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Abstract— This paper studies Mean square stability,

Stochastic stability and Exponential stability for discrete-

time singular linear systems whose parameters are driven

by a finite state Markov chain. It is shown the equiv-

alence of these notions under certain conditions. New

necessary conditions for mean square stability in terms

of generalized Lyapunov equations for homogeneous and

non-homogeneous of this class of systems are also given.

I. INTRODUCTION

Singular systems have received considerable atten-

tion in the recent years. These kind of systems, that

are also called descriptor, have many applications in-

cluding, for example, economic [1], mechanical, [2],

electrical [3], robotic [4] and aircraft modeling systems

[5]. When the parameters that determine the system

change abruptly, they are called Singular jump linear

systems (SJLS) and the theory is a generalization of

the very well known Markov jump linear system theory

[6]. A primary and fundamental problem to address for

system design is related to the stability of the system

[7]. In this paper, three different concepts of stability

for a SJLS are addressed: Mean square stability (MSS),

Stochastic stability (SS) and Exponential stability (ES).

For singular systems without jumping parameters many

results regarding SS have been presented in the litera-

ture (see e.g., [8], [9], [10], [11], [12], [13]). The theory

for SJLS is less developed and only a few important

results have been given (see e.g., [14], [15]). To the best

of our knowledge MSS and ES have not been addressed

before for the considered class of systems. In this paper,

it is shown that they are equivalent to SS under certain

conditions.
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It was given in [15] a necessary and sufficient

condition for SS in terms of a Generalize Lyapunov

equation (GLE). For MSS, new necessary conditions

in terms of GLEs are given for the homogeneous and

non-homogeneous version of the SJLS.

The rest of the paper is organized as follows. In

Section II, the notation used throughout the paper is

presented. The MSS, the SS and the ES of a system

driven by a general discrete-time finite state Markov

chain (MC) are introduced in Section III. The equiva-

lence between MSS and ES with SS are also shown

in this section. New necessary conditions in terms

of GLSs are given in Section IV. In Section V two

numerical examples are given to show the equivalence

between MSS and SS. In Section VI the conclusions

are given.

II. NOTATION

Let R
n denote the n-dimensional euclidian space.

The normed space of matrices of order m×n over R is

denoted by M
mn and, for short, M

n denotes the normed

space of square matrices of order n. For a matrix

A ∈ M
mn, AT and tr(A) denote the matrix transpose

and the trace of A, respectively. All random variables

are defined over the probability space (Ω,F ,Pr), where

Ω is the sample space, F is the sigma algebra of events

and Pr is the probability measure. A random variable

is written in boldface, x, and its expectation is denoted

by E(x). A discrete-time process is simply denoted by

x(k), where k is taken in Z
+, the set of integer non

negative numbers. The indicator function with respect

to the event A ∈ F is denoted by 1A. The space of

matrices in M
n that are (symmetric) positive semi-

definite is denoted by M
n0. The Kroneker product is

denoted by ⊗ and the stacking column vector operator

by vec(·). Throughout the paper the stochastic process

θ(k) is used to drive a jump linear system. The symbol

Θ is denoted to refer to the set of all initial distributions

of θ(k).
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III. SECOND MOMENT STABILITY EQUIVALENCE

In this section, the equivalence between MSS and

ES with SS of a SJLS are shown. In Definition 1,

these second moment stability concepts are introduced.

Let θ(k) be a MC with state space Sθ , {1, . . . ,N},

transition probability matrix Π , [pij ], where pij ,

Pr(θ(k + 1) = j|θ(k) = i) and initial state probability

vector θ0 , (Pr(θ(0) = 1), . . . ,Pr(θ(0) = N)).

Consider the following SJLS

Sθ(k+1)x(k + 1) = Aθ(k)x(k) + Bθ(k)w(k), (1)

x(0) = x0,

where x(k) ∈ R
n, x0 ∈ X ⊂ R

n is a random

vector with finite second moment, and w(k) ∈ R
q is a

zero mean white noise process with identity covariance

matrix Iq and independent of θ(k) and x0. For all

i ∈ Sθ, the matrix Si is a square matrix of order n

with rank(Si) ≤ n. Ai and Bi, i ∈ Sθ are matrices of

appropriate dimension. It is assumed throughout the pa-

per that the system is stochastically regular [16], which

ensures that x(k) is a well defined random variable.

