Furthermore, the value qkc given by

qkc , inf
{

q ∈ [0, 1] : ηk(q) > 0
}

.

is called critical probability of the extended gossip pro-
tocol.

3.3. Some Properties of Extended Gossip Protocol

and Its Percolation Probability

First, we discuss the case where the temporal distance
of messages m1 and m2 sent at the origin is infinity.

Theorem 3.1. Let θ(p) be the critical probability of
site percolation on the 2-dimensional square lattice and
let ηk(q) be the percolation probability of the extended
gossip protocol on the 2-dimensional square lattice with
2 messages where k is the temporal distance of messages
sent at the origin. The percolation probability η∞(q)
satisfies

{θ(q)}4 ≤ η∞(q) ≤ θ(q), q ∈ [0, 1]. (8)

Theorem 3.1 states the lower and upper bound of per-
colation probability of the extended gossip protocol in
the case where no message collision occurs. In other
words, the graph of η∞(q) is in the oblique lined area
of Figure 3.1. Hence, we immediately conclude that the
critical probability of the extended gossip protocol on
L
2 with k → ∞ is identical to the critical probability of

site percolation on L
2.

Next, we discuss the case where the temporal distance
of messages m1 and m2 is finite. We present the 2 lem-
mas below that are used in the proof of the next theo-
rem.

Lemma 3.1. If q ∈ [0, 1), then Pq

(∣

∣F k
∣

∣ = ∞
)

= 0.

Lemma 3.2. If
∣

∣F k(ω)
∣

∣ < M for a ω ∈ Ω, then there
exists ω′′ ∈ Ω such that

• if ρ(Dk(ω)) = ∞ then ρ
(

Dk+2(ω′′)
)

= ∞,

• αPq ({ω}) ≤ Pq ({ω′′}) ≤ βPq ({ω}),

where

α , min

{

(

1− q

q

)N

,

(

q

1− q

)N
}

,

β , max

{

(

1− q

q

)N

,

(

q

1− q

)N
}

,

and N is an integer.

Theorem 3.2. Let the temporal distance k be a fi-
nite integer. Then the inequality qkc ≥ qk+2

c holds.

Theorem 3.2 implies that the larger the critical prob-
ability of the extended gossip protocol is the smaller the
temporal difference k becomes. Note that Theorem 3.2
compares the temporal difference between k and k + 2,
not k and k + 1. In fact, in the case where the graph is
the 2-dimensional square lattice, the critical probability
of the extended gossip protocol satisfies

q0c ≥ q2c ≥ q4c ≥ · · · ≥ q∞c , (9)

q1c = q3c = q5c = · · · = q∞c . (10)

This implies that if the temporal difference k is odd, then
no message collision occurs and (10) holds. Inequality
(9) is a result of Theorem 3.2.

4. Conclusion

In this paper, we proposed the extended gossip pro-
tocol to be able to manage the multiple messages based
on gossip protocol. Furthermore, we analyze the per-
colation probability of the extended gossip protocol.
Simulation result in Section 3 implies that the inequal-
ity η0(q) ≤ η2(q) holds for all q ∈ [0, 1], but we can
prove only q0c ≥ q2c which implies that the inequality
η0(q) ≤ η2(q) holds in the neighborhood of the criti-
cal probability. If the inequality is shown for all q, we
will propose theoretically the optimal broadcasting pro-
cedure of the multiple messages.
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