This allows us to introduce second moment matrices

associated with x(k), as in Definition 1. Regularity

eventually implies that X is some strict subset of R
n,

see e.g. Example 1; X is sometimes referred to as the

set of admissible initial conditions.

For each k ∈ Z
+ define

Q(k) , E
(
x(k)xT (k)

)
(2a)

Qi(k) , E
(
x(k)xT (k)1{θ(k)=i}

)
, i ∈ Sθ. (2b)

Thus

Q(k) =

N∑

i=1

Qi(k). (3)

Definition 1: Consider the JLS (1).

a) The system (1) is said to be MSS if for any x0 ∈ X

and any θ0 ∈ Θ there exists a matrix Q ∈ M
n0 such

that

Q , lim
k→∞

Q(k). (4)

When the system is homogeneous, that is, when

ω(k) = 0 the matrix Q is the zero matrix.

b) Let ω(k) = 0. The system (1) is said to be SS if for

any x0 ∈ X and any θ0 ∈ Θ

∞∑

k=0

E
(
‖x(k)‖2

)
< ∞. (5)

c) Let ω(k) = 0. The system (1) is said to be ES if

for any x0 ∈ X and any θ0 ∈ Θ there exist constants

0 < α < 1 and β > 0 such that for all k ≥ 0

E
(
‖x(k)‖2

)
≤ βαk‖x0‖

2. (6)

where α and β are independent of x0 and θ0.

Consider the homogeneous version of the system (1),

that is,

Sθ(k+1)x(k + 1) = Aθ(k)x(k), x(0) = x0. (7)

The equivalence between MSS, SS and ES is a very

well-known result for non-singular Markov jump linear

systems, that is when Si = I for all i ∈ Sθ, where I

is the identity matrix (see, e.g., [6], [17]). For SJLS,

no similar result exists in the literature. For this class

of systems the complication appears because of the

singularity of the Matrix Sθ(k). Before showing this

equivalence some preliminary definitions and results

are given first.

Lemma 1: If the system (7) is MSS then for all i ∈

Sθ

lim
k→∞

Qi(k) = 0, (8)

where Qi(k) is defined in (2b).

Proof: For all i ∈ Sθ the following inequality

holds

‖Qi(k)‖ =
∥∥E(x(k)xT (k)1{θ(k)=i})

∥∥

≤
∥∥E(x(k)xT (k))

∥∥ .

MSS makes it possible to take limit as k → ∞ on both

sides of this equation resulting in (8).

The operators A, S and T defined below play a

fundamental role in what follows.

A , (ΠT ⊗ In2)diag(Ai ⊗ Ai), i ∈ Sθ (9)

S , diag(Si ⊗ Si), i ∈ Sθ (10)

T , (S −A) . (11)

Now define

qi(k) , vec(Qi(k)), i ∈ Sθ, (12)

q̃(k) ,




q1(k)
...

qN (k)


 . (13)

A characterization of MSS in terms of q̃(k) is given in

the following Lemma.

Lemma 2: The system (7) is MSS if and only if

lim
k→∞

q̃(k) = 0. (14)
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Proof: It follows from Lemma 1 and Equations

(3), (12) and (13).

Important partial sums are introduced next. For each

k ∈ Z
+ define

M(k) ,

k∑

n=0

Q(n) =

k∑

n=0

E(x(n)xT (n)) (15)

Mi(k) ,

k∑

n=0

Qi(n) (16)

=
k∑

n=0

E(x(n)xT (n))1{θ(n)=i}, i ∈ Sθ.

Lemma 3: Let Mi(k) be defined as in (16). Then for

each k ∈ Z
+ the following equality holds

N∑

i=1

tr (Mi(k)) =

k∑

n=0

E
(
‖x(n)‖2

)
.

Proof:

N∑

i=1

tr (Mi(k))

=

N∑

i=1

tr

(
k∑

n=0

E
(
x(n)xT (n)1{θ(n)=i}

)
)

=
N∑

i=1

k∑

n=0

E
(
tr
(
x(n)xT (n)1{θ(n)=i}

))

=
N∑

i=1

k∑

n=0

E
(
‖x(n)‖21{θ(n)=i}

)

=

k∑

n=0

E

(
N∑

i=1

‖x(n)‖21{θ(n)=i}

)

=

k∑

n=0

E

(
‖x(n)‖2

N∑

i=1

1{θ(n)=i}

)

=

k∑

n=0

E
(
‖x(n)‖2

)
.

Lemma 4: Let A and S be defined as in (9) and

(10), respectively, and consider the system (7). Then

the following equation holds

S q̃(k + 1) = Aq̃(k). (17)

Proof: This is part (b) of Theorem 2 in [18].

The main result of this section follows. It is shown that

MSS and SS are equivalent.

Theorem 1: Assume that the operator T defined in

(11) is full rank. Then the System (7) is MSS if and

only if it SS.

Proof: (MSS ⇒ SS). Let us assume that the

system (7) is MSS. From (17) it can be shown by

induction that

(S −A) q̃(k) = A (q̃(k − 1) − q̃(k)) , k ≥ 1.

Hence

(S −A)

(
k∑

n=1

q̃(n)

)
= A (q̃(0) − q̃(k))

and

T

(
k∑

n=0

q̃(n)

)
= S q̃(0) −Aq̃(k).

Lemma 2 implies

lim
k→∞

T

(
k∑

n=0

q̃(n)

)
= S q̃(0).

Since T is full rank then it is invertible. Then
∞∑

k=0

q̃(k) = T −1S q̃(0).

Thus by (12) and (13), there exists Ti ∈ R
n such that

for all i ∈ Sθ

Ti =

∞∑

k=0

qi(k) =

∞∑

k=0

vec(Qi(k)).

Since the stacking column vector operator is continuous

it follows

Ti = vec

(
∞∑

k=0

Qi(k)

)
.

Hence by (16)

lim
k→∞

Mi(k) =

∞∑

k=0

Qi(k) = vec−1(Ti), (18)

and by Lemma 3

∞∑

n=0

E
(
‖x(n)‖2

)
=

N∑

i=1

tr

(
lim

k→∞
Mi(k)

)

=
N∑

i=1

tr
(
vec−1(Ti)

)
< ∞.

Thus the condition (5) is satisfied which implies that

the system is SS.

(MSS ⇐ SS). Let us assume now that the System (7)

is SS. Then

∞∑

k=0

E
(
‖x(k)‖2

)
< ∞. Hence

lim
k→∞

E
(
‖x(k)‖2

)
= 0.
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Since ∥∥x(k)xT (k)
∥∥ = ‖x(k)‖2 (19)

then by Jensen’s inequality and (19) it follows that
∥∥E
(
x(k)xT (k)

)∥∥ ≤ E
(∥∥x(k)xT (k)

∥∥)

= E
(
‖x(k)‖2

)
.

Tacking limits as k → ∞ on both sides of this

inequality gives

lim
k→∞

‖Q(k)‖ ≤ lim
k→∞

E
(
‖x(k)‖2

)
= 0,

which implies that the system is MSS.

Now the equivalence between SS and ES is shown.

The arguments largely follow the ideas developed in

Sections 3.1 and IV of [16] and [15], respectively. A

definition and a lemma are given first.

Definition 2: ( [16]) Let Wi be a matrix in M
n0 for

all i ∈ Sθ. The system (7) is said to be observable in

Wθ(k) if for all k ≥ 0 there exist γ > 0 and T > 0,

independent of k and θ(k) such that

E

(
k+T∑

t=k

x
T (t)Wθ(k)x(t)

∣∣∣∣Fk

)
≥ γ‖x(k)‖2.

Define the following Lyapunov function

V (x(k),θ(k)) , x
T (k)Wθ(k)x(k).

Lemma 5: Let the following Lyapunov equation be

defined as

ST
i XiSi = AT

i




N∑

j=1

pijXj


Ai + AT

i




N∑

j=1

pijSj


Ri

(20)

+ RT
i




N∑

j=1

pijS
T
j


Ai + Wi,

where Si, Ai ∈ R
n, Ri ∈ M

(n−r)×n and Si ∈

M
n×(n−r) is a full column rank matrix such that SiSi =

0 and r =rank(Si). If (20) is satisfied for all i ∈ Sθ

then the following equality holds

V (x(k),θ(k)) − E(V (x(k + 1),θ(k + 1)))

= x
T (k)Wθ(k)x(k).

Proof: This is Equation (21) of the proof of

Theorem 1 in [15].

Theorem 2: SS and ES are equivalent.

Proof: a) (SS ⇒ ES) Let Wi = I , i ∈ Sθ, in

such a manner that the system (7) is observable in Wθ

with γ = 1. According to Theorem 1 in [15], if the

system is SS then for Wi ∈ M
n0 there exist solutions

ST
i XiSi ∈ M

n0 and Ri, i ∈ Sθ to the Equation (20).

Now, according to Theorem 3.1 in [16] if (20) holds

then the System is ES.

b) (ES ⇒ SS) Let us assume now that the system is

ES. Since α < 1 in (6), the claim follows immediately

by the definition of SS.

IV. NECESSARY CONDITIONS FOR MSS

In this section, new necessary conditions for MSS

of system (1) are given. These conditions are given

in terms of GLEs for the homogeneous and non-

homogeneous version of the system.

A. The homogeneous case

The following result gives an equivalent characteri-

zation of MSS.

Lemma 6: Assume that T is full rank. Then the

system (7) is MSS if and only if there exists Mi ∈ M
n0

such that

Mi =

∞∑

k=0

Qi(k), i ∈ Sθ. (21)

Proof: (⇒) If T is full rank and the system is

MSS then (18) holds, that is, for all i ∈ Sθ there exists

Mi such that Mi =

∞∑

k=0

Qi(k). Clearly Mi ∈ M
n0.

(⇐) If (21) holds then lim
k→∞

Qi(k) = 0 for all i ∈ Sθ.

Then by (3)

lim
k→∞

Q(k) = lim
k→∞

(
N∑

i=1

Qi(k)

)
= 0,

thus the system is MSS.

Theorem 3: If the system (7) is MSS and T is full

rank then the set of matrices Mi defined in (21) satisfy

the generalized Lyapunov equation

N∑

i=1

SiMiS
T
i =

N∑

i=1

AiMiA
T
i + X0, (22)

where X0 , E
(
Sθ(0)x(0)xT (0)ST

θ(0)

)
.

Proof: Let the system (7) be MSS. By Lemma 6

2880



it follows

∞∑

k=0

E
(
Sθ(k)x(k)xT (k)ST

θ(k)

)

= X0 +

∞∑

k=1

E
(
Aθ(k−1)x(k − 1)xT (k − 1)

AT
θ(k−1)

)

= X0 +

∞∑

k=1

E

(
N∑

i=1

Aix(k − 1)xT (k − 1)

AT
i 1{θ(k−1)=i}

)

= X0 +
N∑

i=1

Ai

( ∞∑

k=1

E
(
x(k − 1)xT (k − 1)

1{θ(k−1)=i}

))
AT

i

=

N∑

i=1

AiMiA
T
i + X0.

The left hand side of this equation can be written

similarly resulting in (22).

B. The non-homogeneous case

In this subsection, a necessary GLE condition for

MSS of the system (1) when ω(k) 6= 0 is given. Let

pi(k) , Pr(θ(k) = i) be the probability distribution of

θ(k).

Lemma 7: If the system (1) is MSS and the limits

lim
k→∞

pi(k) exist for every i ∈ Sθ then there exists a

matrix Qi ∈ M
n0 such that Qi = lim

k→∞
Qi(k).

Proof: Since the system is MSS then there ex-

ists a matrix Q ∈ M
n0 such that Q = lim

k→∞
Q(k).

The convergence of Qi(k) is proved by showing that

{Qi(k), k ∈ Z
+} is a Cauchy sequence. Fix i ∈ Sθ and

take n and m in Z
+ such that n > m.

‖Qi(n) − Qi(m)‖ =
∥∥E
(
x(n)xT (n)1{θ(n)=i}

)

− E
(
x(m)xT (m)1{θ(m)=i}

)
‖

=
∥∥E
(
x(n)xT (n)1{θ(n)=i}

)
− E(Q1{θ(n)=i})+

E(Q1{θ(n)=i}) − E(Q1{θ(m)=i})+

E(Q1{θ(m)=i}) − E
(
x(m)xT (m)1{θ(m)=i}

) ∥∥

By the triangle inequality and simplifying the argu-

ments it follows

‖Qi(n) − Qi(m)‖ ≤
∥∥E
(
x(n)xT (n)

)
− Q

∥∥+‖Q‖|pi(n) − pi(m)|+
∥∥E
(
x(m)xT (m)

)
− Q

∥∥.

Since the sequence {pi(k), k ∈ Z
+} is convergent, then

it is Cauchy. Thus for any N > 0 there exists ǫ > 0

such that for n > m > N

‖Qi(n) − Qi(m)‖ <
ǫ

3
+

ǫ

3‖Q‖
‖Q‖ +

ǫ

3
= ǫ.

Since M
mn is a Banach space, the convergence of

Qi(k) follows from this inequality. In addition, since

Qi(k) ∈ M
n0 for every k ∈ Z

+ then Qi ∈ M
n0.

Theorem 4: If the system (7) is MSS and pi =

lim
k→∞

pi(k) then the set of matrices Qi given in Lemma

7 satisfy the GLE

N∑

i=1

SiQiS
T
i =

N∑

i=1

AiQiA
T
i +

N∑

i=1

BiB
T
i pi. (23)

Proof: It is similar to the one in Theorem 3.

V. EXAMPLES

Example 1: Consider the system (7) with Sθ =

{1, 2}, S1 = 1, A1 = 0.5, S2 = 0, A2 = 1 and

Π =

[
1 0

p 1 − p

]
,

with 0 ≤ p ≤ 1. This is a quite simple, illustrative

example of a stochastically regular SJLS with one

dimensional x-state, and set of admissible initial con-

ditions given by X = {0} (the origin, only) because

the initial condition θ0 = 2 imposes 0x(1) = 1x(0),

that is, x(0) = 0. Hence the system is trivially MSS,

SS and ES irrespectively of p. This is in accordance

with Theorem 2. Theorem 3 holds trivially with Mi =

X0 = 0. Regarding Theorem 1, from (11) we have that

T =

[
0.75 −p

0 −(1 − p)

]
,

which is of full rank except for p = 1, indicating that

the result is conservative only for p = 1.

Example 2: Consider the system (7) with Sθ =

{1, 2}, S1 = S2 = I , A1 = 1.2I ,

A2 =

[
0.5 0.2

−0.1 0.7

]
, and Π =

[
0.6 0.4

p 1 − p

]
,

with 0 ≤ p ≤ 1. This is a standard nonsingular Markov

jump linear system, which is MSS and SS if and only
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10
−15

10
−12

10
−9

10
−6

0.5 0.5263 0.56

det(T )

p

Fig. 1. Determinant of T for different values of p in Example 2.

if the eigenvalues of A are in the unit disk [6]; this

allows us to check that the system is stable for p < p̄

with p̄ ≈ 0.5263. Figure 1 indicates that T is of full

rank except for p̄, therefore the hypothesis of Theorem

1 holds whenever the system is stable.

Remark. For nonsingular Markov jump linear systems,

Theorem 1 retrieves the well known fact that MSS and

SS are equivalent (see, e.g., [6], [17]). Actually, in this

context one has that MSS implies that all eigenvalues

of A are inside the unit disk, yielding that T = I−A is

of full rank (as illustrated in Example 2) and Theorem

1 implies that the system is SS. The same argument is

valid to show that SS implies MSS.

VI. CONCLUSIONS

Three concepts of second moment stability for SJLS

have been introduced and shown to be equivalent under

certain conditions. Up to the best of our knowledge

this is a new result and represents an extension of the

very well know result for Markov jump linear system

that establishes the same property for the same three

stability concept of stability. It was also given necessary

conditions for MSS in terms of a generalized Lyapunov

equation for SJLS. These necessary conditions were

given for the homogeneous and non-homogeneous ver-

sions of the system.
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